Hypothesis Evaluation

- Two definitions of error
. The true error of hypothesis h with respect to target function f
and distribution D is the probability that h will misclassify
an instance drawn at random according to D :
erv“orD(h) =Pr, . D[f(x) = h(zx)]
. The sample error of h with respect to target function f and
data sample S is proportion of examples h misclassifies
errorg(h) = — ) 1(f(x) # h(x)

re s

where I(f(z) = h(z)) is 1 if f(x)= h(z), and 0 otherwise.

- Problems of estimating error

. errorg(h) is an estimator of error,(h).

. How well does errory(h) estimate error,(h)?

. bias of errors(h) as an estimator of error,(h):
b

ermrD(errors) - E[@T‘TOT‘S] —Errorp

if b 67'7“07“8):0 for all error,, we say error, is an unbiased

errorp

estimator of error,.



. The mean square error of error, is given as follows:

E [(errors —error 0)2] =F [(ermrs —F [errors] + £ [errors] —error 0)2]
= E[(errors — E[errors])2] + E[(E[errors] — errorD)2] +
2FE|(F [errors] —error D] (67“7‘07“8 — F [errors] )]
= E[(errors — E[errors])Q] + (E[errors] —error 0)2

= Var(error )+ b2 (errors)

Error p

That is, the mean square error of error, is equivalent to
the variance of error, plus the square of bias of error,.

. Let X, € {0,1} be a random variable which has the mean error,,
that is, E|X,]=error,. Here, we assume that Xs are
independent and identically distributed.

Then, error, can be described by

error g = — E X

z—l

where NN represents the total number of trials.
In this case,
E[errorS ZX | = ZE[X = error .

z—l 2—1

That is, errorg is an unbiased estimator of error,.



. example:
Hypothesis h misclassifies 50 of the 100 samples in &S.
In this case,

errors(h) = %: 0.50.

Then, what is error,(h)?

. Given observed errorg(h) what can we conclude

about error,(h)?

— Binomial probability distribution

. Let X be a binomial random variable with parameters (n,p).
Then, X represents the number of successes in n trials and
p represents the probability of success.

. example: tossing a coin.
Probability Pr(r) of » heads in n coin flips can be described by
_ ) r . n—r _ n' T o n—r
Pr(r)—(r)p (1—p) Ty (1-p)

where p="Pr(head).



In this case, the mean value of X is
ElX]= ZiPr (i)=np and
1=0

the variance of X is
Var(X) = El[(X— E[X])’] =np(1—p).

. errorg(h) follows a binomial distribution, that is,

X
errors(h) = o

X 1
Elerror | = E[;] = gE[X] =p=error,, and

X1

— error ,(1—error )
Var(errorg) = Var(—) = — Var(X) = p1—p) _ D D

n n? n n

— Normal distribution approximates Binomial

. Let X, be a random variable which has the value of 0 or 1 and
Pr[X, =1]=p.

Then, the random variable X having binomial distribution with
parameters (n,p) can be described by

X=)YX.
1=1
Here, the mean of X, is
EX]=1-p+0-(1—p)=p and
the variance of X, is

Var(X;) = EIX7]— E°1X] =p—p* =p(1—p).



. Central Limit Theorem:

Consider a set of independent, identically distributed
(i. i. d.) random variables X}, X,,---, X all governed by

an arbitrary probability distribution with mean p and finite

variance ¢°. Let us define a new random vector

X=X,
i=1

Then, as n goes to infinity, the distribution governing X
approaches a normal (or Gaussian) distribution, with mean nu

and variance no®. That is,
X~ N(n,u,naz).

cf. In the case of Bernoulli trial, Xi«N(nu,naz) when n = 30.

That is, X has an approximately Normal distribution with

mean nu and variance no®. Here, the sample error of h can be

described by
error S(h) =
where

p=error,(h) and

o’ errory (1—error D) error 5(1 —error 5)

—_ ~
g -~

n n n



- Normal distribution

. The probability density function is given by

1

1 _5(9”_,“)2

g

. The mean value of X: E[X]=p.

. The variance of X: Var(X) ="
. The standard deviation of X! o,=o0.

— Calculating confidence intervals

03s

0.as t+

FIGURE 5.1

A Normal distribution with mean 0, standard deviation 1. (a) With 80% confidence, the value of
the random variable will lie in the two-sided interval [—1.28, 1.28]). Note z gy = 1.28. With 10%
confidence it will lie to the right of this interval, and with 10% confidence it will lie to the left.
(b) With 90% confidence, it will lie in the one-sided interval [—oco, 1.28].



. N% of area (probability) lies in p+zy0.

Values of z, for two—sided N% confidence intervals:

N% | 50% | 68% | 80%  90% | 95% | 98% | 99%
Zy 10.671.00]1.28]1.64]1.96|2.33|2.58

eg. 95% of area lies in pu+1.960.

Let x is an estimator of x and

~ 1 &
==Y X
where Xs are i. i. d. random variables having mean p=p and

variance ¢ =p(1—p). Then,




This implies that

~

—1.96 < -2—E_~1.96 with the probability of 0.95.

o/ vn

Due to the symmetry of normal distribution,

~

—1.96 < L 196,

o/ Vn

Therefore, we get

(02
vn
where o= vp(1—p).
g

—> True mean p lies in p+1.96 N with the probability of 0.95.
n

o

Vn

11— 1.96 < p < pt1.96

In general, if g~ Nu,o?),
the N% confidence interval of pu: ptzyo

—-> With N% probability, . lies in interval p+ Z\0.

The sample error is given by

X - o
errors(h) = N, 7)
where
p=error,(h) and

o’ errory (1—error D) error 5(1 —error S)

— ~

g -~

n n n



With approximately 95% probability, error,(h) lies in interval

errors(h) (1— errors(h))

n

errors(h) +1.96 \/

example.
Hypothesis h misclassifies 50 of the 100 samples in S.

In this case,
50
errorg(h) = 100~ 0.50 and
0.5-0.5
Var(errors(h)) BT

Then, with approximately 95% probability, error,(h) lies in interval

0.50 + 1.96 \/W = 0.50 £ 0.098.

That is, the 95% confidence interval of errory(h) is
0.50 = 0.098.



