Computational Learning Theories (COLT)

- Issues of COLT
. probability of successful learning
. complexity of hypothesis space

. number of training examples required for learning
(sample complexity)

. accuracy to which target concept is approximated
(generalization bounds)

— Concepts

J. alphabet for describing examples
eg. boolean alphabet {0,1}, real alphabet R

X" set of n—tuples of elements of X

"= J 2" set of all non—-empty finite strings of elements of X

n=1

a concept c over alphabet X
c: X—{0,1} assuming X< X" (example or sample space)



- Training and Learning

C: concept space (a set of concepts)

M. machine
H. hypothesis space — a set of concepts which A/ determines.

A sample of length m is a sequence of m examples, that is,
= (azl,xz,---,xm) in X"

A training sample s is an element of (Xx0,1)", that is,
5= ((21,0,), (®y, b,), -+ (2, b,,))

A learning algorithm L for (C, H): a procedure which accepts ss
for functions in C and output corresponding hypotheses in #,

that is,
L:(Xx{0,1})"—H
eg. h=L(s), he H

A hypothesis h € H is consistent with s if

h(z,)=0b, for 1<=i<m



— Probably Approximately Correct (PAC) Learning

. Error of any hypothesis h € H with respect to a target concept
t € H is defined by
er(h,t) =Pr, . D{x c Xlh(zx) =t(x)}

-> The probability is taken with respect to random draw of =z
according to the sample distribution D.
Usually, er(h,t) is abbreviated as er(h).

. Slm,t): a set of training samples of length m for a given
target concept ¢t where the examples are drawn from X.

. Any sample z <€ X™ determines a training sample s S(m,t).
eg. If z=(x,, xy -, 2,), then

s= (@, t(x))), (2o, t (), -+, (@, ().
In other words, there exists ¢(z) such that

¢: X"—>S(m,t).

. er(L(s)): the error of the hypothesis when a learning algorithm L
is supplied with s.



. The algorithm L is a probably approximately correct (PAC)
learning algorithm for the hypothesis A if a given
(1) a real number é (confidence parameter, 0 <§<1) and
(2) a real number e (accuracy parameter, 0 <e<1),

there is a positive integer m, =m,(d,¢) such that

(1) for any target concept t € H# and
(2) for any probability distribution D on X,
whenever m = m,, the following probability is satisfied:

Prise S(m,t)ler(L(s)) <e] >1-4.

. potential learnability:
Let His] be the set of all hypotheses which are consistent with

s, that is,
Hls|={h € HlIh(z,)=t(z,),1 =i =< m}.
Then, L is consistent if and only if L(s) € H[s] for all s.

. the set of e—bad hypotheses for ¢:
B =1{h € Hler(h) = ¢}.

. H is potentially learnable if there is a positive integer
m, =m,(5,e) such that whenever m = m,

Pr(se Sim,t)H[s|NB. =3]>1-94
for any probability distribution D on X and t € H.



. Theorem:
If H is potentially learnable and L is a consistent
learning algorithm for A, then L is PAC.

(proof)

L is consistent => L(s) € H[s] Vs

H is potentially learnable —> H[s|NB =&
-> er(L(g)) <€
-> L is PAC.

. Theorem:
Any finite hypothesis is potentially learnable.

(proof)
Suppose that A is a finite hypothesis and
d,¢6,t, and D are given. Then, for any h € B.
Priz € XIh(z)=t(zx)]=1—er(h) < 1—c¢
=> Prise Sm,t)lh(z,)=t(x;), 1=<i<m]<(1—¢€)"
> Prlse Sim,t) Hs|NB =0] < |HI(1—¢)"
This probability is less than & provided m = m,(d,e) where
1. |H

— In—

my(8,€) = —In—




since
HI(1—¢e)" < |HI(1—€)™ <|Hle "™ <.
cf. (1+z)" <™

That is, whenever m =m,
Pr(se Sm,t)H[s|NB = @] >1-4.
Therefore, H is potentially learnable.

- The Growth Function

. Let z=(z,x,,--,z,,) be a sample of length m of examples from
X. Then, the number of classifications of =z by A is defined by
HH(@)

. Here, the number of distinct vectors of the form
(h(x,), h(zy), -, h(x, )) as h runs through all hypotheses of H
can be determined by

Iy(z) =2"
where the concept is mapping defined by
c: X—{0,1}.



. The growth function is defined by
II,,(m) ZmaX{HH(g)@E Xm}

— The Vapnik-Chervonenkis (VC) Dimension

. A sample z of length m is 'shattered' by A if
I, (z)=2".

That is, H gives all possible classifications of .

. The VC dimension of A is the maximum length of
a sample shattered by A, that is,

VCD(H) = max{m| I, (m)= Qm}.

. If H is a finite hypothesis space, then
VCD(H) < log,|HI.
. example: linear discriminant function
h(z) =w,+ Y wz,
i=1

In this case, VCD(H)=n+1.



- Sauer's Lemma (Sauer, 1972)

Let d =0 and m = 0 be given natural numbers and
( )_ 1 ifd=0or m=0
Palm) = ¢d(m—1)+¢d_l(m—1) otherwise
Then,

oytm) = 33

7



. . d
. ¢,(m) grows polynomially when m >d, that is, 0 < <1

d m

T8 B e <

m /] i=o i=0 i=0\ m
cf. (1+x)m22(?)xi
i=0
This implies that
d d d
_ m alf m _[em
ulm) =3[ < e 2| =]

i=o\?

. Theorem:

IfdzL@DGﬂ,Hﬂm)§¢Am)§(——y

. The logarithmic growth function
Let G(m)=InIl,(m).

Then,

wagdu+mgm

Note that the above logarithmic growth function is valid for
m > d.



— VC Dimension of Artificial Neural Networks

The large class of artificial neural networks including

sigmoidal functions, radial basis functions, and sigma-pi networks
have the following VC dimension bounds

(Goldberg and Jerrum, 1993; Sakurai, 1993 and 1995):

O(Wlogh) < VCD(H) = O(W?h?)

where W represents the number of total parameters and
h represents the number of hidden units.

— The Upper Bounds of Sample Complexity

. Assuming that A is potentially learnable.
Then, there is a positive integer m, =m,(d,¢) such that
whenever m = m,,
Prise Sim,t)|Hs|NB=2]>1-06 ... (1)
for any probability distribution D on X and ¢t € AH.

. What is m, which will guarantee the probability condition of (1)?



. Lemma:
Let A has the finite VC dimension. Then, for m = 8/,
the following inequality holds:

€em

Prise Sim,t)Hls|NB = @] < 2I1,(2m)2 * .

. Theorem (Blumer, 1989): upper bound of sample complexity
Suppose H is a hypothesis space of VCD(H)=d =1 and

_4 12 2
€

my =my (9, €) (dlog2?+logzg)|.

Then, for any m = m,,
Pr(se S(m,t) Hls|NB = @] < 4.

(proof)
From the lemma,

Pr(se S(m,t) Hs|NB » @] < 2[1,(2m)2 2 = 2( eQdm) 2 2

Let

e2m —%
<
2]y % <

Then,
2e em 1)
R - < —
dln( ¥ )—l—dlnm 5 In2 < 1In 5 -

Rearranging the above equation, we get

em 2e 2
- — 2 - —
5 In2—dlnm = dln( 7 )-I—ln 5 (1)



) 1
Since Inz < ln;—l—l—c:c for any x>0 and ¢> 0,

4 In2
dlnm = d(in—4__ypem2 g
eln 4
Here, we set
eln2
c= v and x=m.

From (1) and (2),
em 2e 2 4d
- > = - —
1 In2 > dln( 7 )+1n(6)+dln(€ln2) d.
Rearranging the above equation, we get

4 12 2
m = ?(dlogQT-l—logQg).

Here, note that 8/In2 < 12.

. example: linear discriminant function

h(z) =w,+ Y w,

=1
In this case, VCD(H) =n+1.
The sufficient number of samples for PAC learning is
4 12 2

my = |?((n+1)10g2?+10g23)|.

Let ¢e=0.1, 6§=0.05 (95% confidence), n=2. Then,

4 12 2
my = |ﬁ(3log2ﬁ—l—log2m)| = 656.

—> This is quite large number of samples compared to
the minimum number of samples (= 4) to learn
a linear decision boundary in 2-D space.



- The Lower Bounds of Sample Complexity

. |If L is PAC,
Pr [§E S(m,t)|er(L(§)) <
Prise S(m,t)ler(L(s)) = €] < 6.

. What is the upper bound m, of m that does not satisfy
the above inequality? That is,
Prise S(m,t)ler(L(s)) = €] = 6.

Here, if m =m, L can not be PAC.

. In other words, if m>m,, L has the possibility to be PAC.

. Theorem: lower bounds of sample complexity
Suppose L is PAC learning algorithm for A. Then,
1€ lnl

€ 1)
for any ¢ and ¢ between 0 and 1.

m(8,e) >

(proof)
Let h=L(s) and er(h) =€. Then,

Priz € X|h(z)=t(z)]=1—er(h) £1—¢ and

Pr(se Sm,t)lh(z;) =t(z,), 1 <i<m]<(1—€)". ... (1)
Let

Pr(se Sm,t)lh(z;) =t(x;,), 1 <i<m]=6. ... (2)



Then, from (1) and (2),
(1—e)™ = 6.

1—e. 1 . . €
- lnf since In(l—e)=In(1+ = T
Therefore, if
1—e€ 1
€ lng,
Pr [§E Sim,t)ler(L(s) = el =5 or

)| E
Prise S(m,t)ler(L(s)) <e] <1—34.

> m=

m =

This implies that
1—e€ 1
In—

€ 0
if L is PAC learning algorithm for A.

m >

. Theorem: lower bounds of sample complexity (Ehrenfeucht, 1989)

For any H of VCD(H)=d =1, and for any PAC learning algorithm
L for H,

d—1

32¢

for § <1/100 and € < 1/8

m(8,e) >



. Theorem: lower bounds of sample complexity

Let C be a concept space and H a hypothesis space such that
C has the VC dimension at least 1. Suppose L is any PAC
learning algorithm for (C, H). Then,

m(8,e) > |max(ilnl, vep(o) -1 )|
€ 0 32¢

for § <1/100 and e < 1/8.

. example: linear discriminant function
n
h(z) =w,+ Y w,
=1

In this case, VCD(H) =n+1.
Let §=0.05, ¢e=0.1, and n=2.
Then, the lower bound of sample complexity is

3—1 1 1

52 0.1 0.0 B 005 =30

mg = lmax (

Note that
— the upper bound of sample complexity: m! =656 and
— the minimum number of samples to determine

the decision boundary: m, =4



— Summary of Sample Complexity

. If His finite and L is consistent,
L is PAC and

L (Il +1n2)).
€ 1)

m(8,e) = O
. If H has the finite VCD(H)=d and L is consistent,
L is PAC and
1

).

m(8,e) = O(l(dln%-l-ln

€

. If L is PAC, C must have the finite VCD(C)=d and

m(é,e)ZQ(%(d—i—ln%)).

Note that
(1) f=0(g) when there is some constant C such that
flz) = Cglx) V.
(2) f=10(g9) when there is some constant K such that
flz) = Kg(z) V.



