— Comparing two hypotheses

. Problem: What is the probability that

error (hy) > error ,(h,)?

. Let
d = error(h,) —error ,(h,)
and an estimator of d
cAZE error g (hl) —errorg (hQ).

If errory(h;), i=1,2 are unbiased estimators,

Eld] = d.

. Variance of d:
Var(c;l) = Var(errorS1 (hl)) + Var(error%(hg))
assuming errorg (hy) and errorg (h,) are independent each other.

From the previous results,

error (hl)(l —errorg (h1 )

Var(errorsl(hl)) ~ - and
1
erTor g (hy)(1— erTor ¢ (hy))
Var(errorsz(hQ)) ~ . - 2
2
Therefore,

~ errorg (hl)(l —errorg (h1 ) errorg (h2 )(1— errorg (h2 )

Var(d) = +
n U




Example:
What is the probability that d =error,(h,)—error,(h;) >0 when

errorg (h;) =0.2 and errorg (h,) =0.3 using two sample sets of

100 instances?

Let d= error%(hQ)—ermrSl(hl). Then,

#;=03—-0.2=0.1 and

= 2 0. 3 0.
o, =V Var(d) = \/0 10008+ 031 0-7 = 0.0608.

00
For the given problem, u;—zyo; =0, that is,
0.1
= =1.
N = oo O

From the table of z,,
Zooy, < 1.644, that is, N=90%.
Since this is one—sided confidence interval,

the probability of d >0

1—-0.9
2

That is, h, is better than h, with 95% confidence.

is Prld>0]=1—

=0.95.



- k-fold cross-validation

. Evaluation of learning algorithms

. Partition the available data into k disjoint subsets.

. k=1 disjoint sets are used to training samples and
the remaining 1 disjoint set is used to test samples.

. Usually, k is set to 10.

k—fold cross—validation method

Step 1. Partition the available data 7, into £ disjoint subsets
13, T,,---, T, of equal size, where this size is at least 30.

Step 2. For ¢ from 1 to k, do
use 7; for the test set, and the remaining data for

training set S;:
(1) *5;<_{D0_Ti}
(2) h;<—L(S)

(3) Evaluate error . (h,).



Step 3. Evaluate the error mean x and standard deviation s:

PO L
:E;errorﬂ(h

k
— \/ Z GTTOTT /L)Q

What is the relationship between p and p?

— t-distribution

. If Zand X’ are independent random variables, with

Z having standard normal distribution and x> having

a chi—-square distribution with n degrees of freedom,
then the random variable 7’ defined by

Z

T
X n

is said to have a t—distribution with n degrees of freedom.




. The t—density is symmetric about zero.
If » becomes larger, it becomes more and more like
a standard normal density since

B fn] = E[z 22/n) = BLZ3 = 1.

. The mean and variance of =:
ET]=0, n>1

Var(Tn): n>2

n—2"

Thus the variance of 7, decreases to 1 as n increases to co.

- t-Test

. From the result of k—fold cross—-validation method,

p—p
~ 1.

s/ Vk

. This implies that with the probability of 1—«,
A_t S S
M= ta/2,k—1 N a/2,k—1 NG

where t,,,,_, represents a constant such that
Pr(7, | Zt,, 1]l=a/2.

<p<ptt



Values of ¢,

a=01 | a=0.05 ] «a=0.02 | aa=0.01
n=2 2.92 4.30 6.96 9.92
n=»>5 2.02 2.57 3.36 4.03
n =10 1.81 2.23 2.76 3.17
n =20 1.72 2.09 2.53 2.84
n =30 1.70 2.04 2.46 2.75
n =120 1.66 1.98 2.36 2.62
n = oo 1.64 1.96 2.33 2.58

Note that n=k-1.

Example: k—fold cross—validation method
11 subsets and each subset has 30 instances.
After measuring the performance of learning algorithm using
the k—fold cross—validation method, we get

£=0.1 and s=0.01.

In this case, k=11. Let a=0.05. Then, t,5,, =2.23.
Then, with the probability of 0.95,

0.1—2.23 - 0.01 < u < 0.14+2.23 - 0.01, that is,

0.0819 < 11 < 0.1181.



— Comparing two learning algorithms

. What we would like to estimate is
L D[errorD(LA (S))— errorD(LB(S))]

where Z(S) is the hypothesis output by the learning algorithm Z
using training set S.

That is, the expected difference in true error between hypotheses
output by learning algorithms Z, and L, when trained using

randomly selected training sets S drawn according to
distribution D.

. But given limited data D, what is a good estimator?

(1) We could partition D, into training set S and test set 7,

and measure
error%(LA (56)) —errory, (LB(SB)).

(2) Even better, repeat this many times and average the results.
That is, apply the k—fold cross-validation method.



k—fold cross—validation method

Step 1. Partition the available data D, into & disjoint subsets
13, T,,---, T, of equal size, where this size is at least 30.

Step 2. For ¢ from 1 to k, do
use 7 for the test set, and the remaining data for

training set S:
(1) §—{D,~ T}
(2) hy—L,(S)

(8) hy—Ly(S)

(

4) 0, <—error (hy)— error (hy)

Step 3. Return the average value of §;:

5

1 k
E:fs*
. From the t—distribution, the approximate (1—«)x<100% confidence
interval for ¢ is




. k—fold cross—validation method comments

(1) Every example gets used as a test example.

(2) Every test set is independent.

(3) Training sets overlap significantly.

(4) 10 is a standard number of folds, that is, k=10.

(5) No method for comparing learning systems with limited data
is perfect. However, some statistical analysis is preferable to
ignoring the issue of random variation in testing and training.

Reference: T. Mitchell, "Machine Learning," chapter 5.

- Bootstrap method

. Bootstrap method is a general tool for accessing
statistical accuracy.

. Let us consider the sample set
= (zl,zz,---,zN) and

. the statistical quantity S(2) computed from the sample set Z.
eg. sample mean:

1 N
D=y Lt



. bootstrap process

_.--- Bootstrap
_--- replications

-~ Bootstrap
- samples

Z*l = Z*Q e Z*B
™ L /
\\\ /
% /
N 7
\\ /
N /
& /
\\ /
- Training
Z = (21,23 -+ 5 ZN) sample

Zt b=1,2,---, B are bootstrap samples in which each sample is
drawn randomly with replacement from Z.

. variance estimation

From the bootstrap process, variance can be estimated as
— B % — %
Var(S(2) = -~ SN (S(Z")—5 )
B—1 b=1

where



We can consider Var(S(2)) as a Monte—Carlo estimation of

Var(S(2)) under the sampling from the empirical distribution F for
the data 7=(2, Z,,---, Z,,).

For this estimation, the proper value of B is typically between
25 and 200.

Bootstrap theorem shows that
lim Var(8(2)) = Var(8(2))

B—co

under the distribution of £

. confidence interval

From the bootstrap process, percentile interval is obtained.

Let # be an estimation of parameter 6
. 1
eg. 0= S(Z):j—V;lZZ.

and 6 be 6 for bootstrap samples, that is,

A~k

0 =S(2).
Then, 1—2a percentile interval is given by

[é%lo’ é%up]: [é_l(a), Gl —a)]

where G represents the cumulative distribution function of 67*.



eg. If «=0.05 and B=1000,

8y, and 6y, represent the 50th and 950th samples from

the sorted é* in ascending order respectively.

This estimate of confidence interval is good for unbiased
estimate of 6.

. bias

The bias of bootstrap estimate is defined by
biasB:iEB]é*b
Bb=1
where
0" =52,
If bias, < (Var(S(2))V?, 6 is a good estimator. Otherwise,

use the bias corrected estimator 6= 6— bias g.

Reference: B. Fron and R. Tibshirani, "An Introduction to
the Bootstrap," Chapman and Hall, 1993.



