- linear regression models
. linear estimator: the output for the $k$ th input $\underline{x}_{k}$ is given by

$$
y_{k}=y\left(\underline{x}_{k}\right)=w_{0}+\sum_{i=1}^{d} w_{i} x_{i k} .
$$

Let

$$
\underline{x}_{k}=\left[1, x_{1 k}, \cdots, x_{d k}\right]^{T} \text { and } \underline{w}=\left[w_{0}, w_{1}, \cdots, w_{d}\right]^{T} .
$$

Then,

$$
y_{k}=\underline{w}^{T} \underline{x}_{k} .
$$

Let $d_{k}$ be the desired response for the $k$ th input pattern.
Then, the error for the $k$ th pattern is

$$
\epsilon_{k}=d_{k}-y_{k}=d_{k}-\underline{w}^{T} \underline{x}_{k} .
$$

the error square:

$$
\epsilon_{k}^{2}=d_{k}^{2}+\underline{w}^{T} \underline{x}_{k} \underline{x}_{k}^{T} \underline{w}^{-2}-2 d_{k} \underline{x}_{k}^{T} \underline{w} .
$$

the mean square error (MSE):

$$
E\left[\epsilon_{k}^{2}\right]=E\left[d_{k}^{2}\right]+\underline{w}^{T} E\left[\underline{x}_{k} \underline{x}_{k}^{T}\right] \underline{w}-2 E\left[d_{k} \underline{x}_{k}^{T}\right] \underline{w}
$$

Let

$$
\begin{aligned}
& R=E\left[\underline{x}_{k} \underline{x}_{k}^{T}\right] \text { (input correlation matrix) and } \\
& P=E\left[d_{k} \underline{x}_{k}\right] .
\end{aligned}
$$

Then, MSE becomes

$$
E\left[\epsilon_{k}^{2}\right]=E\left[d_{k}^{2}\right]+\underline{w}^{T} R \underline{w}-2 P^{T} \underline{w} . \text { (quadratic form) }
$$

the derivative of MSE with respect to $\underline{w}$ :

$$
\nabla E\left[\epsilon_{k}^{2}\right]=\frac{\partial E}{\partial \underline{w}}=2 R \underline{w}-2 P .
$$

The optimal weight vector $\underline{w}^{*}$ can be determined by the condition of

$$
\nabla E\left[\epsilon_{k}^{2}\right]_{\underline{w}=\underline{w}^{*}}=0 .
$$

That is, $2 R \underline{w}^{*}-2 P=0$.
This implies that the optimal weight is described by

$$
\underline{w}^{*}=R^{-1} P
$$

In this case, the minimum mean square error (MMSE) becomes

$$
M M S E=E\left[d_{k}^{2}\right]+\underline{w}^{* T} R \underline{w}^{*}-2 P^{T} \underline{w}=E\left[d_{k}^{2}\right]-P^{T} \underline{w}^{*} .
$$

Let $\underline{v}=\underline{w}-\underline{w}^{*}$ and rewrite the MSE as follows:

$$
\begin{aligned}
E\left[\epsilon_{k}^{2}\right] & =E\left[d_{k}^{2}\right]+\underline{w}^{T} R \underline{w}-2 P^{T} \underline{w} \\
& =E\left[d_{k}^{2}\right]-P^{T} \underline{w}^{*}+\underline{w}^{* T} R \underline{w}^{*}+\underline{w}^{T} R \underline{w}-2 \underline{w}^{T} R \underline{w}^{*} \\
& =M M S E+\left(\underline{w}^{*}-\underline{w}^{*}\right)^{T} R\left(\underline{w}-\underline{w}^{*}\right) \\
& =M M S E+\underline{v}^{T} R \underline{v}
\end{aligned}
$$

To analyse the MSE, let us set

$$
F(\underline{v})=\underline{v}^{T} R \underline{v} .
$$

That is,

$$
E\left[\epsilon_{k}^{2}\right]=M M S E+F(\underline{v}) .
$$

The MSE depends on $F(\underline{v})$.
Here, the input correlation matrix $R$ can be decomposed by

$$
R=Q \Lambda Q^{-1}, Q=\left(q_{1} q_{2} \cdots q_{d}\right) \text {, and } \Lambda=\left(\begin{array}{cccc}
\lambda_{0} & 0 & \cdots & 0 \\
0 & \lambda_{1} & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & \lambda_{d}
\end{array}\right)
$$

where $q_{i}$ is the column vector representing the eigenvector of $R$ and $\lambda_{i}$ is the eigenvalue corresponding to $q_{i}$.

Since $R$ is the symmetric matrix, $q_{i}$ s are orthogonal and

$$
R=Q \Lambda Q^{-1}=Q \Lambda Q^{T} .
$$

Here, $F(\underline{v})$ can be rewritten as

$$
F(\underline{v})=\underline{v}^{T} R \underline{v}=\underline{v}^{T} Q \Lambda Q^{T} \underline{v} .
$$

Let $\underline{v}^{\prime}=Q^{T} \underline{v}$, that is, rotation of $\underline{v}$ toward eigenvector axes.
Here, the eigenvectors of $R$ define the principal axes of the error surface. Then,

$$
F\left(\underline{v}^{\prime}\right)=\underline{v}^{\prime} \Lambda \underline{v}^{\prime} . \text { (ellipsoid) }
$$

Let $F\left(\underline{v}^{\prime}\right)=c$ in 2 dimensional space.
Then,

$$
\lambda_{0} v_{0}^{\prime 2}+\lambda_{1} v_{1}^{\prime 2}=c .
$$

the length of $v_{0}^{\prime}$ axis $=\sqrt{c / \lambda_{0}}$, the length of $v_{1}^{\prime}$ axis $=\sqrt{c / \lambda_{1}}$ cf. the equation of ellipse: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
. gradient descent method (batch mode)

The weight vector is updated by

$$
\begin{aligned}
\underline{w}_{k+1} & =\underline{w}_{k}+\mu\left(-\left.\nabla F\right|_{v=\underline{v}_{k}}\right) \\
& =\underline{w}_{k}+2 \mu R\left(\underline{w}^{*}-\underline{w}_{k}\right) \\
& =(I-2 \mu R) \underline{w}_{k}+2 \mu R \underline{w}^{*}
\end{aligned}
$$

This can be redescribed by

$$
\underline{v}_{k+1}=(I-2 \mu R) \underline{v}_{k}=\left(I-2 \mu Q \Lambda Q^{T}\right) \underline{v}_{k} .
$$

Let $\underline{v}=Q \underline{v}$.
Then,

$$
Q \underline{v}_{k+1}^{\prime}=\left(I-2 \mu Q \Lambda Q^{T}\right) Q \underline{v}_{k}^{\prime} \text {, that is, } \underline{v}_{k+1}^{\prime}=(I-2 \mu \Lambda) \underline{v}_{k}^{\prime} .
$$

The iterative form of $\underline{v}_{k}^{\prime}$ is

$$
\underline{v}_{k}^{\prime}=(I-2 \mu \Lambda)^{k} \underline{v}_{0}^{\prime} .
$$

Therefore, the gradient descent algorithm is stable and convergent when

$$
\lim _{k \rightarrow \infty}(I-2 \mu \Lambda)^{k}=0 .
$$

This implies that the convergence condition is

$$
0<\mu<\frac{1}{\operatorname{tr}[R]} \leqq \frac{1}{\lambda_{\max }}
$$

where $\lambda_{\max }$ is the maximum eigenvalue of $R$.
Note that

$$
\lambda_{\max } \leqq \operatorname{tr}[\Lambda]=\operatorname{tr}[R] .
$$

In this case, the learning curve of MSE is determined as follows:

$$
\begin{aligned}
E\left[\epsilon_{k}^{2}\right] & =M M S E+\underline{v}_{k}^{T} R \underline{v}_{k} \\
& =M M S E+\underline{v}_{k}^{\prime} \Lambda \underline{v}_{k}^{\prime} \\
& =M M S E+\left[(I-2 \mu \Lambda)^{k} \underline{v}_{0}^{\prime}\right]^{T} \Lambda\left[(I-2 \mu \Lambda)^{k} \underline{v}_{0}^{\prime}\right] \\
& =M M S E+\underline{v}_{0}^{\prime T}(I-2 \mu \Lambda)^{2 k} \Lambda \underline{v}_{0}^{\prime} \\
& =M M S E+\sum_{n=0}^{d} v_{0 n}^{\prime} \lambda_{n}\left(1-2 \mu \lambda_{n}\right)^{2 k}
\end{aligned}
$$

The learning curve of MSE is dependent upon the geometric ratio

$$
r_{n}^{2} \equiv\left(1-2 \mu \lambda_{n}\right)^{2}
$$

. least mean square (LMS) method (on- line mode)

The weight vector is updated by

$$
\begin{aligned}
\underline{w}_{k+1} & =\underline{w}_{k}-\mu \hat{\nabla}_{k} \\
& =\underline{w}_{k}+2 \mu \epsilon_{k} \underline{x}_{k}
\end{aligned}
$$

where

$$
\begin{aligned}
& \epsilon_{k}=d_{k}-y_{k}=d_{k}-\underline{x}_{k}^{T} \underline{w}_{k} \text { and } \\
& \hat{\nabla}_{k} \equiv\left[\frac{\partial \epsilon_{k}^{2}}{\partial w_{0}}, \frac{\partial \epsilon_{k}^{2}}{\partial w_{1}}, \cdots, \frac{\partial \epsilon_{k}^{2}}{\partial w_{d}}\right]^{T}=-2 \epsilon_{k} \underline{x}_{k} .
\end{aligned}
$$

That is, $\hat{\nabla}_{k}$ is not a true gradient, but an estimated gradient from $\epsilon_{k}$ and $\underline{x}_{k}$.

Is $\widehat{\nabla}_{k}$ an unbiased estimator?

$$
\begin{aligned}
E\left[\hat{\nabla}_{k}\right] & =-2 E\left[\epsilon_{k} \underline{x}_{k}\right] \\
& =-2 E\left[d_{k} \underline{x}_{k}-\underline{x}_{k} \underline{x}_{k}^{T} \underline{w}_{k}\right] \\
& =2\left(R \underline{w}_{k}-P\right) \\
& =\left.\nabla E\right|_{\underline{w}=w_{k}}
\end{aligned}
$$

The answer is yes. To check the convergence condition of the LMS method, let us consider the expectation of $\underline{w}_{k+1}$ :

$$
\begin{aligned}
E\left[\underline{w}_{k+1}\right] & =E\left[\underline{w}_{k}\right]+2 \mu E\left[\epsilon_{k} \underline{x}_{k}\right] \\
& =E\left[\underline{w}_{k}\right]+2 \mu\left(E\left[d_{k} \underline{x}_{k}\right]-E\left[\underline{x}_{k} \underline{x}_{k}^{T} \underline{w}_{k}\right]\right. \\
& =E\left[\underline{w}_{k}\right]+2 \mu\left(P-R E\left[\underline{w}_{k}\right]\right) \\
& =(1-2 \mu R) E\left[\underline{w}_{k}\right]+2 \mu R \underline{w}^{*}
\end{aligned}
$$

This can be redescribed by

$$
E\left[\underline{v}_{k+1}\right]=(I-2 \mu R) E\left[\underline{v}_{k}\right],
$$

that is,

$$
E\left[\underline{v}_{k}^{\prime}\right]=(I-2 \mu \Lambda)^{k} \underline{v}_{0}^{\prime} .
$$

This implies that the convergence condition is

$$
0<\mu<\frac{1}{\operatorname{tr}[R]} \leqq \frac{1}{\lambda_{\max }}
$$

where $\lambda_{\text {max }}$ is the maximum eigenvalue of $R$, that is, the convergence condition is same as the batch mode.

To check the performance of LMS method, let us consider the following definition of misadjustment:

$$
M \equiv \frac{\text { excess } M S E}{M M S E}=\frac{E[M S E-M M S E]}{M M S E}
$$

where the excess MSE is given by

$$
\begin{aligned}
\text { excess MSE } & =E\left[\underline{\underline{k}}_{k}^{T} R \underline{v}_{k}\right] \\
& =E\left[\underline{v}_{k}^{T} A \underline{v}_{k}^{\prime}\right] \\
& =\sum_{n=0}^{d} \lambda_{n} E\left[v_{n k}^{\prime 2}\right]
\end{aligned}
$$

To analyse the excess MSE, let us set

$$
\hat{\nabla}_{k}=\nabla_{k}+\underline{n}_{k}
$$

where $\underline{n}_{k}$ represents the noise vector associated with $\hat{\nabla}_{k}$.

Near $\underline{w}^{*}$, the noise vector can be approximated as

$$
\underline{n}_{k} \approx \hat{\nabla}_{k}=-2 \epsilon_{k} \underline{x}_{k} .
$$

Then, the covariance of $\underline{n}_{k}$ becomes

$$
\operatorname{Cov}\left[\underline{n}_{k}\right]=E\left[\underline{n}_{k} \underline{\underline{n}}_{k}^{T}\right] \approx 4 E\left[\epsilon_{k}^{2} \underline{x}_{k} \underline{x}_{k}^{T}\right] .
$$

Near $\underline{w}^{*}, \epsilon_{k}$ and $\underline{x}_{k}$ is uncorrelated, that is,

$$
\operatorname{Cov}\left[\underline{n}_{k}\right] \approx 4 E\left[\epsilon_{k}^{2}\right] E\left[\underline{x}_{k} \underline{x}_{k}^{T}\right] \approx 4 M M S E \cdot R \text { and }
$$

$$
\begin{aligned}
\operatorname{Cov}\left[\underline{n}_{k}^{\prime}\right] & =\operatorname{Cov}\left[Q^{-1} \underline{n}_{k}\right] \\
& =E\left[Q^{-1} \underline{n}_{k}\left(Q^{-1} \underline{n}_{k}\right)^{T}\right] \\
& =Q^{-1} \operatorname{Cov}\left[\underline{n}_{k}\right] Q \\
& \approx 4 M M S E \cdot \Lambda
\end{aligned}
$$

From the weight update rule,

$$
\begin{aligned}
\underline{v}_{k+1} & =\underline{v}_{k}-\mu \hat{\nabla}_{k} \\
& =\underline{v}_{k}-\mu\left(2 R \underline{v}_{k}+\underline{n}_{k}\right) \\
& =(I-2 \mu R) \underline{v}_{k}-\mu \underline{n}_{k}
\end{aligned}
$$

This implies that

$$
\underline{v}_{k+1}^{\prime}=(I-2 \mu \Lambda) \underline{v}_{k}^{\prime}-\mu \underline{n}_{k}^{\prime} .
$$

From this equation, the covariance of $\underline{v}_{k}^{\prime}$ is determined by

$$
\begin{aligned}
\operatorname{Cov}\left[\underline{v}_{k}^{\prime}\right] & =(I-2 \mu \Lambda)^{2} \operatorname{Cov}\left[\underline{v}_{k}^{\prime}\right]+\mu^{2} \operatorname{Cov}\left[\underline{n}_{k}^{\prime}\right] \\
& =\frac{\mu}{4}\left(\Lambda-\mu \Lambda^{2}\right)^{-1} \operatorname{Cov}\left[\underline{n}_{k}^{\prime}\right]
\end{aligned}
$$

By substituting the result of $\operatorname{Cov}\left[\underline{n}_{k}^{\prime}\right]$, we get

$$
\operatorname{Cov}\left[\underline{v}_{k}^{\prime}\right] \approx \mu M M S E\left(\Lambda-\mu \Lambda^{2}\right)^{-1} \Lambda \approx \mu M M S E \cdot I .
$$

This implies that, the excess MSE becomes

$$
\text { excess MSE }=\sum_{n=0}^{d} \lambda_{n} E\left[v_{n k}^{\prime 2}\right] \approx \mu M M S E \sum_{n=0}^{d} \lambda_{n} .
$$

Therefore, the misadjustment becomes

$$
M \equiv \frac{\text { excess } M S E}{M M S E} \approx \mu \cdot \operatorname{tr}[R] .
$$

Here, let us investigate the learning curve when we use the LMS method.

The time constant is defined by the time interval in which the given signal $f(t)$ is reduced by $1 / e$.
example. $f(t)=e^{-t / \tau}$, time constant $=\tau$.
the geometric ratio $r^{2} \equiv e^{-1 / \tau}$, that is, $r^{2} \approx 1-1 / \tau$.
From the previous result,

$$
r_{n}^{2}=\left(1-2 \mu \lambda_{n}\right)^{2} \approx 1-1 / \tau_{n}, \text { that is, } 1 / \tau_{n} \approx 1 /\left(4 \mu \lambda_{n}\right) .
$$

Here, the trace of $R$ can be redescribed by

$$
\operatorname{tr}[R]=\sum_{n=0}^{d} \lambda_{n} \approx \frac{1}{4 \mu} \sum_{n=0}^{d} \frac{1}{\tau_{n}}=\frac{d+1}{4 \mu} \frac{1}{\tau_{a v}}
$$

where $\frac{1}{\tau_{a v}}=\frac{1}{d+1} \sum_{n=0}^{d} \frac{1}{\tau_{n}}$.

This implies that

$$
\begin{aligned}
& \tau_{a v} \approx \frac{d+1}{4 \mu \cdot \operatorname{tr}[R]} \text { and } \\
& M \approx \frac{d+1}{4 \tau_{a v}} .
\end{aligned}
$$

These results show that
(1) large $\mu->$ small $\tau_{a v}$ (fast convergence) - > large $M$ and
(2) small $\mu$ - > large $\tau_{a v}$ (slow convergence) - > small $M$.

