- Comparing two hypotheses

- . Problem: What is the probability that $error_D(h_1) > error_D(h_2)$?
- . Let $d \equiv error_D(h_1) error_D(h_2)$
 - and an estimator of d

 $\hat{d} = \operatorname{error}_{S_1}(h_1) - \operatorname{error}_{S_2}(h_2).$

If $error_{S_i}(h_i)$, i = 1, 2 are unbiased estimators,

$$E[\hat{d}] = d_{\bullet}$$

. Variance of \hat{d} :

$$Var(\hat{d}) = Var(error_{S_1}(h_1)) + Var(error_{S_2}(h_2))$$

assuming $error_{S_1}(h_1)$ and $error_{S_2}(h_2)$ are independent each other. From the previous results,

$$Var(error_{S_1}(h_1)) \approx rac{error_{S_1}(h_1)(1 - error_{S_1}(h_1))}{n_1}$$
 and
 $Var(error_{S_2}(h_2)) \approx rac{error_{S_2}(h_2)(1 - error_{S_2}(h_2))}{n_2}.$

Therefore,

$$Var(\hat{d}) \approx \frac{error_{S_1}(h_1)(1 - error_{S_1}(h_1))}{n_1} + \frac{error_{S_2}(h_2)(1 - error_{S_2}(h_2))}{n_2}$$

Example:

What is the probability that $d = error_D(h_2) - error_D(h_1) > 0$ when $error_{S_1}(h_1) = 0.2$ and $error_{S_2}(h_2) = 0.3$ using two sample sets of 100 instances?

Let
$$\hat{d} = error_{S_2}(h_2) - error_{S_1}(h_1)$$
. Then,
 $\mu_{\hat{d}} = 0.3 - 0.2 = 0.1$ and
 $\sigma_{\hat{d}} = \sqrt{Var(\hat{d})} = \sqrt{\frac{0.2 \cdot 0.8}{100} + \frac{0.3 \cdot 0.7}{100}} = 0.0608$

For the given problem, $\mu_{\hat{d}} - z_N \sigma_{\hat{d}} \ge 0$, that is,

$$z_N \le \frac{0.1}{0.0608} = 1.644.$$

From the table of z_N ,

 $z_{90\%} < 1.644$, that is, $N \!=\! 90\%$.

Since this is one-sided confidence interval, the probability of d > 0

is $\Pr[d > 0] = 1 - \frac{1 - 0.9}{2} = 0.95$.

That is, h_1 is better than h_2 with 95% confidence.

- k-fold cross-validation

- . Evaluation of learning algorithms
- . Partition the available data into k disjoint subsets.
- . k-1 disjoint sets are used to training samples and
- the remaining 1 disjoint set is used to test samples.
- . Usually, k is set to 10.

k-fold cross-validation method

Step 1. Partition the available data D_0 into k disjoint subsets T_1, T_2, \dots, T_k of equal size, where this size is at least 30. Step 2. For i from 1 to k, do

use T_i for the test set, and the remaining data for training set S_i :

- (1) $S_i \leftarrow \{D_0 T_i\}$
- (2) $h_i \leftarrow L(S_i)$
- (3) Evaluate $error_{T_i}(h_i)$.

Step 3. Evaluate the error mean $\hat{\mu}$ and standard deviation s:

$$\begin{split} \hat{\mu} &= \frac{1}{k} \sum_{i=1}^{k} error_{T_i}(h_i) \\ s &= \sqrt{\frac{1}{k-1} \sum_{i=1}^{k} (error_{T_i}(h_i) - \hat{\mu})^2} \end{split}$$

What is the relationship between $\hat{\mu}$ and μ ?

- t-distribution

. If Z and χ_n^2 are independent random variables, with Z having standard normal distribution and χ_n^2 having a chi-square distribution with n degrees of freedom, then the random variable T_n defined by

$$T_n = \frac{Z}{\sqrt{\chi_n^2/n}}$$

is said to have a t-distribution with n degrees of freedom.

. The t-density is symmetric about zero.

If n becomes larger, it becomes more and more like a standard normal density since

$$E[\chi_n^2/n] = E[\sum_{i=1}^n Z_i^2/n] \approx E[Z_i^2] = 1.$$

. The mean and variance of T_n : $E[T_n] = 0, \quad n > 1$

$$Var(T_n) = \frac{n}{n-2}, \quad n>2$$

Thus the variance of T_n decreases to 1 as n increases to ∞ .

- t-Test

. From the result of k-fold cross-validation method,

$$\frac{\mu - \mu}{s/\sqrt{k}} \sim T_{k-1}.$$

. This implies that with the probability of $1-\alpha$,

$$\hat{\mu} - t_{\alpha/2,k-1} \frac{s}{\sqrt{k}} < \mu < \hat{\mu} + t_{\alpha/2,k-1} \frac{s}{\sqrt{k}}$$

where $t_{\alpha/2,k-1}$ represents a constant such that

$$\Pr\left[T_{k-1} \ge t_{\alpha/2,k-1}\right] = \alpha/2.$$

Values of $t_{\alpha/2,n}$:

	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.02$	$\alpha = 0.01$
n=2	2.92	4.30	6.96	9.92
n = 5	2.02	2.57	3.36	4.03
n = 10	1.81	2.23	2.76	3.17
n = 20	1.72	2.09	2.53	2.84
n = 30	1.70	2.04	2.46	2.75
n = 120	1.66	1.98	2.36	2.62
$n = \infty$	1.64	1.96	2.33	2.58

Note that n=k-1.

Example: k-fold cross-validation method

11 subsets and each subset has 30 instances. After measuring the performance of learning algorithm using the k-fold cross-validation method, we get

 $\hat{\mu} = 0.1$ and s = 0.01.

In this case, k=11. Let $\alpha = 0.05$. Then, $t_{0.025,10} = 2.23$. Then, with the probability of 0.95,

 $0.1 - 2.23 \, \cdot \, 0.01 < \mu < 0.1 + 2.23 \, \cdot \, 0.01$, that is,

 $0.0819 < \mu < 0.1181.$

- Comparing two learning algorithms

. What we would like to estimate is $E_{S\,\subset\,D}[error_D(L_A(S))-error_D(L_B(S))]$

where L(S) is the hypothesis output by the learning algorithm L using training set S.

That is, the expected difference in true error between hypotheses output by learning algorithms L_A and L_B when trained using randomly selected training sets *S* drawn according to distribution *D*.

- . But given limited data D_0 what is a good estimator?
 - (1) We could partition D_0 into training set S and test set T_0 , and measure $error_{T_0}(L_A(S_0)) - error_{T_0}(L_B(S_0)).$

(2) Even better, repeat this many times and average the results. That is, apply the k-fold cross-validation method.

k-fold cross-validation method

Step 1. Partition the available data D_0 into k disjoint subsets T_1, T_2, \dots, T_k of equal size, where this size is at least 30. Step 2. For i from 1 to k, do

use T_i for the test set, and the remaining data for training set S_i :

(1)
$$S_i \leftarrow \{D_0 - T_i\}$$

(2)
$$h_A \leftarrow L_A(S_i)$$

(3)
$$h_B \leftarrow L_B(S_i)$$

(4) $\delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)$

Step 3. Return the average value of δ_i :

$$\overline{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i.$$

. From the t-distribution, the approximate $(1-\alpha) \times 100\%$ confidence interval for δ is

$$\overline{\delta} \pm t_{\delta/2,k-1} \frac{s_{\delta}}{\sqrt{k}}$$

where

$$s_{\delta} = \sqrt{\frac{1}{k-1} \sum_{i=1}^{k} (\delta_i - \overline{\delta})^2} \,.$$

. k-fold cross-validation method comments

- (1) Every example gets used as a test example.
- (2) Every test set is independent.
- (3) Training sets overlap significantly.
- (4) 10 is a standard number of folds, that is, k=10.
- (5) No method for comparing learning systems with limited data is perfect. However, some statistical analysis is preferable to ignoring the issue of random variation in testing and training.

Reference: T. Mitchell, "Machine Learning," chapter 5.

- Bootstrap method

- . Bootstrap method is a general tool for accessing statistical accuracy.
- . Let us consider the sample set

$$Z = (z_1, z_2, \cdots, z_N)$$
 and

. the statistical quantity S(Z) computed from the sample set Z. eg. sample mean:

$$S(Z) = \frac{1}{N} \sum_{i=1}^{N} Z_i$$

. bootstrap process

 Z^{*b} , $b=1, 2, \dots, B$ are bootstrap samples in which each sample is drawn randomly with replacement from Z.

. variance estimation

From the bootstrap process, variance can be estimated as

$$\widehat{Var}(S(Z)) = \frac{1}{B-1} \sum_{b=1}^{B} (S(Z^{*b}) - \overline{S}^{*})^{2}$$

where

$$\overline{S}^* = \frac{1}{B} \sum_{b=1}^{B} S(Z^{*b}).$$

We can consider $\widehat{Var}(S(Z))$ as a Monte-Carlo estimation of Var(S(Z)) under the sampling from the empirical distribution \widehat{F} for the data $Z = (Z_1, Z_2, \dots, Z_N)$.

For this estimation, the proper value of B is typically between 25 and 200.

Bootstrap theorem shows that

 $\lim_{B \to \infty} \widehat{Var}(S(Z)) = Var(S(Z))$

under the distribution of \hat{F} .

. confidence interval

From the bootstrap process, percentile interval is obtained. Let $\hat{\theta}$ be an estimation of parameter θ

eg.
$$\hat{\theta} = S(Z) = \frac{1}{N} \sum_{i=1}^{N} Z_i$$

and $\hat{\theta}^{*}$ be $\hat{\theta}$ for bootstrap samples, that is,

$$\hat{\theta}^* = S(Z^*).$$

Then, $1-2\alpha$ percentile interval is given by

$$\left[\hat{\theta}_{\% lo}, \hat{\theta}_{\% up}\right] = \left[\hat{G}^{-1}(\alpha), \hat{G}^{-1}(1-\alpha)\right]$$

where \hat{G} represents the cumulative distribution function of $\hat{\theta}^*$.

eg. If $\alpha = 0.05$ and B = 1000,

 $\hat{\theta}_{\% lo}$ and $\hat{\theta}_{\% up}$ represent the 50th and 950th samples from the sorted $\hat{\theta}^*$ in ascending order respectively.

This estimate of confidence interval is good for unbiased estimate of θ .

. bias

The bias of bootstrap estimate is defined by

$$bias_B = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}^{*b}$$

where

$$\hat{\theta}^{*b} = S(Z^{*b}).$$

If $bias_B \ll (\widehat{Var}(S(Z))^{1/2}, \hat{\theta} \text{ is a good estimator.}$ Otherwise, use the bias corrected estimator $\overline{\theta} = \hat{\theta} - bias_B$.

Reference: B. Fron and R. Tibshirani, "An Introduction to the Bootstrap," Chapman and Hall, 1993.