Hypothesis Evaluation

- Two definitions of error

. The true error of hypothesis h with respect to target function f and distribution D is the probability that h will misclassify an instance drawn at random according to D :

$$
\operatorname{error}_{D}(h) \equiv \operatorname{Pr}_{x \in D}[f(x) \neq h(x)]
$$

. The sample error of h with respect to target function f and data sample S is proportion of examples h misclassifies

$$
\operatorname{error}_{S}(h) \equiv \frac{1}{n} \sum_{x \in S} I(f(x) \neq h(x))
$$

where $I(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

- Problems of estimating error

. $\operatorname{error}_{S}(h)$ is an estimator of $\operatorname{error}_{D}(h)$.
. How well does $\operatorname{error}_{S}(h)$ estimate $\operatorname{error}_{D}(h)$?
. bias of $\operatorname{error}_{S}(h)$ as an estimator of $\operatorname{error}_{D}(h)$:

$$
b_{\text {error }_{D}}\left(\text { error }_{s}\right)=E\left[\text { error }_{s}\right]-\text { error }_{D}
$$

if $b_{\text {error }_{D}}\left(\right.$ error $\left._{s}\right)=0$ for all error $_{D}$, we say error $_{s}$ is an unbiased estimator of error $_{D}$.
. The mean square error of error $_{s}$ is given as follows:

$$
\begin{aligned}
E\left[\left(\text { error }_{s}-\text { error }_{D}\right)^{2}\right]= & E\left[\left(\text { error }_{s}-E\left[\text { error }_{s}\right]+E\left[\text { error }_{s}\right]-\text { error }_{D}\right)^{2}\right] \\
= & E\left[\left(\text { error }_{s}-E\left[\text { error }_{s}\right]\right)^{2}\right]+E\left[\left(E\left[\text { error }_{s}\right]-\text { error }_{D}\right)^{2}\right]+ \\
& 2 E\left[\left(E\left[\text { error }_{s}\right]-\text { error }_{D}\right]\left(\text { error }_{s}-E\left[\text { error }_{s}\right)\right]\right. \\
= & E\left[\left(\text { error }_{s}-E\left[\text { error }_{s}\right]\right)^{2}\right]+\left(E\left[\text { error }_{s}\right]-\text { error }_{D}\right)^{2} \\
= & \operatorname{Var}\left(\text { error }_{s}\right)+b_{\text {error }_{D}}\left(\text { error }_{s}\right)
\end{aligned}
$$

That is, the mean square error of error is equivalent to the variance of error $_{s}$ plus the square of bias of error ${ }_{s}$.
. Let $X_{i} \in\{0,1\}$ be a random variable which has the mean error $_{D}$, that is, $E\left[X_{i}\right]=\operatorname{error}_{D}$. Here, we assume that $X_{i} s$ are independent and identically distributed.

Then, error can be described by

$$
\text { error }_{S}=\frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

where N represents the total number of trials.

In this case,

$$
E\left[\text { error }_{S}\right]=E\left[\frac{1}{N} \sum_{i=1}^{N} X_{i}\right]=\frac{1}{N} \sum_{i=1}^{N} E\left[X_{i}\right]=\operatorname{error}_{D} .
$$

That is, error $_{S}$ is an unbiased estimator of error $_{D}$.

. example:

Hypothesis h misclassifies 50 of the 100 samples in S. In this case,

$$
\operatorname{error}_{S}(h)=\frac{50}{100}=0.50
$$

Then, what is $\operatorname{error}_{D}(h)$?
. Given observed error $_{S}(h)$ what can we conclude about $\operatorname{error}_{D}(h)$?

- Binomial probability distribution

. Let X be a binomial random variable with parameters (n, p). Then, X represents the number of successes in n trials and p represents the probability of success.
. example: tossing a coin.
Probability $\operatorname{Pr}(r)$ of r heads in n coin flips can be described by

$$
\operatorname{Pr}(r)=\binom{n}{r} p^{r}(1-p)^{n-r}=\frac{n!}{r!(n-r)!} p^{r}(1-p)^{n-r}
$$

where $p=\operatorname{Pr}($ head $)$.

In this case, the mean value of X is

$$
E[X]=\sum_{i=0}^{n} i \operatorname{Pr}(i)=n p \quad \text { and }
$$

the variance of X is

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=n p(1-p) .
$$

. $\operatorname{error}_{S}(h)$ follows a binomial distribution, that is,

$$
\begin{aligned}
& \operatorname{error}_{S}(h)=\frac{X}{n}, \\
& E\left[\operatorname{error}_{S}\right]=E\left[\frac{X}{n}\right]=\frac{1}{n} E[X]=p=\operatorname{error}_{D}, \text { and } \\
& \operatorname{Var}\left(\text { error }_{S}\right)=\operatorname{Var}\left(\frac{X}{n}\right)=\frac{1}{n^{2}} \operatorname{Var}(X)=\frac{p(1-p)}{n}=\frac{\operatorname{error}_{D}\left(1-\operatorname{error}_{D}\right)}{n} .
\end{aligned}
$$

- Normal distribution approximates Binomial

. Let X_{i} be a random variable which has the value of 0 or 1 and $\operatorname{Pr}\left[X_{i}=1\right]=p$.
Then, the random variable X having binomial distribution with parameters (n, p) can be described by

$$
X=\sum_{i=1}^{n} X_{i} .
$$

Here, the mean of X_{i} is

$$
E\left[X_{i}\right]=1 \cdot p+0 \cdot(1-p)=p \quad \text { and }
$$

the variance of X_{i} is

$$
\operatorname{Var}\left(X_{i}\right)=E\left[X_{i}^{2}\right]-E^{2}\left[X_{i}\right]=p-p^{2}=p(1-p) .
$$

. Central Limit Theorem:

Consider a set of independent, identically distributed
(i. i. d.) random variables $X_{1}, X_{2}, \cdots, X_{n}$ all governed by an arbitrary probability distribution with mean μ and finite variance σ^{2}. Let us define a new random vector

$$
X=\sum_{i=1}^{n} X_{i} .
$$

Then, as n goes to infinity, the distribution governing X approaches a normal (or Gaussian) distribution, with mean $n \mu$ and variance $n \sigma^{2}$. That is,

$$
X \sim N\left(n \mu, n \sigma^{2}\right)
$$

cf. In the case of Bernoulli trial, $X \sim N\left(n \mu, n \sigma^{2}\right)$ when $n \geqq 30$.
That is, X has an approximately Normal distribution with mean $n \mu$ and variance $n \sigma^{2}$. Here, the sample error of h can be described by

$$
\operatorname{error}_{S}(h)=\frac{X}{n} \dot{\sim} N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

where

$$
\begin{aligned}
& \mu=\operatorname{error}_{D}(h) \quad \text { and } \\
& \frac{\sigma^{2}}{n}=\frac{\operatorname{error}_{D}\left(1-\operatorname{error}_{D}\right)}{n} \approx \frac{\operatorname{error}_{S}\left(1-\operatorname{error}_{S}\right)}{n}
\end{aligned}
$$

- Normal distribution

. The probability density function is given by

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} .
$$

. The mean value of $X: E[X]=\mu$.
. The variance of $X: \operatorname{Var}(X)=\sigma^{2}$
. The standard deviation of $X: \sigma_{X}=\sigma$.

- Calculating confidence intervals

FIGURE 5.1
A Normal distribution with mean 0 , standard deviation 1. (a) With 80% confidence, the value of the random variable will lie in the two-sided interval $[-1.28,1.28]$. Note $z .80=1.28$. With 10% confidence it will lie to the right of this interval, and with 10% confidence it will lie to the left. (b) With 90% confidence, it will lie in the one-sided interval $[-\infty, 1.28]$.
. $N \%$ of area (probability) lies in $\mu \pm z_{N} \sigma$.

Values of z_{N} for two-sided $N \%$ confidence intervals:

$N \%$	50%	68%	80%	90%	95%	98%	99%
z_{N}	0.67	1.00	1.28	1.64	1.96	2.33	2.58

eg. 95% of area lies in $\mu \pm 1.96 \sigma$.

Let $\hat{\mu}$ is an estimator of μ and

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

where X_{i} s are i. i. d. random variables having mean $\mu=p$ and variance $\sigma^{2}=p(1-p)$. Then,

$$
\hat{\mu} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) .
$$

Let us make a unit (or standard) normal distribution of $\hat{\mu}$:

$$
\frac{\hat{\mu}-\mu}{\sigma / \sqrt{n}} \dot{\sim} N(0,1) .
$$

This implies that
$-1.96<\frac{\hat{\mu}-\mu}{\sigma / \sqrt{n}}<1.96$ with the probability of 0.95 .
Due to the symmetry of normal distribution,

$$
-1.96<\frac{\mu-\hat{\mu}}{\sigma / \sqrt{n}}<1.96
$$

Therefore, we get

$$
\hat{\mu}-1.96 \frac{\sigma}{\sqrt{n}}<\mu<\hat{\mu}+1.96 \frac{\sigma}{\sqrt{n}}
$$

where $\sigma=\sqrt{p(1-p)}$.
-> True mean μ lies in $\hat{\mu} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ with the probability of 0.95 .

In general, if $\hat{\mu} \sim N\left(\mu, \sigma^{2}\right)$, the $N \%$ confidence interval of $\hat{\mu}: \hat{\mu} \pm z_{N} \sigma$
-> With $N \%$ probability, μ lies in interval $\hat{\mu} \pm z_{N} \sigma$.

The sample error is given by

$$
\operatorname{error}_{S}(h)=\frac{X}{n} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

where

$$
\begin{aligned}
& \mu=\operatorname{error}_{D}(h) \text { and } \\
& \frac{\sigma^{2}}{n}=\frac{\operatorname{error}_{D}\left(1-\operatorname{error}_{D}\right)}{n} \approx \frac{\operatorname{error}_{S}\left(1-\operatorname{error}_{S}\right)}{n} .
\end{aligned}
$$

With approximately 95\% probability, error $_{D}(h)$ lies in interval

$$
\operatorname{error}_{S}(h) \pm 1.96 \sqrt{\frac{\operatorname{error}_{S}(h)\left(1-\operatorname{error}_{S}(h)\right)}{n}} .
$$

example.
Hypothesis h misclassifies 50 of the 100 samples in S.

In this case,

$$
\begin{aligned}
& \operatorname{error}_{S}(h)=\frac{50}{100}=0.50 \quad \text { and } \\
& \operatorname{Var}\left(\operatorname{error}_{S}(h)\right)=\frac{0.5 \cdot 0.5}{100} .
\end{aligned}
$$

Then, with approximately 95% probability, $\operatorname{error}_{D}(h)$ lies in interval $0.50 \pm 1.96 \sqrt{\frac{0.50 \cdot 0.50}{100}}=0.50 \pm 0.098$.

That is, the 95% confidence interval of error $_{S}(h)$ is 0.50 ± 0.098.

