
- Comparing two hypotheses- Comparing two hypotheses- Comparing two hypotheses

 . Problem: What is the probability that . Problem: What is the probability that . Problem: What is the probability that

              ???

   

 . Let  . Let  . Let 

            ≡

  and an estimator of   and an estimator of   and an estimator of 

            ≡


...

  If   If   If 
, , ,     are unbiased estimators, are unbiased estimators, are unbiased estimators,

              ...

 . Variance of  . Variance of  . Variance of :::

             

  assuming   assuming   assuming 
 and  and  and 

 are independent each other. are independent each other. are independent each other.

  From the previous results,  From the previous results,  From the previous results,

            ≈ 





 and and and

            ≈ 





...

  Therefore,  Therefore,  Therefore,

            ≈














...



Example:Example:Example:

  What is the probability that   What is the probability that   What is the probability that      when when when

      
   and  and  and 

   using two sample sets of using two sample sets of using two sample sets of

  100 instances?  100 instances?  100 instances?

  Let   Let   Let  


.  Then, .  Then, .  Then, 

                  and  and  and

             




⋅


⋅
 ...

  For the given problem,   For the given problem,   For the given problem,   ≧, that is, , that is, , that is, 

             ≦


 ...

  From the table of   From the table of   From the table of , , , 

              , that is, , that is, , that is, ...

  Since this is one-sided confidence interval,   Since this is one-sided confidence interval,   Since this is one-sided confidence interval, 

  the probability of   the probability of   the probability of      

    is     is     is      


 ...

  That is,   That is,   That is,  is better than  is better than  is better than  with 95% confidence. with 95% confidence. with 95% confidence.



- k-fold cross-validation- k-fold cross-validation- k-fold cross-validation

 . Evaluation of learning algorithms . Evaluation of learning algorithms . Evaluation of learning algorithms

 . Partition the available data into k disjoint subsets. . Partition the available data into k disjoint subsets. . Partition the available data into k disjoint subsets.

 . k-1 disjoint sets are used to training samples and  . k-1 disjoint sets are used to training samples and  . k-1 disjoint sets are used to training samples and 

  the remaining 1 disjoint set is used to test samples.  the remaining 1 disjoint set is used to test samples.  the remaining 1 disjoint set is used to test samples.

 . Usually, k is set to 10. . Usually, k is set to 10. . Usually, k is set to 10.

k-fold cross-validation methodk-fold cross-validation methodk-fold cross-validation method

Step 1. Partition the available data Step 1. Partition the available data Step 1. Partition the available data  into  into  into  disjoint subsets disjoint subsets disjoint subsets

             ⋯ of equal size, where this size is at least 30. of equal size, where this size is at least 30. of equal size, where this size is at least 30.

Step 2. For Step 2. For Step 2. For  from 1 to  from 1 to  from 1 to , do, do, do

    use     use     use  for the test set, and the remaining data for  for the test set, and the remaining data for  for the test set, and the remaining data for 

    training set     training set     training set :::

      (1)       (1)       (1) ← 

      (2)       (2)       (2) ←

      (3) Evaluate       (3) Evaluate       (3) Evaluate 
...



Step 3. Evaluate the error mean Step 3. Evaluate the error mean Step 3. Evaluate the error mean  and standard deviation  and standard deviation  and standard deviation :::

             



 






               







What is the relationship between What is the relationship between What is the relationship between  and  and  and ???

            

- t-distribution- t-distribution- t-distribution

 . If  . If  . If  and  and  and 
  are independent random variables, with  are independent random variables, with  are independent random variables, with 

       having standard normal distribution and  having standard normal distribution and  having standard normal distribution and 
  having  having  having 

  a chi-square distribution with   a chi-square distribution with   a chi-square distribution with  degrees of freedom,  degrees of freedom,  degrees of freedom, 

  then the random variable   then the random variable   then the random variable  defined by defined by defined by

             


  is said to have a t-distribution with   is said to have a t-distribution with   is said to have a t-distribution with  degrees of freedom. degrees of freedom. degrees of freedom.



 . The t-density is symmetric about zero. . The t-density is symmetric about zero. . The t-density is symmetric about zero.

  If   If   If  becomes larger, it becomes more and more like  becomes larger, it becomes more and more like  becomes larger, it becomes more and more like 

  a standard normal density since  a standard normal density since  a standard normal density since

            
 

 




≈

  ...

 . The mean and variance of  . The mean and variance of  . The mean and variance of :::

              ,  ,  ,   

             


,  ,  ,   

  Thus the variance of   Thus the variance of   Thus the variance of  decreases to 1 as  decreases to 1 as  decreases to 1 as  increases to  increases to  increases to ∞...

- t-Test- t-Test- t-Test

 . From the result of k-fold cross-validation method, . From the result of k-fold cross-validation method, . From the result of k-fold cross-validation method,

            


∼...

   

 . This implies that with the probability of  . This implies that with the probability of  . This implies that with the probability of ,,,

            






  where   where   where  represents a constant such that represents a constant such that represents a constant such that

              ≧   ...



      Values of Values of Values of :::

      

          

   2.92 4.30 6.96 9.92

   2.02 2.57 3.36 4.03

   1.81 2.23 2.76 3.17

   1.72 2.09 2.53 2.84

   1.70 2.04 2.46 2.75

  1.66 1.98 2.36 2.62

 ∞ 1.64 1.96 2.33 2.58

    Note that n=k-1. Note that n=k-1. Note that n=k-1.

      

Example: k-fold cross-validation methodExample: k-fold cross-validation methodExample: k-fold cross-validation method

  11 subsets and each subset has 30 instances.  11 subsets and each subset has 30 instances.  11 subsets and each subset has 30 instances.

  After measuring the performance of learning algorithm using  After measuring the performance of learning algorithm using  After measuring the performance of learning algorithm using

  the k-fold cross-validation method, we get  the k-fold cross-validation method, we get  the k-fold cross-validation method, we get

              and    and    and    ...

  In this case, k=11.  Let   In this case, k=11.  Let   In this case, k=11.  Let  .  Then, .  Then, .  Then,   ...

  Then, with the probability of 0.95,    Then, with the probability of 0.95,    Then, with the probability of 0.95,  

            ⋅ ⋅, that is,, that is,, that is,

              ...

   



- Comparing two learning algorithms- Comparing two learning algorithms- Comparing two learning algorithms

 . What we would like to estimate is . What we would like to estimate is . What we would like to estimate is

            ⊂

  where   where   where  is the hypothesis output by the learning algorithm  is the hypothesis output by the learning algorithm  is the hypothesis output by the learning algorithm    

  using training set   using training set   using training set .  .  .  

  That is, the expected difference in true error between hypotheses  That is, the expected difference in true error between hypotheses  That is, the expected difference in true error between hypotheses

  output by learning algorithms   output by learning algorithms   output by learning algorithms  and  and  and  when trained using when trained using when trained using

  randomly selected training sets   randomly selected training sets   randomly selected training sets  drawn according to  drawn according to  drawn according to 

  distribution   distribution   distribution . . . 

 . But given limited data  . But given limited data  . But given limited data  what is a good estimator? what is a good estimator? what is a good estimator?

    (1) We could partition     (1) We could partition     (1) We could partition  into training set  into training set  into training set  and test set  and test set  and test set ,,,

      and measure      and measure      and measure

                        
...

    (2) Even better, repeat this many times and average the results.    (2) Even better, repeat this many times and average the results.    (2) Even better, repeat this many times and average the results.

      That is, apply the k-fold cross-validation method.      That is, apply the k-fold cross-validation method.      That is, apply the k-fold cross-validation method.



k-fold cross-validation methodk-fold cross-validation methodk-fold cross-validation method

Step 1. Partition the available data Step 1. Partition the available data Step 1. Partition the available data  into  into  into  disjoint subsets disjoint subsets disjoint subsets

             ⋯ of equal size, where this size is at least 30. of equal size, where this size is at least 30. of equal size, where this size is at least 30.

Step 2. For Step 2. For Step 2. For  from 1 to  from 1 to  from 1 to , do, do, do

    use     use     use  for the test set, and the remaining data for  for the test set, and the remaining data for  for the test set, and the remaining data for 

    training set     training set     training set :::

      (1)       (1)       (1) ← 

      (2)       (2)       (2) ←

      (3)       (3)       (3) ←

      (4)       (4)       (4) ←




Step 3. Return the average value of Step 3. Return the average value of Step 3. Return the average value of :::

                        ≡



 



...

 . From the t-distribution, the approximate  . From the t-distribution, the approximate  . From the t-distribution, the approximate ×% confidence% confidence% confidence

  interval for   interval for   interval for  is is is

            ±



  where  where  where

             






 



 
 ...



   . k-fold cross-validation method comments. k-fold cross-validation method comments. k-fold cross-validation method comments

  (1) Every example gets used as a test example.  (1) Every example gets used as a test example.  (1) Every example gets used as a test example.

  (2) Every test set is independent.  (2) Every test set is independent.  (2) Every test set is independent.

  (3) Training sets overlap significantly.  (3) Training sets overlap significantly.  (3) Training sets overlap significantly.

  (4) 10 is a standard number of folds, that is, k=10.  (4) 10 is a standard number of folds, that is, k=10.  (4) 10 is a standard number of folds, that is, k=10.

  (5) No method for comparing learning systems with limited data  (5) No method for comparing learning systems with limited data  (5) No method for comparing learning systems with limited data

    is perfect.  However, some statistical analysis is preferable to    is perfect.  However, some statistical analysis is preferable to    is perfect.  However, some statistical analysis is preferable to

    ignoring the issue of random variation in testing and training.    ignoring the issue of random variation in testing and training.    ignoring the issue of random variation in testing and training.

Reference: T. Mitchell, "Machine Learning," chapter 5.Reference: T. Mitchell, "Machine Learning," chapter 5.Reference: T. Mitchell, "Machine Learning," chapter 5.

 - Bootstrap method - Bootstrap method - Bootstrap method

   . Bootstrap method is a general tool for accessing . Bootstrap method is a general tool for accessing . Bootstrap method is a general tool for accessing 

  statistical accuracy.  statistical accuracy.  statistical accuracy.

 . Let us consider the sample set . Let us consider the sample set . Let us consider the sample set

              ⋯   and  and  and

 . the statistical quantity  . the statistical quantity  . the statistical quantity  computed from the sample set  computed from the sample set  computed from the sample set ...

  eg. sample mean:  eg. sample mean:  eg. sample mean:

                 


 







 . bootstrap process . bootstrap process . bootstrap process

      , , ,    ⋯  are bootstrap samples in which each sample is are bootstrap samples in which each sample is are bootstrap samples in which each sample is

  drawn randomly with replacement from   drawn randomly with replacement from   drawn randomly with replacement from ...

 . variance estimation . variance estimation . variance estimation

  From the bootstrap process, variance can be estimated as  From the bootstrap process, variance can be estimated as  From the bootstrap process, variance can be estimated as

             


 



  



  where  where  where

               

 


 



 ...



  We can consider   We can consider   We can consider  as a Monte-Carlo estimation of  as a Monte-Carlo estimation of  as a Monte-Carlo estimation of 

       under the sampling from the empirical distribution  under the sampling from the empirical distribution  under the sampling from the empirical distribution  for for for

  the data   the data   the data   ⋯ ...

  For this estimation, the proper value of   For this estimation, the proper value of   For this estimation, the proper value of  is typically between  is typically between  is typically between 

  25 and 200.  25 and 200.  25 and 200.

  Bootstrap theorem shows that  Bootstrap theorem shows that  Bootstrap theorem shows that

            lim
→∞

 

  under the distribution of   under the distribution of   under the distribution of ...

 . confidence interval . confidence interval . confidence interval

  From the bootstrap process, percentile interval is obtained.  From the bootstrap process, percentile interval is obtained.  From the bootstrap process, percentile interval is obtained.

  Let   Let   Let  be an estimation of parameter  be an estimation of parameter  be an estimation of parameter 

  eg.   eg.   eg.   


 





  and   and   and 

 be  be  be  for bootstrap samples, that is, for bootstrap samples, that is, for bootstrap samples, that is,

            

  ...

  Then,   Then,   Then,  percentile interval is given by percentile interval is given by percentile interval is given by

               






  where   where   where  represents the cumulative distribution function of  represents the cumulative distribution function of  represents the cumulative distribution function of 

...



  eg. If   eg. If   eg. If   and  and  and ,,,

                   and  and  and  represent the 50th  and 950th samples from  represent the 50th  and 950th samples from  represent the 50th  and 950th samples from 

      the sorted       the sorted       the sorted 

 in ascending order respectively. in ascending order respectively. in ascending order respectively.

  This estimate of confidence interval is good for unbiased   This estimate of confidence interval is good for unbiased   This estimate of confidence interval is good for unbiased 

  estimate of   estimate of   estimate of ...

 . bias . bias . bias

  The bias of bootstrap estimate is defined by  The bias of bootstrap estimate is defined by  The bias of bootstrap estimate is defined by

              


 





  where  where  where

            

  ...

  If   If   If  ≪ 
, , ,  is a good estimator.  Otherwise, is a good estimator.  Otherwise, is a good estimator.  Otherwise,

  use the bias corrected estimator   use the bias corrected estimator   use the bias corrected estimator ...

  Reference: B. Fron and R. Tibshirani, "An Introduction to   Reference: B. Fron and R. Tibshirani, "An Introduction to   Reference: B. Fron and R. Tibshirani, "An Introduction to 

    the Bootstrap," Chapman and Hall, 1993.    the Bootstrap," Chapman and Hall, 1993.    the Bootstrap," Chapman and Hall, 1993.


