Decision Tree Learning (DTL)

- decision tree representation
. Decision tree learning is a method for approximating
discrete-valued target functions in which the learned function is
represented by a decision tree.
The decision tree can be easily represented by /f~then rules to
improve human readability.
. In decision tree, each internal node tests an afttribute,
each branch corresponds to afttribute value, and
each leaf node assigns a classification.

. In general, decision tree represent a disjunction of conjunctions
of constraints on the attribute values of instances.

example. (Outlook = Sunny A Humidity = Normal) V
(Outllook = Overcast)
(Outlook = Rain N\ Wind = Weak)
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- appropriate problems of DTL

. instances described by attribute-value pairs

. target function is discrete valued.

. disjunctive hypothesis may be required.

. possibly noisy training data
examples.
equipment or medical diagnosis, credit risk analysis,
spam-mail filtering, etc.

- learning algorithms of DTL
CART (Friedman 1977; Breiman et al. 1984)
ID3 (Quinlan, 1979, 1983), C4.5 (Quinlan, 1993)

- ID3 algorithm

Step 1. Create a root node for the tree that
best classifies examples.
Step 2. Do the following procedure:
(1) A< the best decision attribute for the next node.
(2) assign A4 as decision attribute for the node.
(3) for each value of A4, create new descendant of node.
(4) sort training examples to leaf node.
(5) If training examples perfectly classified, then stop.
else, iterate over new leaf nodes.



What is the best decision attribute for the root node and
other nodes?

- entropy
. S'is a sample of training examples.
. p, is the probability of positive examples in S.
. p_ is the probability of negative examples in 6.
. entropy of S is described by
Entropy(S) =—p.log,p, —p_log,p_.
Entropy(S) represents the number of bits needed to encode
class (+ or -) of randomly drawn number of 5
(under the optimal shortest-length code).

Entropyi(S)

More generally, if the target attribute can take on c
different values,

C

Entropy(S) = Z_pz'log2pi

1=1



- information gain

. Information gain describes the expected reduction in entropy
due to sorting on attribute A, that is,

1S,
Gain (S, A) = Entropy(S) — Z —Entropy(ézj)
v € Values(A4) |S|

where Values(A) represents the set of all possible values for
attribute 4 and S, represents the subset of S for which

attribute A has value .

Training examples for the target concept PlayTennis

Day Outlook | Temperature |  Humidity Wind PlayTennis
O Sunny Haot High Weak Mo
D2 Sunny Haot High Strong Mo
D3 Owvercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Hain Cool Mormal Weak Yes
D6 Hain Cool Mormal Strong MO
D7 Owercast Cool Mormal Strong Yes
o8 Sunmny Mild High Weak Mo
0g sSunny Cool Marmal Weak Yes
D10 Rain Mild Mormal Weak Yes
D11 Sunny Ml Mormal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Owercast Haot Mormal Weak Yes
D14 Hain Mild High Strong Mo




Entropy(S) = Entropy([9 s 5_1)
=—(9/14)log, (9/14) — (5/14)log, (5/14)
=0.940

1S
Gain (S, Wind) = Entropy(S) — Z —Entropy(b})

v € { Weak, Strong} |S|

= Entropy(S) — iEmfmpy(SWeak) -

1 14 Entropy(SStmng)
=0.940— %Entropy([GJr,Q_]) — %Entropy([&r,i%_])
8 6
=0.940 ﬂO’SH ﬂl.OO

=0.048

Similarly,
Gain (S, Outlook) = 0.246,
Gain (S, Humidity) = 0.151, and
Gain (S, Temperature) = 0.029.

Therefore, the Outlook attribute provides the best prediction of
the target concept PlayTennis over training examples.



DTL by ID3
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- hypothesis space search by ID3

. The hypothesis space H is complete, that is, the target function

is surely in A.

. ID3 generates a single hypothesis.

. No backtracking, that is, ID3 generates a /ocally optimal solution

corresponding to the decision tree.

. Statistically-based search using the information gain -

as a result, it is robust to noisy data.
- inductive bias in ID3

. preference for short trees and for those with high

information gain attributes near the root.

cf. Occam's razor: preference to the shortest hypothesis that fits

the data.

- overfitting of ID3

. error of hypothesis h over training data 7 :
errorT(h) =Pr, . T[c(x) # h(zx)]
. error of hypothesis h over entire distribution D of data:
errorD(h) =Pr, . D[c(az) = h(z)]
. The hypothesis h € H overfits training data 7 if there is
an alternative hypothesis » € A such that

errorT(h) < erv“orT(h,) and

errorD(h) > eTrorD(h’).



- methods to avoid overfitting

. stop growing when data split not statistically significant.

. grow full tree, then post-prune.

. selecting the best tree:

(1) measure performance over training data.

(2) measure performance over separate validation set.

(3) minimize the size of tree and the misclassification of tree.

. reduced-error pruning

(1) split data into training and validation sets.
(2) do the following procedure until further pruning is harmful:
1) evaluate impact on validation set of pruning
each node (plus those below it).
2) greedily remove the one that most improves
validation set accuracy.



. rule post-pruning (C4.5)

(1) grow the tree until the training data are fit
as well as possible.
(2) convert the tree to equivalent set of (if-then) rules.
(3) prune each rule that results in improving
its estimated accuracy.
(4) sort the pruned rules by their estimated accuracy.

- improving ID3

. continuous valued attributes: dynamically defining

new discrete-valued attributes that partition the continuous value
into a discrete set of intervals.

One of the methods is picking a threshold that produces

the greatest information gain.

. attributes with many values: so many possible values are
bounded to separate the training examples into very small
subsets which results in high information gain compare to
other training examples in large sunsets.



One of methods is to use gain ratio instead of information gain
(Quinlan, 1986):

Gain (S A)

GainRatio(S, A) = Slithnfo(S A)
ithfo(S ) Z 5] S|
Splt nfo |S| 0g2|5|

where S through S, are the subsets of examples resulting from

partitioning S by the c-valued attribute A4

example. n examples and attribute A4 has 2 values.
Suppose we have 2 subsets and each subset has
n/2 examples.

: IR SO I RO
Splitinfo(S, A) = (2 log, 5 + 5 log22 )=1

example. n examples and attribute 4 has n values.
Suppose we have n subsets and each subset has
1 example.

| 1
Splitinfo(S, A) =— Z - logQg: log,n

1=1



. attributes with costs: learn a consistent tree with

low expected cost. Each attribute may have associated cost
according to the learning task.

In this case, Gain(S A) can be replaced by

Gain® (S, A) :
Cost(A) (Tan and Schlimmer, 1990)
2Gam(S,A)_
(Nunez, 1988)
(Cost(A)+1)"

where w € [0,1] determines the importance of cost.

Reference: Machine Learning, chapter 3.



