
Multilayer Perceptrons (MLPs)Multilayer Perceptrons (MLPs)Multilayer Perceptrons (MLPs)

- Appropriate Problems for Neural Network Learning- Appropriate Problems for Neural Network Learning- Appropriate Problems for Neural Network Learning

. Instances are represented by many attribute-value pairs.. Instances are represented by many attribute-value pairs.. Instances are represented by many attribute-value pairs.

. The target function output may be discrete-valued, real-valued,. The target function output may be discrete-valued, real-valued,. The target function output may be discrete-valued, real-valued,

or a vector of several real- or discrete-valued attributes.or a vector of several real- or discrete-valued attributes.or a vector of several real- or discrete-valued attributes.

. The training examples may contain errors.. The training examples may contain errors.. The training examples may contain errors.

. Long training times are acceptable.. Long training times are acceptable.. Long training times are acceptable.

. Fast evaluation of learned target function may be required.. Fast evaluation of learned target function may be required.. Fast evaluation of learned target function may be required.

. The ability of humans to understand the learned target function. The ability of humans to understand the learned target function. The ability of humans to understand the learned target function

is not important.is not important.is not important.

- Classification of Artificial Neural Networks (ANNs)- Classification of Artificial Neural Networks (ANNs)- Classification of Artificial Neural Networks (ANNs)



- Structure of MLPs- Structure of MLPs- Structure of MLPs

. Multiple layers of Perceptrons are connected.. Multiple layers of Perceptrons are connected.. Multiple layers of Perceptrons are connected.

. Three types of layers: input, hidden, and output layers.. Three types of layers: input, hidden, and output layers.. Three types of layers: input, hidden, and output layers.

Usually, the input layer is not included when we countUsually, the input layer is not included when we countUsually, the input layer is not included when we count

the number of layers.the number of layers.the number of layers.

. The direction of connection is from the input to output layers. The direction of connection is from the input to output layers. The direction of connection is from the input to output layers

(feedforward connection).(feedforward connection).(feedforward connection).

. Except the input layer, each unit in the layer is described by. Except the input layer, each unit in the layer is described by. Except the input layer, each unit in the layer is described by

 
 



 andandand

   
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



wherewherewhere

 = the connection between the ith input to the jth unit,= the connection between the ith input to the jth unit,= the connection between the ith input to the jth unit,

 = the ith input, and= the ith input, and= the ith input, and

 = the output of the jth unit.= the output of the jth unit.= the output of the jth unit.

Note thatNote thatNote that




 ...



- Expressive Capabilities of MLPs- Expressive Capabilities of MLPs- Expressive Capabilities of MLPs

. Boolean functions:. Boolean functions:. Boolean functions:

Every boolean function can be represented by network withEvery boolean function can be represented by network withEvery boolean function can be represented by network with

single hidden layer but might require exponential (in number ofsingle hidden layer but might require exponential (in number ofsingle hidden layer but might require exponential (in number of

inputs) hidden units.inputs) hidden units.inputs) hidden units.

. Continuous functions:. Continuous functions:. Continuous functions:

Every bounded continuous function can be approximated withEvery bounded continuous function can be approximated withEvery bounded continuous function can be approximated with

arbitrarily small error, by network with one hidden layerarbitrarily small error, by network with one hidden layerarbitrarily small error, by network with one hidden layer

(Cybenko 1989; Hornik et al., 1989)(Cybenko 1989; Hornik et al., 1989)(Cybenko 1989; Hornik et al., 1989)

- Backpropagation algorithm- Backpropagation algorithm- Backpropagation algorithm

. Error function for multiple outputs:. Error function for multiple outputs:. Error function for multiple outputs:
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wherewherewhere  represents the sample index set andrepresents the sample index set andrepresents the sample index set and

 represents the output index set.represents the output index set.represents the output index set.

. Backpropagation algorithm:. Backpropagation algorithm:. Backpropagation algorithm:

For each training sampleFor each training sampleFor each training sample , weights are updated (on-line mode),, weights are updated (on-line mode),, weights are updated (on-line mode),

that is,that is,that is,
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. two-layer network. two-layer network. two-layer network

. weight update between hidden and output layers. weight update between hidden and output layers. weight update between hidden and output layers


  

  andandand
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
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wherewherewhere    ...

. weight update between input and hidden layers. weight update between input and hidden layers. weight update between input and hidden layers
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- Convergence of Backpropagation- Convergence of Backpropagation- Convergence of Backpropagation

. stochastic gradient descent. stochastic gradient descent. stochastic gradient descent

. convergence to the global minimum (or even to some. convergence to the global minimum (or even to some. convergence to the global minimum (or even to some

local minimum) is not guaranteed. -> usually, small learning ratelocal minimum) is not guaranteed. -> usually, small learning ratelocal minimum) is not guaranteed. -> usually, small learning rate

is applied.is applied.is applied.

. add momentum term for faster convergence.. add momentum term for faster convergence.. add momentum term for faster convergence.

. initialize weights near zero -> initial networks near-linear.. initialize weights near zero -> initial networks near-linear.. initialize weights near zero -> initial networks near-linear.

. increasingly non-linear functions possible as training progresses. increasingly non-linear functions possible as training progresses. increasingly non-linear functions possible as training progresses



- Backpropgation with momentum term- Backpropgation with momentum term- Backpropgation with momentum term

. A momentum term can be included in the gradient descent. A momentum term can be included in the gradient descent. A momentum term can be included in the gradient descent

algorithm for the fast convergence.algorithm for the fast convergence.algorithm for the fast convergence.

. The weight update term is changed as follows:. The weight update term is changed as follows:. The weight update term is changed as follows:

   

wherewherewhere  represents the momentum constant.represents the momentum constant.represents the momentum constant.

. Let the time index. Let the time index. Let the time index    … . Then,. Then,. Then,
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...

1) for convergence,1) for convergence,1) for convergence,  ...

2) it tends to accelerate descent in steady downhill directions2) it tends to accelerate descent in steady downhill directions2) it tends to accelerate descent in steady downhill directions

sincesincesince ≈





...

3) when3) when3) when 


has opposite signs on consecutive iterations,has opposite signs on consecutive iterations,has opposite signs on consecutive iterations,

 shrinks (stabilizing effect).shrinks (stabilizing effect).shrinks (stabilizing effect).



. Effect of Momentum Term. Effect of Momentum Term. Effect of Momentum Term

- Backpropagation with conjugate gradient- Backpropagation with conjugate gradient- Backpropagation with conjugate gradient

. In the CGA, information on. In the CGA, information on. In the CGA, information on , that is, the input correlation matrix, that is, the input correlation matrix, that is, the input correlation matrix

is required.is required.is required.

. For the on-line mode, an alternative choice of. For the on-line mode, an alternative choice of. For the on-line mode, an alternative choice of  andandand  isisis

needed without the knowledge ofneeded without the knowledge ofneeded without the knowledge of ...

. Determination of. Determination of. Determination of :::

1) Assuming1) Assuming1) Assuming  is unimodalis unimodalis unimodal

(single minimum in the neighborhood of current(single minimum in the neighborhood of current(single minimum in the neighborhood of current



),),),



find three pointsfind three pointsfind three points   andandand  such thatsuch thatsuch that

≧≧ forforfor     ...

2)2)2)  is determined betweenis determined betweenis determined between  andandand ...

. Determination of. Determination of. Determination of :::

Apply Fletcher-Reeves formulaApply Fletcher-Reeves formulaApply Fletcher-Reeves formula
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Conjugate Gradient Algorithm for MLPConjugate Gradient Algorithm for MLPConjugate Gradient Algorithm for MLP

Step 1. SetStep 1. SetStep 1. Set   , initialize, initialize, initialize
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Step 2. SetStep 2. SetStep 2. Set



∇ andandand 
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Step 3. FindStep 3. FindStep 3. Find  that minimizesthat minimizesthat minimizes 

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Step 4. Update the weight parameters:Step 4. Update the weight parameters:Step 4. Update the weight parameters:
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Step 5. SetStep 5. SetStep 5. Set
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Step 6. SetStep 6. SetStep 6. Set
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Step 7. If satisfied stop. Otherwise,Step 7. If satisfied stop. Otherwise,Step 7. If satisfied stop. Otherwise, ← and go to Step 3.and go to Step 3.and go to Step 3.



. Comparison with the momentum term:. Comparison with the momentum term:. Comparison with the momentum term:

1) weight update rule with momentum term1) weight update rule with momentum term1) weight update rule with momentum term








∆







∇




∆





2) weight update rule with conjugate gradient:2) weight update rule with conjugate gradient:2) weight update rule with conjugate gradient:
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* similar effect with the momentum term* similar effect with the momentum term* similar effect with the momentum term

* same computational complexity* same computational complexity* same computational complexity

* in practice, better solution of parameters* in practice, better solution of parameters* in practice, better solution of parameters

- overfitting in MLPs- overfitting in MLPs- overfitting in MLPs

. Split samples into training and validation sets. Split samples into training and validation sets. Split samples into training and validation sets

. Let. Let. Let  andandand  represent the number of parameters andrepresent the number of parameters andrepresent the number of parameters and

the number of samples respectively. Then, overfitting may occurthe number of samples respectively. Then, overfitting may occurthe number of samples respectively. Then, overfitting may occur

whenwhenwhen . (Amari, 1996). (Amari, 1996). (Amari, 1996)

. Let. Let. Let  be split ratio between training and validation sets. Then,be split ratio between training and validation sets. Then,be split ratio between training and validation sets. Then,

the optimal split ratio for learning isthe optimal split ratio for learning isthe optimal split ratio for learning is

  


≈


(for large(for large(for large  ).).).

For example, ifFor example, ifFor example, if , then, then, then   , that is, 93% of, that is, 93% of, that is, 93% of

the samples are alloted to training samples. Ifthe samples are alloted to training samples. Ifthe samples are alloted to training samples. If ,,,

exhaustive learning is satisfactory.exhaustive learning is satisfactory.exhaustive learning is satisfactory.



. overfitting effect on function approximation. overfitting effect on function approximation. overfitting effect on function approximation

- Complexity regularization- Complexity regularization- Complexity regularization

. Add the complexity term to the error measure and. Add the complexity term to the error measure and. Add the complexity term to the error measure and

minimize the total risk.minimize the total risk.minimize the total risk.

. The total risk is described by. The total risk is described by. The total risk is described by
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wherewherewhere 

 represents the error measure,represents the error measure,represents the error measure,



 represents the complexity term, andrepresents the complexity term, andrepresents the complexity term, and

 represents the regularization parameter.represents the regularization parameter.represents the regularization parameter.



. weight decay method (Hinton, 1989). weight decay method (Hinton, 1989). weight decay method (Hinton, 1989)

The complexity term is described byThe complexity term is described byThe complexity term is described by



 ∥


∥...

This term is related to the complexity of the hypothesis space.This term is related to the complexity of the hypothesis space.This term is related to the complexity of the hypothesis space.

. weight elimination method (Weigend, 1991). weight elimination method (Weigend, 1991). weight elimination method (Weigend, 1991)

The complexity term can be bounded as follows:The complexity term can be bounded as follows:The complexity term can be bounded as follows:


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  

∊

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wherewherewhere  represents all the synaptic connections.represents all the synaptic connections.represents all the synaptic connections.

IfIfIf ≪, the, the, the th synaptic weight tends to be eliminated.th synaptic weight tends to be eliminated.th synaptic weight tends to be eliminated.

IfIfIf ≫, the, the, the th synaptic weight has major influence toth synaptic weight has major influence toth synaptic weight has major influence to

the network.the network.the network.

- Applications of MLPs- Applications of MLPs- Applications of MLPs




