Computational Learning Theories [COLT]

- Issues of COLT

. probability of successful learning
. complexity of hypothesis space
. number of training examples required for learning (sample complexity)
. accuracy to which target concept is approximated (generalization bounds)

- Concepts

Σ : alphabet for describing examples
eg. boolean alphabet $\{0,1\}$, real alphabet R
Σ^{n} : set of n-tuples of elements of Σ
$\Sigma^{*}=\bigcup_{n=1}^{\infty} \Sigma^{n}$: set of all non-empty finite strings of elements of Σ
a concept c over alphabet Σ :

$$
c: X \rightarrow\{0,1\} \text { assuming } X \subseteq \Sigma^{*} \text { (example or sample space) }
$$

- Training and Learning

C : concept space (a set of concepts)
M: machine
H : hypothesis space - a set of concepts which M determines.

A sample of length m is a sequence of m examples, that is, $\underline{x}=\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ in X^{m}.
A training sample \underline{s} is an element of $(X \times 0,1)^{m}$, that is, $\underline{s}=\left(\left(x_{1}, b_{1}\right),\left(x_{2}, b_{2}\right), \cdots,\left(x_{m}, b_{m}\right)\right)$

A learning algorithm L for (C, H) : a procedure which accepts $\underline{s} s$ for functions in C and output corresponding hypotheses in H, that is,

$$
L:(X \times\{0,1\})^{m} \rightarrow H
$$

eg. $h=L(\underline{s}), h \in H$

A hypothesis $h \in H$ is consistent with \underline{s} if

$$
h\left(x_{i}\right)=b_{i} \quad \text { for } 1 \leqq i \leqq m
$$

- Probably Approximately Correct (PAC) Learning

. Error of any hypothesis $h \in H$ with respect to a target concept $t \in H$ is defined by

$$
\operatorname{er}(h, t)=\operatorname{Pr}_{x \in D}\{x \in X \mid h(x) \neq t(x)\}
$$

-> The probability is taken with respect to random draw of x according to the sample distribution D.
Usually, $\operatorname{er}(h, t)$ is abbreviated as $\operatorname{er}(h)$.
. $S(m, t)$: a set of training samples of length m for a given target concept t where the examples are drawn from X.
. Any sample $\underline{x} \in X^{m}$ determines a training sample $\underline{s} \in S(m, t)$. eg. If $\underline{x}=\left(x_{1}, x_{2}, \cdots, x_{m}\right)$, then

$$
\underline{s}=\left(\left(x_{1}, t\left(x_{1}\right)\right),\left(x_{2}, t\left(x_{2}\right)\right), \cdots,\left(x_{m}, t\left(x_{m}\right)\right)\right) .
$$

In other words, there exists $\phi(\underline{x})$ such that

$$
\phi: X^{m} \rightarrow S(m, t) .
$$

- $\operatorname{er}(L(\underline{s}))$: the error of the hypothesis when a learning algorithm L is supplied with \underline{s}.
. The algorithm L is a probably approximately correct (PAC) learning algorithm for the hypothesis H if a given
(1) a real number δ (confidence parameter, $0<\delta<1$) and
(2) a real number ϵ (accuracy parameter, $0<\epsilon<1$),
there is a positive integer $m_{0}=m_{0}(\delta, \epsilon)$ such that
(1) for any target concept $t \in H$ and
(2) for any probability distribution D on X, whenever $m \geqq m_{0}$ the following probability is satisfied:

$$
\operatorname{Pr}[\underline{s} \in S(m, t) \mid e r(L(\underline{s}))<\epsilon]>1-\delta .
$$

. potential learnability:

Let $H[\underline{s}]$ be the set of all hypotheses which are consistent with \underline{s}, that is,

$$
H[\underline{s}]=\left\{h \in H \mid h\left(x_{i}\right)=t\left(x_{i}\right), 1 \leqq i \leqq m\right\} .
$$

Then, L is consistent if and only if $L(\underline{s}) \in H[\underline{s}]$ for all \underline{s}.
. the set of ϵ-bad hypotheses for t :

$$
B_{\epsilon}=\{h \in H \mid \operatorname{er}(h) \geqq \epsilon\} .
$$

. H is potentially learnable if there is a positive integer $m_{0}=m_{0}(\delta, \epsilon)$ such that whenever $m \geqq m_{0}$

$$
\operatorname{Pr}\left[\underline{s} \in S(m, t) \mid H[\underline{s}] \cap B_{\epsilon}=\varnothing\right]>1-\delta
$$

for any probability distribution D on X and $t \in H$.

. Theorem:

If H is potentially learnable and L is a consistent learning algorithm for H, then L is PAC.

(proof)

L is consistent $\rightarrow L(\underline{s}) \in H[\underline{s}] \forall \underline{s}$
H is potentially learnable $\rightarrow H[\underline{s}] \cap B_{\epsilon}=\varnothing$

$$
\begin{aligned}
& ->\operatorname{er}(L(\underline{s}))<\epsilon \\
& ->L \text { is PAC. }
\end{aligned}
$$

. Theorem:

Any finite hypothesis is potentially learnable.

(proof)

Suppose that H is a finite hypothesis and
δ, ϵ, t, and D are given. Then, for any $h \in B_{\epsilon}$

$$
\begin{aligned}
& \operatorname{Pr}[x \in X \mid h(x)=t(x)]=1-e r(h) \leqq 1-\epsilon \\
& -\operatorname{Pr}\left[\underline{s} \in S(m, t) \mid h\left(x_{i}\right)=t\left(x_{i}\right), 1 \leqq i \leqq m\right] \leqq(1-\epsilon)^{m} \\
& -\operatorname{Pr}\left[\underline{s} \in S(m, t) \mid H[\underline{s}] \cap B_{\epsilon} \neq 0\right] \leqq|H|(1-\epsilon)^{m}
\end{aligned}
$$

This probability is less than δ provided $m \geqq m_{0}(\delta, \epsilon)$ where $m_{0}(\delta, \epsilon)=\left|\frac{1}{\epsilon} \ln \frac{|H|}{\delta}\right|$
since

$$
\begin{aligned}
& |H|(1-\epsilon)^{m} \leqq|H|(1-\epsilon)^{m_{0}}<|H| e^{-\epsilon m_{0}} \leqq \delta . \\
& \text { cf. } \quad(1+x)^{m} \leqq e^{m x}
\end{aligned}
$$

That is, whenever $m \geqq m_{0}$

$$
\operatorname{Pr}\left[\underline{s} \in S(m, t) \mid H[\underline{s}] \cap B_{\epsilon}=\varnothing\right]>1-\delta .
$$

Therefore, H is potentially learnable.

- The Growth Function

. Let $\underline{x}=\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ be a sample of length m of examples from X. Then, the number of classifications of \underline{x} by H is defined by $\Pi_{H}(\underline{x})$.
. Here, the number of distinct vectors of the form
$\left(h\left(x_{1}\right), h\left(x_{2}\right), \cdots, h\left(x_{m}\right)\right)$ as h runs through all hypotheses of H can be determined by

$$
\Pi_{H}(\underline{x}) \leqq 2^{m}
$$

where the concept is mapping defined by $c: X \rightarrow\{0,1\}$.
. The growth function is defined by

$$
\Pi_{H}(m)=\max \left\{\Pi_{H}(\underline{x}) \mid \underline{x} \in X^{m}\right\} .
$$

- The Vapnik-Chervonenkis (VC) Dimension

. A sample \underline{x} of length m is 'shattered' by H if

$$
\Pi_{H}(\underline{x})=2^{m} .
$$

That is, H gives all possible classifications of \underline{x}.
. The VC dimension of H is the maximum length of a sample shattered by H, that is,

$$
V C D(H)=\max \left\{m \mid \Pi_{H}(m)=2^{m}\right\} .
$$

. If H is a finite hypothesis space, then $V C D(H) \leqq \log _{2}|H|$.
. example: linear discriminant function

$$
h(\underline{x})=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}
$$

In this case, $V C D(H)=n+1$.

- Sauer's Lemma [Sauer, 1972]

Let $d \geqq 0$ and $m \geqq 0$ be given natural numbers and

$$
\phi_{d}(m)= \begin{cases}1 & \text { if } d=0 \text { or } m=0 \\ \phi_{d}(m-1)+\phi_{d-1}(m-1) & \text { otherwise }\end{cases}
$$

Then,

$$
\phi_{d}(m)=\sum_{i=0}^{d}\binom{m}{i} .
$$

(proof)
(1) If $m=0, \phi_{d}(0)=\sum_{i=0}^{d}\binom{0}{i}=\binom{0}{0}=1$.
(2) If $d=0, \phi_{0}(m)=\binom{m}{0}=1$.
(3) $\phi_{d}(m-1)+\phi_{d-1}(m-1)=\sum_{i=0}^{d}\binom{m-1}{i}+\sum_{i=0}^{d-1}\binom{m-1}{i}$

$$
\begin{aligned}
& =\sum_{i=0}^{d}\left[\binom{m-1}{i}+\binom{m-1}{i-1}\right] \\
& =\sum_{i=0}^{d}\binom{m}{i} \\
& =\phi_{d}(m)
\end{aligned}
$$

. $\phi_{d}(m)$ grows polynomially when $m>d$, that is, $0 \leqq \frac{d}{m}<1$.
$\left(\frac{d}{m}\right)^{d} \sum_{i=0}^{d}\binom{m}{i} \leqq \sum_{i=0}^{d}\binom{d}{m}^{i}\binom{m}{i} \leqq \sum_{i=0}^{m}\left(\frac{d}{m}\right)^{i}\binom{m}{i}=\left(1+\frac{d}{m}\right)^{m} \leqq e^{d}$
cf. $(1+x)^{m}=\sum_{i=0}^{m}\binom{m}{i} x^{i}$
This implies that

$$
\phi_{d}(m)=\sum_{i=0}^{d}\binom{m}{i} \leqq e^{d}\left(\frac{m}{d}\right)^{d}=\left(\frac{e m}{d}\right)^{d} .
$$

. Theorem:
If $d=V C D(H), \quad \Pi_{H}(m) \leqq \phi_{d}(m) \leqq\left(\frac{e m}{d}\right)^{d}$.
. The logarithmic growth function
Let $G(m)=\ln \Pi_{H}(m)$.
Then,

$$
G(m) \leqq d\left(1+\ln \frac{m}{d}\right) .
$$

Note that the above logarithmic growth function is valid for $m>d$.

- VC Dimension of Artificial Neural Networks

The large class of artificial neural networks including sigmoidal functions, radial basis functions, and sigma-pi networks have the following VC dimension bounds (Goldberg and Jerrum, 1993; Sakurai, 1993 and 1995):

$$
O(W \log h) \leqq V C D(H) \leqq O\left(W^{2} h^{2}\right)
$$

where W represents the number of total parameters and h represents the number of hidden units.

- The Upper Bounds of Sample Complexity

. Assuming that H is potentially learnable.
Then, there is a positive integer $m_{0}=m_{0}(\delta, \epsilon)$ such that whenever $m \geqq m_{0}$,

$$
\operatorname{Pr}\left[\underline{s} \in S(m, t) \mid H[\underline{s}] \cap B_{\epsilon}=\varnothing\right]>1-\delta \ldots \text { (1) }
$$

for any probability distribution D on X and $t \in H$.
. What is m_{0} which will guarantee the probability condition of (1)?

. Lemma:

Let H has the finite VC dimension. Then, for $m \geqq 8 / \epsilon$, the following inequality holds:

$$
\operatorname{Pr}\left[\underline{s} \in S(m, t) \mid H[\underline{s}] \cap B_{\epsilon} \neq \varnothing\right] \leqq 2 \Pi_{H}(2 m) 2^{-\frac{\epsilon m}{2}}
$$

. Theorem (Blumer, 1989): upper bound of sample complexity Suppose H is a hypothesis space of $V C D(H)=d \geqq 1$ and

$$
m_{0}=m_{0}(\delta, \epsilon)=\left|\frac{4}{\epsilon}\left(d \log _{2} \frac{12}{\epsilon}+\log _{2} \frac{2}{\delta}\right)\right| .
$$

Then, for any $m \geqq m_{0}$,

$$
\operatorname{Pr}\left[\underline{s} \in S(m, t) \mid H[\underline{s}] \cap B_{\epsilon} \neq \varnothing\right] \leqq \delta .
$$

(proof)

From the Iemma,

$$
\operatorname{Pr}\left[\underline{s} \in S(m, t) \mid H[\underline{s}] \cap B_{\epsilon} \neq \varnothing\right] \leqq 2 \Pi_{H}(2 m) 2^{-\frac{\epsilon m}{2}} \leqq 2\left(\frac{e 2 m}{d}\right)^{d} 2^{-\frac{\epsilon m}{2}}
$$

Let

$$
2\left(\frac{e 2 m}{d}\right)^{d} 2^{-\frac{\epsilon m}{2}} \leqq \delta .
$$

Then,

$$
d \ln \left(\frac{2 e}{d}\right)+d \ln m-\frac{\epsilon m}{2} \ln 2 \leqq \ln \frac{\delta}{2} .
$$

Rearranging the above equation, we get

$$
\begin{equation*}
\frac{\epsilon m}{2} \ln 2-d \ln m \geqq d \ln \left(\frac{2 e}{d}\right)+\ln \frac{2}{\delta} . \ldots \tag{1}
\end{equation*}
$$

Since $\ln x \leqq \ln \frac{1}{c}-1+c x$ for any $x>0$ and $c>0$,

$$
\begin{equation*}
d \ln m \leqq d\left(\ln \frac{4 d}{\epsilon \ln 2}-1\right)+\frac{\epsilon \ln 2}{4} m . \quad \ldots \tag{2}
\end{equation*}
$$

Here, we set

$$
c=\frac{\epsilon \ln 2}{4 d} \quad \text { and } \quad x=m .
$$

From (1) and (2),

$$
\frac{\epsilon m}{4} \ln 2 \geqq d \ln \left(\frac{2 e}{d}\right)+\ln \left(\frac{2}{\delta}\right)+d \ln \left(\frac{4 d}{\epsilon \ln 2}\right)-d .
$$

Rearranging the above equation, we get

$$
m \geqq \frac{4}{\epsilon}\left(d \log _{2} \frac{12}{\epsilon}+\log _{2} \frac{2}{\delta}\right)
$$

Here, note that $8 / \ln 2<12$.
. example: linear discriminant function

$$
h(\underline{x})=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}
$$

In this case, $V C D(H)=n+1$.
The sufficient number of samples for PAC learning is

$$
m_{0}=\left|\frac{4}{\epsilon}\left((n+1) \log _{2} \frac{12}{\epsilon}+\log _{2} \frac{2}{\delta}\right)\right| .
$$

Let $\epsilon=0.1, \delta=0.05$ (95% confidence), $n=2$. Then,

$$
m_{0}=\left|\frac{4}{0.1}\left(3 \log _{2} \frac{12}{0.1}+\log _{2} \frac{2}{0.05}\right)\right|=656 .
$$

-> This is quite large number of samples compared to the minimum number of samples $(=4)$ to learn a linear decision boundary in 2-D space.

- The Lower Bounds of Sample Complexity

. If L is PAC,

$$
\begin{aligned}
& \operatorname{Pr}[\underline{s} \in S(m, t) \mid \operatorname{er}(L(\underline{s}))<\epsilon]>1-\delta \text { or } \\
& \operatorname{Pr}[\underline{s} \in S(m, t) \mid \operatorname{er}(L(\underline{s})) \geqq \epsilon] \leqq \delta .
\end{aligned}
$$

. What is the upper bound m_{0} of m that does not satisfy the above inequality? That is,

$$
\operatorname{Pr}[\underline{s} \in S(m, t) \mid \operatorname{er}(L(\underline{s})) \geqq \epsilon] \geqq \delta .
$$

Here, if $m \leqq m_{0}, L$ can not be PAC.
. In other words, if $m>m_{0}, L$ has the possibility to be PAC.

. Theorem: lower bounds of sample complexity

Suppose L is PAC learning algorithm for H. Then,

$$
m(\delta, \epsilon)>\frac{1-\epsilon}{\epsilon} \ln \frac{1}{\delta}
$$

for any δ and ϵ between 0 and 1.
(proof)
Let $h=L(\underline{s})$ and $\operatorname{er}(h) \geqq \epsilon$. Then,

$$
\operatorname{Pr}[x \in X \mid h(x)=t(x)]=1-e r(h) \leqq 1-\epsilon \quad \text { and }
$$

$$
\begin{equation*}
\operatorname{Pr}\left[\underline{s} \in S(m, t) \mid h\left(x_{i}\right)=t\left(x_{i}\right), 1 \leqq i \leqq m\right] \leqq(1-\epsilon)^{m} . \tag{1}
\end{equation*}
$$

Let
$\operatorname{Pr}\left[\underline{s} \in S(m, t) \mid h\left(x_{i}\right)=t\left(x_{i}\right), 1 \leqq i \leqq m\right] \geqq \delta$.

Then, from (1) and (2),

$$
(1-\epsilon)^{m} \geqq \delta .
$$

-> $m \ln (1-\epsilon) \geqq-\ln \frac{1}{\delta}$
-> $m \leqq-\frac{1}{\ln (1-\epsilon)} \ln \frac{1}{\delta}$
$->m \leqq \frac{1-\epsilon}{\epsilon} \ln \frac{1}{\delta} \quad$ since $\quad-\ln (1-\epsilon)=\ln \left(1+\frac{\epsilon}{1-\epsilon}\right) \leqq \frac{\epsilon}{1-\epsilon}$.
Therefore, if

$$
\begin{aligned}
& m \leqq \frac{1-\epsilon}{\epsilon} \ln \frac{1}{\delta}, \\
& \operatorname{Pr}[\underline{s} \in S(m, t) \mid \operatorname{er}(L(\underline{s}) \geqq \epsilon] \geqq \delta \quad \text { or } \\
& \operatorname{Pr}[\underline{s} \in S(m, t) \mid \operatorname{er}(L(\underline{s}))<\epsilon]<1-\delta .
\end{aligned}
$$

This implies that

$$
m>\frac{1-\epsilon}{\epsilon} \ln \frac{1}{\delta}
$$

if L is PAC learning algorithm for H.
. Theorem: lower bounds of sample complexity (Ehrenfeucht, 1989)
For any H of $\operatorname{VCD}(H)=d \geqq 1$, and for any PAC learning algorithm L for H,

$$
m(\delta, \epsilon)>\frac{d-1}{32 \epsilon}
$$

$$
\text { for } \delta \leqq 1 / 100 \text { and } \epsilon \leqq 1 / 8
$$

. Theorem: lower bounds of sample complexity

Let C be a concept space and H a hypothesis space such that C has the VC dimension at least 1. Suppose L is any PAC learning algorithm for (C, H). Then,

$$
m(\delta, \epsilon)>\left|\max \left(\frac{1}{\epsilon} \ln \frac{1}{\delta}, \frac{V C D(C)-1}{32 \epsilon}\right)\right|
$$

for $\delta \leqq 1 / 100$ and $\epsilon \leqq 1 / 8$.
. example: linear discriminant function

$$
h(\underline{x})=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}
$$

In this case, $V C D(H)=n+1$.
Let $\delta=0.05, \epsilon=0.1$, and $n=2$.
Then, the lower bound of sample complexity is

$$
m_{0}^{L}=\left|\max \left(\frac{3-1}{32 \cdot 0.1}, \frac{1}{0.1} \ln \frac{1}{0.05}\right)\right|=30 .
$$

Note that

- the upper bound of sample complexity: $m_{0}^{U}=656$ and
- the minimum number of samples to determine the decision boundary: $m_{0}^{*}=4$

- Summary of Sample Complexity

. If H is finite and L is consistent, L is PAC and

$$
m(\delta, \epsilon)=O\left(\frac{1}{\epsilon}\left(\ln |H|+\ln \frac{1}{\delta}\right)\right) .
$$

. If H has the finite $V C D(H)=d$ and L is consistent, L is PAC and

$$
m(\delta, \epsilon)=O\left(\frac{1}{\epsilon}\left(d \ln \frac{1}{\epsilon}+\ln \frac{1}{\delta}\right)\right) .
$$

. If L is PAC, C must have the finite $V C D(C)=d$ and

$$
m(\delta, \epsilon)=\Omega\left(\frac{1}{\epsilon}\left(d+\ln \frac{1}{\delta}\right)\right) .
$$

Note that
(1) $f=O(g)$ when there is some constant C such that $f(x) \leqq C g(x) \quad \forall x$.
(2) $f=\Omega(g)$ when there is some constant K such that $f(x) \geqq K g(x) \quad \forall x$.

