- Comparing two hypotheses

. Problem: What is the probability that
$\operatorname{error}_{D}\left(h_{1}\right)>\operatorname{error}_{D}\left(h_{2}\right)$?
. Let

$$
d \equiv \operatorname{error}_{D}\left(h_{1}\right)-\operatorname{error}_{D}\left(h_{2}\right)
$$

and an estimator of d

$$
\hat{d} \equiv \operatorname{error}_{S_{1}}\left(h_{1}\right)-\operatorname{error}_{S_{2}}\left(h_{2}\right) .
$$

If $\operatorname{error}_{S_{i}}\left(h_{i}\right), i=1,2$ are unbiased estimators, $E[\hat{d}]=d$.
. Variance of \hat{d} :

$$
\operatorname{Var}(\hat{d})=\operatorname{Var}\left(\operatorname{error}_{S_{1}}\left(h_{1}\right)\right)+\operatorname{Var}\left(\operatorname{error}_{S_{2}}\left(h_{2}\right)\right)
$$

assuming $\operatorname{error}_{S_{1}}\left(h_{1}\right)$ and $\operatorname{error}_{S_{2}}\left(h_{2}\right)$ are independent each other.
From the previous results,

$$
\begin{aligned}
& \operatorname{Var}\left(\operatorname{error}_{S_{1}}\left(h_{1}\right)\right) \approx \frac{\operatorname{error}_{S_{1}}\left(h_{1}\right)\left(1-\operatorname{error}_{S_{1}}\left(h_{1}\right)\right)}{n_{1}} \text { and } \\
& \operatorname{Var}\left(\operatorname{error}_{S_{2}}\left(h_{2}\right)\right) \approx \frac{\operatorname{error}_{S_{2}}\left(h_{2}\right)\left(1-\operatorname{error}_{S_{2}}\left(h_{2}\right)\right)}{n_{2}} .
\end{aligned}
$$

Therefore,

$$
\operatorname{Var}(\hat{d}) \approx \frac{\operatorname{error}_{S_{1}}\left(h_{1}\right)\left(1-\operatorname{error}_{S_{1}}\left(h_{1}\right)\right)}{n_{1}}+\frac{\operatorname{error}_{S_{2}}\left(h_{2}\right)\left(1-\operatorname{error}_{S_{2}}\left(h_{2}\right)\right)}{n_{2}} .
$$

Example:

What is the probability that $d=\operatorname{error}_{D}\left(h_{2}\right)-\operatorname{error}_{D}\left(h_{1}\right)>0$ when $\operatorname{error}_{S_{1}}\left(h_{1}\right)=0.2$ and $\operatorname{error}_{S_{2}}\left(h_{2}\right)=0.3$ using two sample sets of 100 instances?

Let $\hat{d}=\operatorname{error}_{S_{2}}\left(h_{2}\right)-\operatorname{error}_{S_{1}}\left(h_{1}\right)$. Then,

$$
\begin{aligned}
& \mu_{\hat{d}}=0.3-0.2=0.1 \text { and } \\
& \sigma_{\hat{d}}=\sqrt{\operatorname{Var}(\hat{d})}=\sqrt{\frac{0.2 \cdot 0.8}{100}+\frac{0.3 \cdot 0.7}{100}}=0.0608 .
\end{aligned}
$$

For the given problem, $\mu_{\hat{d}}-z_{N} \sigma_{\hat{d}} \geqq 0$, that is,

$$
z_{N} \leqq \frac{0.1}{0.0608}=1.644 .
$$

From the table of z_{N}, $z_{90 \%}<1.644$, that is, $N=90 \%$.

Since this is one-sided confidence interval, the probability of $d>0$
is $\operatorname{Pr}[d>0]=1-\frac{1-0.9}{2}=0.95$.
That is, h_{1} is better than h_{2} with 95% confidence.

- k-fold cross-validation

. Evaluation of learning algorithms
. Partition the available data into k disjoint subsets.
. k-1 disjoint sets are used to training samples and the remaining 1 disjoint set is used to test samples. . Usually, k is set to 10.
k -fold cross-validation method

Step 1. Partition the available data D_{0} into k disjoint subsets $T_{1}, T_{2}, \cdots, T_{k}$ of equal size, where this size is at least 30.

Step 2. For i from 1 to k, do
use T_{i} for the test set, and the remaining data for training set S_{i} :
(1) $S_{i} \leftarrow\left\{D_{0}-T_{i}\right\}$
(2) $h_{i} \leftarrow L\left(S_{i}\right)$
(3) Evaluate error $_{T_{i}}\left(h_{i}\right)$.

Step 3. Evaluate the error mean $\hat{\mu}$ and standard deviation s :

$$
\begin{aligned}
& \hat{\mu}=\frac{1}{k} \sum_{i=1}^{k} \operatorname{error}_{T_{i}}\left(h_{i}\right) \\
& s=\sqrt{\frac{1}{k-1} \sum_{i=1}^{k}\left(\text { error }_{T_{i}}\left(h_{i}\right)-\hat{\mu}\right)^{2}}
\end{aligned}
$$

What is the relationship between $\hat{\mu}$ and μ ?

- t-distribution

. If Z and χ_{n}^{2} are independent random variables, with Z having standard normal distribution and χ_{n}^{2} having a chi-square distribution with n degrees of freedom, then the random variable T_{n} defined by

$$
T_{n}=\frac{Z}{\sqrt{\chi_{n}^{2} / n}}
$$

is said to have a t-distribution with n degrees of freedom.
. The t -density is symmetric about zero.
If n becomes larger, it becomes more and more like
a standard normal density since

$$
E\left[\chi_{n}^{2} / n\right]=E\left[\sum_{i=1}^{n} Z_{i}^{2} / n\right] \approx E\left[Z_{i}^{2}\right]=1 .
$$

. The mean and variance of T_{n} :

$$
\begin{aligned}
& E\left[T_{n}\right]=0, \quad n>1 \\
& \operatorname{Var}\left(T_{n}\right)=\frac{n}{n-2}, \quad n>2
\end{aligned}
$$

Thus the variance of T_{n} decreases to 1 as n increases to ∞.

- t-Test

. From the result of k -fold cross-validation method,

$$
\frac{\hat{\mu}-\mu}{s / \sqrt{k}} \sim T_{k-1} .
$$

. This implies that with the probability of $1-\alpha$,

$$
\hat{\mu}-t_{\alpha / 2, k-1} \frac{s}{\sqrt{k}}<\mu<\hat{\mu}+t_{\alpha / 2, k-1} \frac{s}{\sqrt{k}}
$$

where $t_{\alpha / 2, k-1}$ represents a constant such that

$$
\operatorname{Pr}\left[T_{k-1} \geqq t_{\alpha / 2, k-1}\right]=\alpha / 2 .
$$

Values of $t_{\alpha / 2, n}$:

	$\alpha=0.1$	$\alpha=0.05$	$\alpha=0.02$	$\alpha=0.01$
$n=2$	2.92	4.30	6.96	9.92
$n=5$	2.02	2.57	3.36	4.03
$n=10$	1.81	2.23	2.76	3.17
$n=20$	1.72	2.09	2.53	2.84
$n=30$	1.70	2.04	2.46	2.75
$n=120$	1.66	1.98	2.36	2.62
$n=\infty$	1.64	1.96	2.33	2.58

Note that $\mathrm{n}=\mathrm{k}-1$.

Example: k -fold cross-validation method
11 subsets and each subset has 30 instances.
After measuring the performance of learning algorithm using the k -fold cross-validation method, we get
$\hat{\mu}=0.1$ and $s=0.01$.

In this case, $\mathbf{k}=11$. Let $\alpha=0.05$. Then, $t_{0.025,10}=2.23$.
Then, with the probability of 0.95 ,
$0.1-2.23 \cdot 0.01<\mu<0.1+2.23 \cdot 0.01$, that is,
$0.0819<\mu<0.1181$.

- Comparing two learning algorithms

. What we would like to estimate is

$$
E_{S \subset D}\left[\operatorname{error}_{D}\left(L_{A}(S)\right)-\operatorname{error}_{D}\left(L_{B}(S)\right)\right]
$$

where $L(S)$ is the hypothesis output by the learning algorithm L using training set S.

That is, the expected difference in true error between hypotheses output by learning algorithms L_{A} and L_{B} when trained using randomly selected training sets S drawn according to distribution D.
. But given limited data D_{0} what is a good estimator?
(1) We could partition D_{0} into training set S and test set T_{0}, and measure

$$
\operatorname{error}_{T_{0}}\left(L_{A}\left(S_{0}\right)\right)-\operatorname{error}_{T_{0}}\left(L_{B}\left(S_{0}\right)\right) .
$$

(2) Even better, repeat this many times and average the results. That is, apply the k -fold cross-validation method.

k -fold cross-validation method

Step 1. Partition the available data D_{0} into k disjoint subsets $T_{1}, T_{2}, \cdots, T_{k}$ of equal size, where this size is at least 30.

Step 2. For i from 1 to k, do
use T_{i} for the test set, and the remaining data for training set S_{i} :
(1) $S_{i} \leftarrow\left\{D_{0}-T_{i}\right\}$
(2) $h_{A} \leftarrow L_{A}\left(S_{i}\right)$
(3) $h_{B} \leftarrow L_{B}\left(S_{i}\right)$
(4) $\delta_{i} \leftarrow \operatorname{error}_{T_{i}}\left(h_{A}\right)-\operatorname{error}_{T_{i}}\left(h_{B}\right)$

Step 3. Return the average value of δ_{i} :

$$
\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_{i} .
$$

. From the t -distribution, the approximate $(1-\alpha) \times 100 \%$ confidence interval for δ is

$$
\bar{\delta} \pm t_{\delta / 2, k-1} \frac{s_{\delta}}{\sqrt{k}}
$$

where

$$
s_{\delta}=\sqrt{\frac{1}{k-1} \sum_{i=1}^{k}\left(\delta_{i}-\bar{\delta}\right)^{2}} .
$$

. k -fold cross-validation method comments
(1) Every example gets used as a test example.
(2) Every test set is independent.
(3) Training sets overlap significantly.
(4) 10 is a standard number of folds, that is, $k=10$.
(5) No method for comparing learning systems with limited data is perfect. However, some statistical analysis is preferable to ignoring the issue of random variation in testing and training.

Reference: T. Mitchell, "Machine Learning," chapter 5.

- Bootstrap method
. Bootstrap method is a general tool for accessing statistical accuracy.
. Let us consider the sample set

$$
Z=\left(z_{1}, z_{2}, \cdots, z_{N}\right) \quad \text { and }
$$

. the statistical quantity $S(Z)$ computed from the sample set Z. eg. sample mean:

$$
S(Z)=\frac{1}{N} \sum_{i=1}^{N} Z_{i}
$$

. bootstrap process

Bootstrap
replications

$Z^{* b}, b=1,2, \cdots, B$ are bootstrap samples in which each sample is drawn randomly with replacement from Z.
. variance estimation

From the bootstrap process, variance can be estimated as

$$
\widehat{\operatorname{Var}}(S(Z))=\frac{1}{B-1} \sum_{b=1}^{B}\left(S\left(Z^{*}\right)-\bar{S}^{*}\right)^{2}
$$

where

$$
\bar{S}^{*}=\frac{1}{B} \sum_{b=1}^{B} S\left(Z^{* b}\right)
$$

We can consider $\widehat{\operatorname{Var}}(S(Z))$ as a Monte-Carlo estimation of $\operatorname{Var}(S(Z))$ under the sampling from the empirical distribution \hat{F} for the data $Z=\left(Z_{1}, Z_{2}, \cdots, Z_{N}\right)$.
For this estimation, the proper value of B is typically between 25 and 200.

Bootstrap theorem shows that

$$
\lim _{B \rightarrow \infty} \widehat{\operatorname{Var}}(S(Z))=\operatorname{Var}(S(Z))
$$

under the distribution of \hat{F}.
. confidence interval

From the bootstrap process, percentile interval is obtained.
Let $\hat{\theta}$ be an estimation of parameter θ
eg. $\hat{\theta}=S(Z)=\frac{1}{N} \sum_{i=1}^{N} Z_{i}$
and $\hat{\theta}^{*}$ be $\hat{\theta}$ for bootstrap samples, that is,

$$
\hat{\theta}^{*}=S\left(Z^{*}\right)
$$

Then, $1-2 \alpha$ percentile interval is given by

$$
\left[\hat{\theta}_{\% l o}, \hat{\theta}_{\sigma_{\% u p}}\right]=\left[\hat{G}^{-1}(\alpha), \hat{G}^{-1}(1-\alpha)\right]
$$

where \hat{G} represents the cumulative distribution function of $\hat{\theta}^{*}$.
eg. If $\alpha=0.05$ and $B=1000$,
$\hat{\theta}_{\% / l}$ and $\hat{\theta}_{\%_{\text {up }}}$ represent the 50th and 950th samples from the sorted $\hat{\theta}^{*}$ in ascending order respectively.

This estimate of confidence interval is good for unbiased estimate of θ.

. bias

The bias of bootstrap estimate is defined by

$$
\operatorname{bias}_{B}=\frac{1}{B} \sum_{b=1}^{B} \hat{\theta}^{*} b
$$

where

$$
\hat{\theta}^{* b}=S\left(Z^{*}\right) .
$$

If $\operatorname{bias}_{B} \ll\left(\widehat{\operatorname{Var}}(S(Z))^{1 / 2}, \hat{\theta}\right.$ is a good estimator. Otherwise, use the bias corrected estimator $\bar{\theta}=\hat{\theta}-$ bias $_{B}$.

Reference: B. Fron and R. Tibshirani, "An Introduction to the Bootstrap," Chapman and Hall, 1993.

