Multilayer Perceptrons (MLPS)

- Appropriate Problems for Neural Network Learning

. Instances are represented by many attribute-value pairs.

. The target function output may be discrete-valued, real-valued,
or a vector of several real- or discrete-valued attributes.

. The training examples may contain errors.

. Long training times are acceptable.

. Fast evaluation of learned target function may be required.

. The ability of humans to understand the learned target function

is not important.

- Classification of Artificial Neural Networks (ANNs)
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- Structure of MLPs

. Multiple layers of Perceptrons are connected.

. Three types of layers: input, hidden, and output layers.
Usually, the input layer is not included when we count
the number of layers.

. The direction of connection is from the input to output layers

(feedforward connection).

. Except the input layer, each unit in the layer is described by
net; = ;)wijxi and
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where
w,; = the connection between the ith input to the jth unit,

xz, = the ith input, and
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o; = the output of the jth unit.

Note that

ﬂ”ﬁj)_ o;(net;)(1—o(net;)).



- Expressive Capabilities of MLPs

. Boolean functions:

Every boolean function can be represented by network with
single hidden layer but might require exponential (in number of
inputs) hidden units.

. Continuous functions:

Every bounded continuous function can be approximated with
arbitrarily small error, by network with one hidden layer
(Cybenko 1989; Hornik et al., 1989)

- Backpropagation algorithm

. Error function for multiple outputs:

E(w) :% Z Z (g —01a)”

d € Dk € Outputs
where D represents the sample index set and
Outputs represents the output index set.

. Backpropagation algorithm:
For each training sample d, weights are updated (on-line mode),

that is,

Ey(w) = . > (t—o)

2 k € Ouptputs



. two-layer network
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FIGURE 6.1 A two layer [eed-
E forward network, showing
K the notation for units and
weights.

. weight update between hidden and output layers
ijwsz§d+nAvkj and
OF,
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where 6, = (t,—o,)o,(1—0,).

. weight update between input and hidden layers
W™ =w§5d+nijZ- and

oF, ,
Aw,, =— = hj(l—hj) D V04T = 05T,
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where &, =h,(1—h) Y, v,d,.

k € Outputs




FIGURE 6.2 Back-propagation in a
three-layer network. The solid lines
show the forward propagation of sig-
nals and the dashed lines show the
backward propagation of errors (8’s).

- Convergence of Backpropagation

. stochastic gradient descent

. convergence to the global minimum (or even to some
local minimum) is not guaranteed. -> usually, small learning rate
is applied.

. add momentum term for faster convergence.

. initialize weights near zero -> initial networks near-linear.

. increasingly non-linear functions possible as training progresses



- Backpropgation with momentum term

. A momentum term can be included in the gradient descent
algorithm for the fast convergence.

. The weight update term is changed as follows:
Awij(n) = 775j552‘ —IrozAwij(n— 1)

where o represents the momentum constant.

. Let the time index t=0,1,---,n. Then,

Aw@j(n):nz n— t6 :_nz n— t
t=0

1) for convergence, |ao/< 1.

ww

2) it tends to accelerate descent in steady downhill directions

. n 0L
since Aw;;(n) ~— —.
J 11—« ow;;

oF
3) when a—wd has opposite signs on consecutive iterations,
ij

Aw,;(n) shrinks (stabilizing effect).



. Effect of Momentum Term

FIGURE 6.3 Gradient descent on the
simple quadratic surface of Fig. 5.10.
Both trajectories are for 12 steps with

n = 0.0476, the best value in the absence
of momentum. On the left there is no mo-
mentum (@ = 0), while « = 0.5 on the
right.

- Backpropagation with conjugate gradient

. In the CGA, information on ¢, that is, the input correlation matrix
is required.

. For the on-line mode, an alternative choice of «, and 3, is
needed without the knowledge of Q.

. Determination of «;:
1) Assuming El«,] is unimodal

(single minimum in the neighborhood of current wk),



find three points 7,,7n,, and n; such that
Eln] = Elng| = Eln,|  for n, <n, <n,.

2) o, is determined between 7, and 7.

. Determination of §3,:

Apply Fletcher-Reeves formula

T
gk+1gk+1

Bk =
9,9,

Conjugate Gradient Algorithm for MLP

o oF

Step 1. Set k=0, initialize w , and compute vk:%hu:w'
Step 2. Set g, =V, and d =—g,.
Step 3. Find «, that minimizes Elw +od |.
Step 4. Update the weight parameters: w  =w tad.

T

g9,..,4

Step 5. Set g, =V, and ﬁkzw

gkgk

Step 6. Set dkH :—gk+1+ﬁk4k.

Step 7. If satisfied stop. Otherwise, k<k+1 and go to Step 3.



. Comparison with the momentum term:
1) weight update rule with momentum term

Wy TW, T AW, = Qk_UVE(Qk) tadw,

2) weight update rule with conjugate gradient:

w  =wtAw =w —oszE(gk)—i—ozkﬂkAgk_

k+1 k 1

* similar effect with the momentum term
* same computational complexity
* in practice, better solution of parameters

- overfitting in MLPs

. Split samples into training and validation sets

. Let M/ and /V represent the number of parameters and

the number of samples respectively. Then, overfitting may occur
when N< 30M. (Amari, 1996)

. Let r be split ratio between training and validation sets. Then,
the optimal split ratio for learning is

L V2M—1-1 1
Topt — 1 >(=1) ~1 W (for large A7).

For example, if A/=100, then r, . =0.07, that is, 93% of

the samples are alloted to training samples. If N> 3014,
exhaustive learning is satisfactory.



. overfitting effect on function approximation
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FIGURE 6.13 (a) A good fit to noisy data. (b) Overfitting of the same data: the
fit is perfect on the “training set” (x’s), but is likely to be poor on a “test set”

represented by the circle.

- Complexity regularization

. Add the complexity term to the error measure and

minimize the total risk.

. The total risk is described by

R(w) = E(w) + \E,(w)

where FE(w) represents the error measure,

C

E (w) represents the complexity term, and

A represents the regularization parameter.



. weight decay method (Hinton, 1989)
The complexity term is described by

E(w)= || w|>
This term is related to the complexity of the hypothesis space.
. weight elimination method (Weigend, 1991)

The complexity term can be bounded as follows:

B (w;/wy)?
£, (w) = i;C 1+ (wi/wO)Z

where ( represents all the synaptic connections.
If |w,/< w, the ith synaptic weight tends to be eliminated.

If |w,/> w,, the ith synaptic weight has major influence to
the network.

- Applications of MLPs

‘Backpropagation Applications
Application

I Process Troxel, Rogers & Eabrisky, 1988 Casselar, 18R

-4 * Dayholf & Daghaf, 1988 Glover, 19882 & 1953b
Moya, Fogler & Hometler, 1958 !r!ulimhw-:.. 1588
Fogler, Willlams & Hosseiler, 1988 Wrighi, 1988
Lehar, 1988 Scaletier & Fee, 1988
Foherts, |9HE Coredl, Monrop & Fipser, 1957
Weiland, Leighion & Jacyna, %58 Dadd, 1987
Cosrell & Willen, 1988 Yang & Guest, 1987
Hurlber, 1988 Euczewski, 1987

Speech Processl Ricottl, Ragazzinl & Maninell, 1982 Tenoeso, Tam & Schwartz, 1988

- Rohinson & Fallside, 1988 Lippmann, I‘?H_'-"_& 149N

Tushby, 1958 Resenberg & Sejnowakd, 1986
Anderson, Merril & Por, 1988 Senowska & Roscoberg, 1957
Banatlard & Wellekens, 1987 & 1988 Elman & Zipecr, 1987
Kammerer & Kuppu, 1988 Luse, et al, 1988
Landauer, Kamm & Singhal, 1987 Waton, 1987
Treumies, ef al., 1988 Waibel, ot al, 1957
Buer, 19082 & 1948k

Temparal Proces Shimohara, Uchiyama & Tokinuega, 1988 Lewis, 1988

e Graupe & Uth, I.}';BE Rehinson & Fallsde, 1928

Elman, 1988 Tam, Perkel & Tucker, 1988

PredictionTptimization Werbos, 1974 & 1968 Duta & Shekha, 1928

. - Casiclaz, 1988 Lapedes & Farber, 198%s & 1988h
Moody & Denker, 1958 Tishby, 1988
Madey & Denion, 1988 Karzsi, et al., 1988
Smizh, 1948 Quian & Sejnowski, 1968
Baum, 1986 & 19860
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Decision regions of a multilayer feedforward network. The network shown here was trained to
recognize | of 10 vowel sounds occurring in the context “h.d” (e.g., “had,” “hid"). The network
input consists of two parameters, F1 and F2, obtained from a spectral analysis of the sound. The
10 network outputs correspond to the 10 possible vowel sounds. The network prediction is the
output whose value is highest. The plot on the right illustrates the highly nonlinear decision surface
represented by the learned network. Points shown on the plot are test examples distinet from the
examples used to train the network, (Reprinted by permission from Haung and Lippmann (1988),)
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