Hypothesis Evaluation

- Two definitions of error

. The true error of hypothesis h with respect to target function f and distribution D is the probability that h will misclassify an instance drawn at random according to D:

$$error_D(h) \equiv \Pr_{x \in D}[f(x) \neq h(x)]$$

. The sample error of h with respect to target function f and data sample S is proportion of examples h misclassifies

$$error_{S}(h) \equiv \frac{1}{n} \sum_{x \in S} I(f(x) \neq h(x))$$

where $I(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

- Problems of estimating error

- . $error_{S}(h)$ is an estimator of $error_{D}(h)$.
- . How well does $error_{S}(h)$ estimate $error_{D}(h)$?
- . bias of $error_{S}(h)$ as an estimator of $error_{D}(h)$:

$$b_{error_{D}}(error_{s}) = E[error_{s}] - error_{D}$$

if $b_{error_D}(error_s) = 0$ for all $error_D$, we say $error_s$ is an unbiased estimator of $error_D$.

. The mean square error of
$$error_s$$
 is given as follows:

$$E[(error_s - error_D)^2] = E[(error_s - E[error_s] + E[error_s] - error_D)^2]$$

$$= E[(error_s - E[error_s])^2] + E[(E[error_s] - error_D)^2] + 2E[(E[error_s] - error_D](error_s - E[error_s])]$$

$$= E[(error_s - E[error_s])^2] + (E[error_s] - error_D)^2$$

$$= Var(error_s) + b_{error_D}^2(error_s)$$

That is, the mean square error of $error_s$ is equivalent to the variance of $error_s$ plus the square of bias of $error_s$.

. Let $X_i \in \{0,1\}$ be a random variable which has the mean $error_D$, that is, $E[X_i] = error_D$. Here, we assume that X_i s are independent and identically distributed.

Then, $error_s$ can be described by

$$error_{S} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

where N represents the total number of trials.

In this case,

$$E[error_{S}] = E[\frac{1}{N}\sum_{i=1}^{N}X_{i}] = \frac{1}{N}\sum_{i=1}^{N}E[X_{i}] = error_{D^{*}}$$

That is, $error_S$ is an unbiased estimator of $error_D$.

. example:

Hypothesis h misclassifies 50 of the 100 samples in S. In this case,

$$error_{S}(h) = \frac{50}{100} = 0.50.$$

Then, what is $error_D(h)$?

. Given observed $error_{S}(h)$ what can we conclude about $error_{D}(h)$?

- Binomial probability distribution

- . Let X be a binomial random variable with parameters (n, p). Then, X represents the number of successes in n trials and p represents the probability of success.
- . example: tossing a coin.

Probability Pr(r) of r heads in n coin flips can be described by

$$\Pr(r) = \binom{n}{r} p^r (1-p)^{n-r} = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r}$$

where $p = \Pr(head)$.

In this case, the mean value of X is

$$E[X] = \sum_{i=0}^{n} i \Pr(i) = np \text{ and }$$

the variance of X is

$$Var(X) = E[(X - E[X])^2] = np(1-p).$$

. $error_{S}(h)$ follows a binomial distribution, that is,

$$error_{S}(h) = \frac{X}{n},$$

$$E[error_{S}] = E[\frac{X}{n}] = \frac{1}{n}E[X] = p = error_{D}, \text{ and}$$

$$Var(error_{S}) = Var(\frac{X}{n}) = \frac{1}{n^{2}}Var(X) = \frac{p(1-p)}{n} = \frac{error_{D}(1-error_{D})}{n}.$$

- Normal distribution approximates Binomial

. Let X_i be a random variable which has the value of 0 or 1 and $\Pr[X_i = 1] = p$.

Then, the random variable X having binomial distribution with parameters (n, p) can be described by

$$X = \sum_{i=1}^{n} X_i.$$

Here, the mean of X_i is

 $E[X_i] = 1 \cdot p + 0 \cdot (1-p) = p \quad \text{and} \quad$

the variance of X_i is

 $Var(X_i) = E[X_i^2] - E^2[X_i] = p - p^2 = p(1-p).$

. Central Limit Theorem:

Consider a set of independent, identically distributed (i. i. d.) random variables X_1, X_2, \dots, X_n all governed by an arbitrary probability distribution with mean μ and finite variance σ^2 . Let us define a new random vector

$$X = \sum_{i=1}^{n} X_i.$$

Then, as n goes to infinity, the distribution governing X approaches a normal (or Gaussian) distribution, with mean $n\mu$ and variance $n\sigma^2$. That is,

$$X \sim N(n\mu, n\sigma^2)$$
.

cf. In the case of Bernoulli trial, $X \sim N(n\mu, n\sigma^2)$ when $n \ge 30$. That is, X has an approximately Normal distribution with mean $n\mu$ and variance $n\sigma^2$. Here, the sample error of h can be described by

$$error_{S}(h) = \frac{X}{n} \stackrel{\cdot}{\sim} N(\mu, \frac{\sigma^{2}}{n})$$

where

$$\begin{split} \mu = & error_D(h) \quad \text{and} \\ & \frac{\sigma^2}{n} = \frac{error_D(1 - error_D)}{n} \approx \frac{error_S(1 - error_S)}{n} \end{split}$$

- Normal distribution

. The probability density function is given by

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- . The mean value of X: $E[X] = \mu$.
- . The variance of X: $Var(X) = \sigma^2$
- . The standard deviation of X: $\sigma_X = \sigma$.

- Calculating confidence intervals

FIGURE 5.1

A Normal distribution with mean 0, standard deviation 1. (a) With 80% confidence, the value of the random variable will lie in the two-sided interval [-1.28, 1.28]. Note $z_{.80} = 1.28$. With 10% confidence it will lie to the right of this interval, and with 10% confidence it will lie to the left. (b) With 90% confidence, it will lie in the one-sided interval $[-\infty, 1.28]$.

. N% of area (probability) lies in $\mu\pm z_N\sigma.$

Values of z_N for two-sided N% confidence intervals:

N%	50%	68%	80%	90%	95%	98%	99%
z_N	0.67	1.00	1.28	1.64	1.96	2.33	2.58

eg. 95% of area lies in $\mu \pm 1.96\sigma$.

Let $\hat{\mu}$ is an estimator of μ and

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

where X_i s are i. i. d. random variables having mean $\mu = p$ and variance $\sigma^2 = p(1-p)$. Then,

$$\hat{\mu} \sim N(\mu, \frac{\sigma^2}{n}).$$

Let us make a unit (or standard) normal distribution of $\hat{\mu}$:

$$\frac{\hat{\mu}-\mu}{\sigma/\sqrt{n}} \stackrel{\cdot}{\sim} N(0,1).$$

This implies that

$$-1.96 < rac{\mu-\mu}{\sigma/\sqrt{n}} < 1.96$$
 with the probability of 0.95.

Due to the symmetry of normal distribution,

$$-1.96 < \frac{\mu - \hat{\mu}}{\sigma / \sqrt{n}} < 1.96.$$

Therefore, we get

$$\hat{\mu} \!-\! 1.96 \frac{\sigma}{\sqrt{n}} \!<\! \mu \!<\! \hat{\mu} \!+\! 1.96 \frac{\sigma}{\sqrt{n}}$$

where $\sigma = \sqrt{p(1-p)}$.

-> True mean
$$\mu$$
 lies in $\hat{\mu} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ with the probability of 0.95.

In general, if $\hat{\mu} \sim N(\mu, \sigma^2)$, the N% confidence interval of $\hat{\mu}$: $\hat{\mu} \pm z_N \sigma$ -> With N% probability, μ lies in interval $\hat{\mu} \pm z_N \sigma$.

The sample error is given by

$$\operatorname{error}_{S}(h) = \frac{X}{n} \stackrel{\cdot}{\sim} N(\mu, \frac{\sigma^{2}}{n})$$

where

$$\begin{split} & \mu = error_D(h) \quad \text{and} \\ & \frac{\sigma^2}{n} = \frac{error_D(1 - error_D)}{n} \approx \frac{error_S(1 - error_S)}{n}. \end{split}$$

With approximately 95% probability, $error_D(h)$ lies in interval

$$\operatorname{error}_{S}(h) \pm 1.96 \sqrt{\frac{\operatorname{error}_{S}(h)(1 - \operatorname{error}_{S}(h))}{n}}$$
 .

example.

Hypothesis h misclassifies 50 of the 100 samples in S.

In this case,

$$error_{S}(h) = \frac{50}{100} = 0.50$$
 and
 $Var(error_{S}(h)) = \frac{0.5 \cdot 0.5}{100}.$

Then, with approximately 95% probability, $error_D(h)$ lies in interval $0.50 \pm 1.96 \sqrt{\frac{0.50 \cdot 0.50}{100}} = 0.50 \pm 0.098$.

That is, the 95% confidence interval of $error_{S}(h)$ is 0.50 ± 0.098 .