Supervised Learning Algorithms

- Gradient Descent (GD) Method
. weight update rule:

$$
\underline{w}_{k+1}=\underline{w}_{k}-\mu \nabla_{k}
$$

where \underline{w}_{k+1} represents the $k+1$ th n-dimensional weight vector.
true gradient (batch mode): $\nabla_{k}=2 R \underline{w}_{k}-2 P$
stochastic gradient (on- line mode): $\hat{\nabla}_{k}=-2 \epsilon_{k} \underline{x}_{k}$
. convergence:

$$
0<\mu<1 / \lambda_{\max } \quad \text { or } \quad \mu \propto 1 / k
$$

In general, this method is too slow.
. computational complexity:
$O\left(n^{2}\right) /$ step in the batch mode
$O(n) /$ step in the on- line mode

- Newton Method
. weight update rule:

$$
\underline{w}_{k+1}=\underline{w}_{k}-\mu R^{-1} \nabla_{k}
$$

Since $\nabla_{k}=2 R \underline{w}_{k}-2 P$ in the batch mode,

$$
\begin{aligned}
& \underline{w}_{k+1}=(1-2 \mu) \underline{w}_{k}+2 \mu R^{-1} P=(1-2 \mu) \underline{w}_{k}+2 \mu \underline{w}^{*}, \text { that is, } \\
& \underline{w}_{k}=\underline{w}^{*}+(1-2 \mu)^{k}\left(\underline{w}_{0}-\underline{w}^{*}\right) .
\end{aligned}
$$

. convergence:
If $\mu=1 / 2, \underline{w}_{1}=\underline{w}^{*}$, that is, one- step convergence.
. computational complexity:
The inversion of R is required, that is,

$$
O\left(n^{3}\right) / \text { step }
$$

- Quasi- Newton Method
. weight update rule in Newton method:

$$
\begin{aligned}
& \underline{w}_{k+1}=\underline{w}_{k}-\alpha_{k} R^{-1} \nabla_{k} \\
& \alpha_{k}=1 / 2 \text { for one- step convergence. }
\end{aligned}
$$

. Quasi- Newton method performs the recursive construction of R^{-1}. Here, we assume that R is symmetric and positive definite matrix.
. Let us consider the following equation:

$$
R \underline{p}_{i}=q_{i}, \quad i=0,1, \cdots, n-1 .
$$

Consider a matrix S_{k+1} such that

$$
S_{k+1} q_{i}=p_{i}, \quad i=0,1, \cdots, k \quad \text { (Quasi- Newton condition) }
$$

After n linearly independent steps, $S_{n}=R^{-1}$. construction of S_{k+1} :

$$
\begin{align*}
& S_{k+1}=S_{k}+\alpha_{k} \underline{r}_{k} \underline{r}_{k}^{T} \quad \text { (rank one correlation) } \ldots \\
& p_{k}=S_{k+1} q_{k}=S_{k} q_{k}+\alpha_{k} \underline{r}_{k} r_{k}^{T} q_{k} \ldots \text { (2) } \tag{2}\\
& q_{k}^{T} p_{k}=q_{k}^{T} S_{k+1} q_{k}=q_{k}^{T} S_{k} q_{k}+\alpha_{k} q_{k}^{T} r_{k} r_{k}^{T} q_{k} \ldots \text { (3) } \tag{3}
\end{align*}
$$

from (2), $\alpha_{k} \underline{r_{k}} \underline{r}_{k}^{T} q_{k}=p_{k}-S_{k} q_{k}$ and from (3), $\alpha_{k} q_{k}^{T} \underline{r}_{k}{ }_{k}{ }_{k}^{T} q_{k}=q_{k}^{T} p_{k}-q_{k}^{T} S_{k} q_{k}$.
Here, $\alpha_{k} \underline{r} \underline{k}^{r}{ }_{k}^{T}$ can be written as

$$
\begin{aligned}
\alpha_{k} \underline{r}_{k} \underline{r}_{k}^{T} & =\frac{\left(\alpha_{k} \underline{r}_{k} \underline{r}_{k}^{T} q_{k}\right)\left(\alpha_{k} \underline{r_{k}} \underline{r}_{k}^{T} q_{k}\right)^{T}}{\alpha_{k} q_{k}^{T} \underline{r}_{k} \underline{r}_{k}^{T} q_{k}} \\
& =\frac{\left(\underline{p}_{k}-S_{k} q_{k}\right)\left(\underline{p}_{k}-S_{k} q_{k}\right)^{T}}{q_{k}^{T}\left(\underline{p}_{k}-S_{k} q_{k}\right)}
\end{aligned}
$$

Therefore, from (1), S_{k+1} can be written as

$$
S_{k+1}=S_{k}+\frac{\left(p_{k}-S_{k} q_{k}\right)\left(p_{k}-S_{k} q_{k}\right)^{T}}{q_{k}^{T}\left(p_{k}-S_{k} q_{k}\right)} .
$$

Let

$$
y_{k}=\frac{p_{k}-S_{k} q_{k}}{q_{k}^{T}\left(p_{k}-S_{k} q_{k}\right)} .
$$

Then,

$$
S_{k+1} q_{i}=S_{k} q_{i}+\underline{y}_{k}\left(p_{k}^{T} q_{i}-q_{k}^{T} S_{k} q_{i}\right) \quad \text { for } i<k .
$$

By induction,

$$
S_{k+1} q_{i}=p_{i}+y_{k}\left(\underline{k}_{k}^{T} q_{i}-q_{k}^{T} p_{i}\right) .
$$

Since $q_{k}^{T} p_{i}=p_{k}^{T} R p_{i}=p_{k}^{T} q_{i}, \quad S_{k+1} q_{i}=p_{i}$.
This implies that after n steps,

$$
S_{n} q_{i}=p_{i} \quad \text { for } 0 \leqq i \leqq n-1 .
$$

Therefore, $S_{n}=R^{-1}$.

. Davidon- Fletcher- Powell method

Solution of rank two correlation procedure, that is,

$$
S_{k+1}=S_{k}+\alpha_{k} \underline{u}_{k} \underline{u}_{k}^{T}+\beta_{k} \underline{v}_{k} \underline{v}_{k}^{T} .
$$

The final form of S_{k+1} is described by

$$
S_{k+1}=S_{k}+\frac{p_{k} p_{k}^{T}}{p_{k}^{T} q_{k}}-\frac{S_{k} q_{k} q_{k}^{T} S_{k}}{q_{k}^{T} S_{k} q_{k}} .
$$

This method is more numerically stable than the rank one correlation method.

Quasi- Newton Algorithm

Step 1. Set $k=0$ and initialize \underline{w}_{k} and S_{k}.
(S_{0} : any symmetric positive definite matrix)
Step 2. Set $\underline{d}_{k}: \underline{d}_{k}=-S_{k} \nabla_{k}$.
Step 3. Find α_{k} such that $\min _{\alpha_{k} \geqq 0} E\left[\underline{w}_{k}+\alpha_{k} \underline{d}_{k}\right]$.
Step 4. Update $\underline{w}_{k+1}, p_{k}, q_{k}$:

$$
\underline{w}_{k+1}=\underline{w}_{k}+\alpha_{k} \underline{d}_{k}, p_{k}=\alpha_{k} \underline{d}_{k}, \text { and } q_{k}=\nabla_{k+1}-\nabla_{k} .
$$

Step 5. Update $S_{k+1}: S_{k+1}=S_{k}+\frac{p_{k} p_{k}^{T}}{p_{k}^{T} q_{k}}-\frac{S_{k} q_{k} q_{k}^{T} S_{k}}{q_{k}^{T} S_{k} q_{k}}$
Step 6. If $E\left[\underline{w}_{k+1}\right]<\theta$, stop. Otherwise, $k \leftarrow k+1$ and go to Step 2.
. convergence:
After n linearly independent steps, weight parameter can converge to \underline{w}^{*}.
. computational complexity:
Update of S_{k+1} is required, that is,

$$
O\left(n^{2}\right) / \text { step }
$$

- Lebenberg- Maquardat (LM) Method
. The Levenberg- Marquardt algorithm was designed to approach second- order training speed without having to compute Hessian matrix.
. The mean square error:

$$
E(\underline{w})=\frac{1}{N} \sum_{i=1}^{N}\left(d_{i}-y_{i}(\underline{w})\right)^{2}
$$

. The Taylor series expansion of $E(\underline{w})$ around \underline{w}_{k} :

$$
E(\underline{w}) \approx E\left(\underline{w}_{k}\right)+\nabla_{k}^{T}\left(\underline{w}^{-} \underline{w}_{k}\right)+\frac{1}{2}\left(\underline{w}^{-} \underline{w}_{k}\right)^{T} H\left(\underline{w}_{k}\right)\left(\underline{w}^{-} \underline{w}_{k}\right)
$$

where H is the Hessian matrix defined by $\left.H\left(\underline{w}_{k}\right) \equiv\left[\frac{\partial E}{\partial w_{i} \partial w_{j}}\right]\right|_{w=w_{k}}$.
. Here, the Hessian matrix can be approximated as

$$
H\left(\underline{w}_{k}\right) \approx J_{k}^{T} J_{k}
$$

where J is the Jacobian matrix defined by

$$
\left.J_{k} \equiv \frac{\partial E}{\partial \underline{w}}\right|_{\underline{w}=\underline{w}_{k}} .
$$

. The Lebenberg- Marquardt algorithm uses this approximation to the Hessian matrix:

$$
\underline{w}_{k+1}=\underline{w}_{k}-\left[J_{k}^{T} J_{k}+\mu I\right]^{-1} \nabla_{k} .
$$

. μ is decreased after each successful step (reduction in performance function) and is increased only when
a tentative step would increase the performance function.
. convergence:
The behavior of LM algorithm is similar to the Newton method when $\mu=0$.
. computational complexity:
The inversion of $J_{k}^{T} J_{k}+\mu I$ is required, that is, $O\left(n^{3}\right) /$ step

- Recursive Least Square (RLS) Method
. Let the data can be represented by

$$
y_{k}=\underline{x}_{k}^{T} \underline{w}^{*}+n_{k}
$$

where \underline{x}_{k} represents the kth input vector, \underline{w}^{*} represents
the optimal parameter vector, and n_{k} represents the white Gaussian noise.
. The update rule for the parameter vector:

$$
\begin{equation*}
\underline{w}_{k+1}=\underline{w}_{k}+\underline{a}_{k}\left(y_{k}-\underline{x}_{k}^{T} \underline{w}_{k}\right) \quad \ldots \tag{1}
\end{equation*}
$$

where \underline{a}_{k} represents the gain vector.
. What is the optimal gain?
determine \underline{a}_{k} in the sense of minimizing the mean- square distance from \underline{w}_{k+1} to \underline{w}^{*}.
Let

$$
\begin{equation*}
B_{k} \equiv E\left[\left(\underline{w}_{k+1}-\underline{w}^{*}\right)\left(\underline{w}_{k+1}-\underline{w}^{*}\right)^{T}\right] . \quad \ldots \tag{2}
\end{equation*}
$$

Then,

$$
E\left[\left\|\underline{w}_{k+1}-\underline{w}^{*}\right\|^{2}\right]=\operatorname{tr}\left\{E\left[\left(\underline{w}_{k+1}-\underline{w}^{*}\right)\left(\underline{w}_{k+1}-\underline{w}^{*}\right)^{T}\right]\right\} \text {, that is, }
$$

\underline{a}_{k} should be chosen to minimize $\operatorname{tr}\left\{B_{k}\right\}$.
By substituting \underline{w}_{k+1} of (2) for \underline{w}_{k+1} of (1), we get
a new matrix B_{k} which depends on \underline{a}_{k}.

Here, the trace of B_{k} is determined by

$$
\operatorname{tr}\left\{B_{k}\right\}=\operatorname{tr}\left\{B_{k-1}\right\}-\frac{\underline{x}_{k}^{T} B_{k-1}^{2} \underline{x}_{k}}{1+\underline{x}_{k}^{T} B_{k-1} \underline{x}_{k}}+\left(1+\underline{x}_{k}^{T} B_{k-1} \underline{x}_{k}\right)\left\|{\underset{a}{k}}^{k}-\frac{B_{k-1} \underline{x}_{k}}{1+\underline{x}_{k}^{T} B_{k-1} \underline{x}_{k}}\right\|^{2}
$$

The above equation is minimized when

$$
\underline{a}_{k}=\frac{B_{k-1} \underline{x}_{k}}{1+\underline{x}_{k}^{T} B_{k-1} \underline{x}_{k}} .
$$

In this case,

$$
B_{k}=B_{k-1}-\frac{\left(B_{k-1} \underline{x}_{k}\right)\left(B_{k-1} \underline{x}_{k}\right)^{T}}{1+\underline{x}_{k}^{T} B_{k-1} \underline{x}_{k}} .
$$

Recursive Least Square (RLS) Algorithm

Step 1. Set \underline{w}_{0} randomly, $B_{0}=\epsilon I$ where ϵ is a small constant, and $k=1$.

Step 2. Update $\underline{a}_{k}: \underline{a}_{k}=\frac{B_{k-1} \underline{x}_{k}}{1+\underline{x}_{k}^{T} B_{k-1} \underline{x}_{k}}$
Step 3. Update $B_{k}: B_{k}=B_{k-1}-\frac{\left(B_{k-1} \underline{x}_{k}\right)\left(B_{k-1} \underline{x}_{k}\right)^{T}}{1+\underline{x}_{k}^{T} B_{k-1} \underline{x}_{k}}$
Step 4. Update the parameter vector: $\underline{w}_{k+1}=\underline{w}_{k}+\underline{a}_{k}\left(y_{k}-\underline{x}_{k}^{T} \underline{w}_{k}\right)$
Step 5. If $\operatorname{tr}\left\{B_{k}\right\}<\theta$ (threshold value), stop. Otherwise, $k \leftarrow k+1$ and go to step 2.

. convergence:

The behavior of RLS algorithm is similar to the Quasi- Newton method. However, RLS algorithm finds \underline{w}^{*} asymptotically since it uses stochastic gradient $\widehat{\nabla}_{k}$.
. computational complexity:
The calculation of B_{k} is required, that is, $O\left(n^{2}\right) /$ step
. quick and dirty recursive linear regression:
\underline{a}_{k} is updated by

$$
\underline{a}_{k}=\frac{\underline{x}_{k}}{\sum_{j=1}^{k}\left\|\underline{x}_{k}\right\|^{2}} .
$$

computational complexity: $O(n) /$ step \underline{a}_{k} satisfies the convergence conditions of stochastic approximation.

- Conjugate Gradient (CG) Method

Let us consider the problem of solving simultaneous equations such as

$$
Q \underline{x}=\underline{b}
$$

This problem can be solved by minimizing the following quadratric function:

$$
\min _{\underline{x}} \frac{1}{2} \underline{x}^{T} Q \underline{x}-\underline{b}^{T} \underline{x}
$$

Given a symmetric matrix Q, two vectors \underline{d}_{1} and \underline{d}_{2} are said to be Q-orthogonal, or conjugate with respect to Q if $\underline{d}_{1}^{T} Q \underline{d}_{2}=0 \quad\left(\underline{d}_{1} \neq \underline{d}_{2}\right)$.

Let

$$
\underline{x}^{*}=Q^{-1} b
$$

where Q is the positive definite matrix and
$\underline{d}_{0}, \underline{d}_{1}, \cdots, \underline{d}_{n-1}$ be n non- zero Q-orthogonal vectors. Then,
\underline{x}^{*} can be expanded as

$$
\underline{x}^{*}=\alpha_{0} \underline{d}_{0}+\alpha_{1} \underline{d}_{1}+\cdots+\alpha_{n-1} \underline{d}_{n-1}
$$

since

$$
\begin{aligned}
& \underline{d}_{i}^{T} Q \underline{x}^{*}=\alpha_{i} \underline{d}_{i}^{T} Q \underline{d}_{i}, \text { that is, } \\
& \alpha_{i}=\frac{\underline{d}_{i}^{T} \underline{b}}{\underline{d}_{i}^{T} Q \underline{d}_{i}} .
\end{aligned}
$$

This implies that

$$
\underline{x}^{*}=\sum_{i=0}^{n-1} \frac{\underline{d}_{i}^{T} \underline{b}}{\underline{d}_{i}^{T} Q \underline{d}_{i}} \underline{d}_{i} .
$$

Conjugate Direction Theorem

Let $\left\{\underline{d}_{i}\right\}_{i=0}^{n-1}$ be a set of non-zero Q-orthogonal vectors. Then, for any $\underline{x}_{0} \in R^{n}$, the sequence $\left\{\underline{x}_{k}\right\}$ generated according to

$$
\begin{equation*}
\underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k}, \quad k \geqq 0 \ldots \tag{1}
\end{equation*}
$$

with

$$
\alpha_{k}=-\frac{g_{k}^{T} \underline{d}_{k}}{\underline{d}_{k}^{T} Q \underline{d}_{k}} \text { and } g_{k}=Q \underline{x}_{k}-\underline{b}
$$

converges to the unique solution \underline{x}^{*} of $Q \underline{x}=\underline{b}$ after n steps, that is, $\underline{x}_{n}=\underline{x}^{*}$.

(proof)

For some set of $\alpha_{k} \mathrm{~s}$,

$$
\begin{aligned}
& \underline{x}^{*}-\underline{x}_{0}=\alpha_{0} \underline{d}_{0}+\alpha_{1} \underline{d}_{2}+\cdots+\alpha_{n-1} \underline{d}_{n-1} \text { and } \\
& \underline{d}_{k}^{T} Q\left(\underline{x}^{*}-\underline{x}_{0}\right)=\alpha_{k} \underline{d}_{k}^{T} Q \underline{d}_{k} . \text { Then, } \alpha_{k} \text { can be described by } \\
& \alpha_{k}=\frac{\underline{d}_{k}^{T} Q\left(\underline{x}^{*}-\underline{x}_{0}\right)}{\underline{d}_{k}^{T} Q \underline{d}_{k}} .
\end{aligned}
$$

By iterating (1) from \underline{x}_{0} upto \underline{x}_{k}, we get

$$
\underline{x}_{k}-\underline{x}_{0}=\alpha_{0} \underline{d}_{0}+\alpha_{1} \underline{d}_{1}+\cdots+\alpha_{k-1} \underline{d}_{k-1} .
$$

From the Q-orthogonality,

$$
\underline{d}_{k}^{T} Q\left(\underline{x}_{k}-\underline{x}_{0}\right)=0, \text { that is, } \underline{d}_{k}^{T} Q \underline{x}_{k}=\underline{d}_{k}^{T} Q \underline{x}_{0} .
$$

Therefore, α_{k} can be redescribed by

$$
\alpha_{k}=\frac{\underline{d}_{k}^{T} Q\left(\underline{x}^{*}-\underline{x}_{0}\right)}{\underline{d}_{k}^{T} Q \underline{d}_{k}}=\frac{\underline{d}_{k}^{T} Q\left(\underline{x}^{*}-\underline{x}_{k}\right)}{\underline{d}_{k}^{T} Q \underline{d}_{k}}=-\frac{g_{k}^{T} \underline{d}_{k}}{\underline{d}_{k}^{T} Q \underline{d}_{k}}
$$

Reference: Luenberger, "Introduction to Linear and Nonlinear Programming," chapter 8.

Conjugate Gradient Algorithm

Step 1. Set any $\underline{x}_{0} \in R^{n}, \underline{d}_{0}=-g_{0}=\underline{b}-Q \underline{x}_{0}$, and $k=0$.
Step 2. update $\alpha_{k}: \alpha_{k}=-\frac{g_{k}^{T} \underline{d}_{k}}{\underline{d}_{k}^{T} Q^{d_{k}}}$
Step 3. update $\underline{x}_{k+1}: \underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k}$
Step 4. update $g_{k+1}: g_{k+1}=Q \underline{x}_{k+1}-b$
Step 5. update $\beta_{k}: \beta_{k}=\frac{g_{k+1}^{T} Q \underline{d}_{k}}{\underline{d}_{k}^{T} Q \underline{d}_{k}}$
Step 6. update $\underline{d}_{k+1}: \underline{d}_{k+1}=-g_{k+1}+\beta_{k} \underline{d}_{k}$
Step 7. If $\left\|\underline{g}_{k+1}\right\|<\epsilon$, stop. Otherwise, $k \leftarrow k+1$ and go to step 2.
. convergence:
The CG algorithm finds the unique solution \underline{x}^{*} of $Q \underline{x}=\underline{b}$ after n steps, that is, $\underline{x}_{n}=\underline{x}^{*}$.
. computational complexity:
The calculation of the quadratic form of $\underline{d}_{k}^{T} Q \underline{d}_{k}$ is required, that is, $O\left(n^{2}\right) /$ step
. In the learning algorithm, \underline{x}_{k} and \underline{d}_{k} are associated with the weight parameter and the gradient term respectively.

- Summary of Supervised Learning Algorithms

Algorithm	Gradient Descent (GD)	Conjugate Gradient (CG)	Recursive Least Square (RLS)	Lebenberg- Marquardat (LM)	Quasi- Newton	Newton
Convergence	∞	$O(n)$	$O(n)$	1	$O(n)$	1
Computationa I Complexity Per Step	$O(n)$	$O(n)$	$O\left(n^{2}\right)$	$O\left(n^{3}\right)$	$O\left(n^{2}\right)$	$O\left(n^{3}\right)$
Memory Requirement	$O(n)$	$O(n)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
Learning Mode	on- line	on- line	on- line	batch	batch	batch

n : the number of parameters

