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. Perceptron criterion function:. Perceptron criterion function:. Perceptron criterion function:
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. gradient descent algorithm. gradient descent algorithm. gradient descent algorithm

The weights are updated as follows:The weights are updated as follows:The weights are updated as follows:
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(1) batch mode(1) batch mode(1) batch mode
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(2) on-line mode (or incremental mode)(2) on-line mode (or incremental mode)(2) on-line mode (or incremental mode)
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are cyclically applied.are cyclically applied.are cyclically applied.

Training Rule:Training Rule:Training Rule:
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cf.cf.cf.    in Rosenblatt's Perceptron.in Rosenblatt's Perceptron.in Rosenblatt's Perceptron.



. convergence of on-line mode. convergence of on-line mode. convergence of on-line mode

LetLetLet  is a solution vector. Then,is a solution vector. Then,is a solution vector. Then,

 
 

  andandand

∥ ∥ ∥∥   ∥∥...
SinceSinceSince 

≦ ,,,

∥ ∥ ≦∥∥  ∥∥...
The termThe termThe term 

 
∥∥ is negative whenis negative whenis negative when

  ∥∥



. (convergence condition for. (convergence condition for. (convergence condition for )))
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. The upper bound of the number of updates. The upper bound of the number of updates. The upper bound of the number of updates
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That is, Perceptron converges within the finite number of steps.That is, Perceptron converges within the finite number of steps.That is, Perceptron converges within the finite number of steps.
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It can be shown if the samples are linearly separable andIt can be shown if the samples are linearly separable andIt can be shown if the samples are linearly separable and
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. optimal choice of. optimal choice of. optimal choice of 

The weight update rule:The weight update rule:The weight update rule:

 ∇...



Taylor series expansion ofTaylor series expansion ofTaylor series expansion of  aroundaroundaround :::
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Reference: Pattern Classification, and Scene Analysis, chapter 5.Reference: Pattern Classification, and Scene Analysis, chapter 5.Reference: Pattern Classification, and Scene Analysis, chapter 5.


