Concept Learning

- concept

some subset of objects or events defined over a large set example.

the subset of animals that constitute birds representation of concept:

a boolean valued function defined over a large set example.

a function defined over all animals, whose value is true (1) for birds and false (0) for other animals

- learning

inducing general functions from specific training examples

- concept learning (or category learning)

acquiring the definition of general category given a sample of positive and negative training examples of category, that is, inferring a boolean-valued function from training examples of its input and output

- a concept learning task

. target concept: EnjoySport

(days on which Aldo enjoys water sport) . hypothesis: a vector of six constraints,

specifying the value of six attributes, they are, Sky (Sunny/Cloudy/Rainy), AirTemp (Warm/Cold), Humidity (Normal/High), Wind (Strong/Weak), Water (Warm/Cool), Forecast (Same/Change) for each attribute, the hypothesis will either ? (don't care: any value is acceptable), discrete values, or Ø (null: no value is acceptable)

example.

<?, Cold, High, ?, ?, ?>

-> "Aldo enjoys sport only on cold days with high humidity." <?, ?, ?, ?, ?, ?>

-> "Aldo always enjoys sport." (most general hypothesis)<Ø, Ø, Ø, Ø, Ø, Ø</p>

-> "Aldo does not enjoy sport at all." (most specific case)

. Positive and negative training examples for the target concept EnjoySport

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

What is the general concept for these examples?

Given

instances X: possible days, each described by six attribute, target function c: EnjoySport $X \rightarrow \{0, 1\}$, hypothesis H: conjunction of literals such as <?, Cold, High, ?, ?, ?>, and training examples D: positive and negative examples of the target function, that is, $< X_1, c(X_1) >, \dots, < X_m, c(X_m) >$,

determine

a hypothesis h in H such that h(x) = c(x) for all x in X.

- inductive learning hypothesis

Any hypothesis found to be approximate the target function well over *a sufficiently large set training examples* will also approximate the target function well over *other unobserved examples*.

- concept learning as search

find a hypothesis that best fits training examples search space in EnjoySport:

number of instances = $3 \cdot 2^5 = 96$

number of hypotheses = $5 \cdot 4^5 = 5120$

- general-to-specific ordering
 - . Let $x \in X$ and $h \in H$. Then, x satisfies h if and only if h(x) = 1.
- . Let h_j and h_k be boolean-valued functions defined over X. Then, h_j is *more_general_than_or_equal_to* h_k

(
$$h_j \ge {}_g h_k$$
) if and only if

 $(\forall x \in X)[(h_k(x) = 1) \rightarrow (h_i(x) = 1)].$

 h_j is *(strictly) more_general_than* h_k ($h_j > {}_g h_k$)

if and only if

$$(h_j \ge {}_g h_k) \wedge \neg (h_k \ge {}_g h_j).$$

example.

 h_j =<Sunny, ?, ?, ?, ?, ?, ?> > $_g h_k$ =<Sunny, ?, ?, Strong, ?, ?> $\rightarrow h_j$ is more_general_than h_k . or $\rightarrow h_k$ is more_specific_than h_j .

Here, the problem is how to search the good hypothesis using this hypothesis ordering.

One of such candidates is Find-S algorithm in which the maximally specific hypothesis is searched.

- Find-S algorithm

Step 1. Initialize h to the most specific hypothesis in H, that is, h = <∅, ∅, ∅, ∅, ∅, ∅>.
Step 2. For each *positive training instance* x
for each attribute constraint a_i in h
if the constraint a_i in h is satisfied by x, do nothing
else replace a_i in h by the next more general constraint that is satisfied by x.
Step 3. Output h.

example.

 $h_0 = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$. $x_1 = \langle \text{Sunny, Warm, Normal, Strong, Warm, Same \rangle + h_1 = \langle \text{Sunny, Warm, Normal, Strong, Warm, Same } x_2 = \langle \text{Sunny, Warm, High, Strong, Warm, Same } + h_2 = \langle \text{Sunny, Warm, ?, Strong, Warm, Same } x_3 = \langle \text{Rainy, Cold, High, Strong, Warm, Change } - h_3 = h_2$ $x_4 = \langle \text{Sunny, Warm, High, Strong, Cool, Change } + h_4 = \langle \text{Sunny, Warm, ?, Strong, ?, ?} \rangle$

Hypothesis space searched by Find-S algorithm

- problem in Find-S algorithm
 - . can't tell whether it has the learned concept.
 - . can't tell when training data are inconsistent.
 - . picks a maximally specific h.
 - . depending on H, there might be several.
 - -> Find-S algorithm only uses the positive examples.
 - -> We better find *the proper hypothesis space* rather than a specific hypothesis.
 - -> the concept of version spaces

Reference: Machine Learning, chapter 2.