Chernoff and Hoeffding Bounds

Let us consider a sequence of independent random variables $X_{1}, X_{2}, \cdots, X_{m}$ such that

$$
X_{i}= \begin{cases}1 \quad \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

The sample mean is given by

$$
\hat{p}=\frac{1}{m} \sum_{i=1}^{m} X_{i} .
$$

Here, we want to get the upper bound of the probability $\operatorname{Pr}\{\hat{p}>q\}$ for any $q>p$.

For any $\lambda>0$,

$$
\operatorname{Pr}\{\hat{p}>q\}=\operatorname{Pr}\left\{e^{m \lambda \hat{p}}>e^{m \lambda q}\right\}
$$

since $e^{m \lambda x}$ is monotone increasing in x.
By taking the expectation of $e^{m \lambda x}$, we get

$$
E\left[e^{m \lambda \hat{p}}\right] \geqq e^{m \lambda q} \operatorname{Pr}\left\{e^{m \lambda \hat{p}}>e^{m \lambda q}\right\}+0 \cdot \operatorname{Pr}\left\{e^{m \lambda \hat{p}} \leqq e^{m \lambda q}\right\} .
$$

This implies that

$$
\begin{aligned}
& \operatorname{Pr}\{\hat{p}>q\} \leqq e^{-m \lambda q} E\left[e^{m \lambda \hat{p}}\right] \text { and } \\
& \begin{aligned}
E\left[e^{m \lambda \hat{p}}\right]=E\left[e^{\lambda \sum_{i=1}^{m} X_{i}}\right]=E\left[\prod_{i=1}^{m} e^{\lambda X_{i}}\right] & =\prod_{i=1}^{m} E\left[e^{\lambda X_{i}}\right] \\
& =\prod_{i=1}^{m}\left[p e^{\lambda}+(1-p) e^{0}\right] \\
& =\left[p e^{\lambda}+(1-p)\right]^{m}
\end{aligned}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{Pr}\{\hat{p}>q\} & \leqq e^{-m \lambda q}\left[p e^{\lambda}+(1-p)\right]^{m}=e^{-m \lambda q+m \ln \left[p e^{\lambda}+(1-p)\right]} \\
& \leqq e^{-m f_{\lambda}(p, q)}
\end{aligned}
$$

where

$$
f_{\lambda}(p, q)=\lambda q-\ln \left[p e^{\lambda}+(1-p)\right]
$$

For the tightest bounds, $f_{\lambda}(p, q)$ should be maximized.
Here, the optimal value of λ is given as follows:

$$
\left.\frac{\partial f_{\lambda}}{\partial \lambda}\right|_{\lambda^{*}}=0 \rightarrow \lambda^{*}=\ln \frac{q(1-p)}{p(1-q)}
$$

That is,

$$
f_{\lambda^{*}}(p, q)=q \ln \frac{q}{p}+(1-q) \ln \frac{1-q}{1-p} .
$$

This implies that $f_{\lambda^{*}}(p, q)$ is the Kullback-Leibler (KL) distance between q and p, that is,

$$
f_{\lambda^{*}}(p, q)=D(q \| p)=q \ln \frac{q}{p}+(1-q) \ln \frac{1-q}{1-p} .
$$

Three important examples:
(1) $D(q \| p) \geqq 2(p-q)^{2}$
$\operatorname{Pr}\{\hat{p}>q\} \leqq e^{-2 m(p-q)^{2}} \quad$ (additive Chernoff bound)

Taking the union of two cases:
$\hat{p}>q>p$ and $\hat{p}<q<p$
$\operatorname{Pr}\{|\hat{p}-p|>\epsilon\} \leqq 2 e^{-2 m \epsilon^{2}} \quad$ (Hoeffding bound)
(2) If $q \geqq p, \quad D(q \| p) \geqq \frac{1}{3} \frac{(q-p)^{2}}{p}$
$\operatorname{Pr}\{\hat{p}>q\} \leqq e^{-\frac{1}{3} m \frac{(q-p)^{2}}{p}} \quad$ (multiplicative Chernoff bound)
(3) If $q \leqq p, \quad D(q \| p) \geqq \frac{1}{2} \frac{(q-p)^{2}}{p}$
$\operatorname{Pr}\{\hat{p}>q\} \leqq e^{-\frac{1}{2} m \frac{(p-q)^{2}}{p}} \quad$ (multiplicative Chernoff bound)

Example: Hoeffding bound

Let p and \hat{p} be the true and empirical errors. Then,

$$
\operatorname{Pr}\{|\hat{p}-p|>\epsilon\} \leqq 2 e^{-2 m \epsilon^{2}} .
$$

Assuming the finite hypothesis, that is, $|H|$ is bounded by some number. What is the sufficient number of samples to assure the best hypothesis?
For PAC learning,

$$
\begin{aligned}
& \operatorname{Pr}\{|\hat{p}-p|>\epsilon\} \leqq 2|H| e^{-2 m \epsilon^{2}} \leqq \delta . \\
& 2|H| e^{-2 m \epsilon^{2}} \leqq \delta \rightarrow e^{-2 m \epsilon^{2}} \leqq \frac{\delta}{2|H|} \rightarrow m \geqq \frac{1}{2 \epsilon^{2}} \ln \frac{2|H|}{\delta} .
\end{aligned}
$$

