Perceptrons

- linear discriminant functions for classification

. linear discriminant functions:

$$g(\underline{x}) = w_0 + \sum_{i=1}^d w_i x_i$$

Let

$$\underline{x} = [1, x_1, \cdots, x_d]^T$$
 and $\underline{w} = [w_0, w_1, \cdots, w_d]^T$.

Then,

$$g(\underline{x}) = \underline{w}^T \underline{x}.$$

. binary classification: two classes, c_1 and c_2 . if $\underline{w}^T \underline{x}_i > 0$, output of classifier = c_1 otherwise, output of classifier = c_2

if \underline{x}_i belongs to c_1 , $\underline{w}^T \underline{x}_i > 0$. if \underline{x}_i belongs to c_2 , $\underline{w}^T \underline{x}_i < 0$ or $\underline{w}^T (-\underline{x}_i) > 0$. So, let's change \underline{x}_i into $-\underline{x}_i$, if \underline{x}_i belongs to c_2 . Then, $\underline{w}^T \underline{x}_i > 0$ if \underline{x}_i s are classified correctly. . Perceptron criterion function:

$$J_P(\underline{w}) = \sum_{\underline{x} \in X(\underline{w})} - \underline{w}^T \underline{x}$$

where

 $X(\underline{w})$ represents a set of samples misclassified by \underline{w} .

. gradient descent algorithm

The weights are updated as follows:

 $\underline{w}_{k+1} = \underline{w}_k - \rho_k \nabla J_P(\underline{w}_k)$

where ρ_k represents a positive scaling factor (learning rate) and

$$\nabla J_P(\underline{w}_k) = \frac{\partial J_P}{\partial \underline{w}}|_{\underline{w}} = \underline{w}_k.$$

(1) batch mode

$$\underline{w}_{k+1} = \underline{w}_k - \rho_k \underbrace{\sum_{x \in X_k} \underline{x}}_{k}$$

where X_k represents a set of samples misclassified by \underline{w}_k .

(2) on-line mode (or incremental mode)

Training samples $\underline{x}_1, \underline{x}_2, \cdots, \underline{x}_n$ are cyclically applied.

Training Rule:

- 1) arbitrary set w_1
- 2) $\underline{w}_{k+1} = \underline{w}_k \rho_k \underline{x}_k$ for $k \ge 1$ where $\underline{w}_k^T \underline{x}_k \le 0$
- cf. $\rho_k = 1$ in Rosenblatt's Perceptron.

. convergence of on-line mode

Let
$$w^*$$
 is a solution vector. Then,
 $w_{k+1} - w^* = w_k - w^* + \rho_k x_k$ and
 $\|w_{k+1} - w^*\|^2 = \|w_k - w^*\|^2 + 2\rho_k (w_k - w^*)^T x_k + \rho_k^2 \|x_k\|^2$.
Since $w_k^T x_k \leq 0$,
 $\|w_{k+1} - w^*\|^2 \leq \|w_k - w^*\|^2 - 2\rho_k w^{*T} x_k + \rho_k^2 \|x_k\|^2$.
The term $-2\rho_k w^{*T} x_k + \rho_k^2 \|x_k\|^2$ is negative when
 $0 < \rho_k < \frac{2w_k^T x_k}{\|x_k\|^2}$. (convergence condition for ρ_k)

Therefore, the optimal learning rate is $\rho_k^* = \frac{w_k^* T x_k}{\parallel x_k \parallel^2}$.

By substituting the optimal learning rate, we get

$$\| w_{k+1} - w^* \|^2 \le \| w_k - w^* \|^2 - \frac{(w^* T x_k)^2}{\| x_k \|^2}.$$

. The upper bound of the number of updates Let $\beta^2 = \max_i ||x_i||^2$ and $\gamma = \min_i w^{*T} x_i$. Then, after k updates,

$$\| w_{k+1} - w^* \|^2 \leq \| w_1 - w^* \|^2 - k \frac{\gamma^2}{\beta^2}.$$

If $w_1 = 0$, k can be bounded by

$$k_0 = \frac{\beta^2 \parallel w^* \parallel^2}{\gamma^2}.$$

That is, Perceptron converges within the finite number of steps.

. adaptation of ρ_k

It can be shown if the samples are linearly separable and ρ_k satisfies the following conditions:

$$\begin{split} &\lim_{k\to\infty}\rho_k=0,\\ &\lim_{m\to\infty}\sum_{k=1}^m\rho_k=\infty, \text{ and } \lim_{m\to\infty}\sum_{k=1}^\infty\rho_k^2<\infty, \end{split}$$

 w_k converges to a solution vector satisfying $w^T x_i > 0 \quad \forall i$. example.

$$\rho_k = \frac{1}{k}$$

. optimal choice of ρ_k

The weight update rule:

 $w_{k+1} = w_k - \rho_k \nabla J(w_k).$

Taylor series expansion of J(w) around w_k :

$$J(w) \approx J(w_k) + \nabla J^T (w - w_k) + \frac{1}{2} (w - w_k)^T H(w - w_k)$$

where $H = \frac{\partial^2 J}{\partial w_i \partial w_j}|_{w = w_k}$.
Then, $J(w_{k+1}) \approx J(w_k) - \rho_k \| \nabla J \|^2 + \frac{1}{2} \rho_k^2 \nabla J^T H \nabla J$.
Therefore, the optimal choice of ρ_k is $\rho_k = \frac{\| \nabla J \|^2}{\nabla J^T H \nabla J}$.

Reference: Pattern Classification, and Scene Analysis, chapter 5.