Bagging and Boosting Methods

- Motivation for combining learning machines

. Suppose you have many "easy rules": combining them may be

a good idea.
. Parameter estimation: combine many machines with

different parameters?
. Bootstrap: may helps with "variance"?

- Voting classification

. Methods for voting classification algorithms have been shown to
be very successful in improving the accuracy.

. Voting algorithms can be divided into two types:

— change the distribution of the training set based on the
performance of previous classifiers
eg. Boosting.

- those that do not
eg. Bagging.



— Strong and weak learning models
. Strong learning models:
have classification rate 1-6,

where ¢ is small positive number.

. Weak learning models:
have classification rate on slightly better than 1/2.

- Bagging methods
. Bagging = bootstrap agregation.

. Training data Z= (z,,4,), (@0, 45)s -+ (X oY) s

obtaining the prediction f(z) at input z.

. For each bootstrap sample Z°, vb=1,2,..., B
fit a model, giving prediction f(z).
1

e B
. The bagging estimate: f,, (z)= EZf b(z)
b=1
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. Bagging average this prediction over collection of
bootstrap samples, thereby reducing its variance.

. Denote by P the empirical distribution putting equal
probability 1//V on each of the data points (z;, y,).

—_

. Let "true" bagging estimate: Z, f (z),

* * -

where Z = (zy, y1), (@3, 1), ---» (z, yy) and each (z, y;) ~ P.

: f;g(:v) is a Monte Carlo estimate of the true Bagging estimate,
approaching it as B— .

. If perturbing the learning set can cause significant change

in the predictor constructed, then bagging can

improve accuracy.



— Bagging (Bootstrap AGGregatiNG)

. Given a training set D= {(z,y,), - (z,y,)},
> Sample N sets of [ elements from D with replacement
(bootstraping procedure), that is, D, -, Dy

(N quasi replica training sets).
> Train a machine on each D, i=1,---, N and obtain

a sequence of N outputs f,(z), -, frlz).

> The final aggregate classifier can be

(1) for regression
flz) = B{f,(x)},

that is, the average of f, for i=1,---, V.

(2) for classification

f@)=0(E{f,(x)})

where 6 represents the indicator function. In this case,

f(z) will be the majority vote from f,(z).



- Bias and variance for regression

. Let
1171= [ (@)= yPpe.y)drdy
be the expected risk and f, the regression function. With

f(z) = E{f,(z)}, if we define the bias as
[ Golao) = Fa)p(a)d

and the variance as
[ ()= F)plaia),

we have the following decomposition:
E{1f;]}= 1] fy| +bias +variance.

— Bias and variance for classification

. No unique decomposition for classification exists.
In the binary case, with f(z)=0(Z{f;(z)}), the decomposition
suggetsed by Kong and Dietterich (1995) is
1fl=111,]
for the bias, and
E{1f]}-17]
for the variance, which (again) gives
E{][fl] }: [[fo] + bias +variance.



- Bagging reduces variance

. If each single classifier is unstable, that is, it has

high variance, the aggregated classifier f has
a smaller variance than a single original classifier.

. The aggregated classifier f can be thought of as

an approximation to the true average f obtained by
replacing the probability distribution p with the bootstrap
approximation to p obtained concentrating mass 1/1

at each point (z;y;).

cf. combining independent unbiased estimators:
Let d; and d, denote independent unbiased estimators of 0,

, : 2 2
having known variances o7 and o5.

Then, we can consider an unbiased estimator of the form
d=Xd,+(1—\)d,.

Here, the mean square error is given by
r(d,0) = Var(d) = )\20% +(1 —)\)203.



To get the smallest possible mean square error,
| 0. — A /o
_— ~ = e =
A=A :
dA 1/oi+1/0;
In other words, the optimal weight to give an MMSE estimator is

inversely proportional to its variance when all the estimators are
unbiased and independent.

Here, note that the MSE of d is
1
1/o3+1/0%

r(d,0)=

< min(a?, Jg).

In general, if we combine n independent unbiased estimators,
the MMSE estimator is given by

Z dz’/022

_ n=1
> 1/
i=1
and the MSE of d is given by

r(d, 0) = 1/(2”]1/03).

1=1

d



- Ensembles of kernel machines

. What happens when combining SVMs with kernels?

> different subsamples of training data (bagging)

> different kernels or different features

> different parameters, that is, regularization parameters

. Combination of SVMs
Let f,(x), -, fy(z) be SVM machines we want to combine and

flo) = gNlcnm)

for some fixed ¢, >0 with Y ¢, =1.

- Leave-one-out error

. The leave—one—out error is computed in three steps

(1) Leave a training point out

(2) Train the remaining points and test the point left out
(3) Repeat for each training point and count "errors".

. Theorem (Luntz and Brailovski, 1969)
E{[[fl] }=E{CV error of f,.1}
where f, represents the [th regression function.



. Leave—one-out bound for an SVM:

For SVM classification
l 2

PILCHACHY ) —yf (@) £ =
- P

where r is the radius of the smallest sphere containing
the SVs and p is the true margin. (Jaakkola and Haussler, 1998)

. Leave—one—-out bound for a kernel machine ensemble
The leave—one—out error of an SVM ensemble

- Z}lclf@ (x)

is upper bounded by

l N N
2003 (o zya,) )= Z

where r(,, is the radius of the smallest sphere containing
the SVs of machine n and p,,, the margin of SVM n.
This suggests that bagging SVMs can be a good ideal

. Trough a modified version of the notion of stability, it is possible
to study conditions under which bagging should or shoud not
improve performances. (Evgeniou et al, 2001)



- The original boosting (Schapire, 1990)

1. Train a first classifier f, on a training set drawn from
a probability p(x,y). Let ¢, be the obtained performance.

2. Train a second classifier f, on a training set drawn from
a probability p,(z,y) such that it has half its measure on
the event that f, makes a mistake and half on the rest.

Let ¢, be the obtained performance.

3. Train a third classifier f; on disagreements of the first two,
that is, drawn from a probability p,(z,y) which has its
support on the event that f, and f, disagree. Let ¢; be
the obtained performance.

. Main result:

If ¢, <p for all i, the boosted hypothesis
f = Majority Vote (fl,fQ,f3)

has performance no worse than e=3p>—2p’.
This implies that the boosting is effective when p <0.5.



— Adaboost (Freund and Schapire, 1996)

The idea is adaptively resampling the data.

. Maintain a probability distribution over training set.

. Generate a sequence of classifier in which the next classifier
focuses on sample where the previous classifier failed.

. Weigh machines according to their performance.

. Adaboost algorithm

Step 1. Initialize the distribution as P, (i) =1/I.
Step 2. For i=1,---, NV repeat the following procedure:
(1) Train a machine with weights P, (i) and get f,.

n

(2) Compute the weighted error
l
i=1

(3) Compute the importance of f, as

1 1—e,
(8 :Eln .

n
En

(4) Update the distribution P, (i) Pn(z')e_o‘"yif"(xi)_

. The final hypothesis is given by
N

Zanfn(a:)).

n=1

flz)= stgn



Final CLASSIFIER
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- Example of Adaboost: decision tree learning
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- Theory of boosting

. We define the margin of (z,,y,) according to the real-valued
function f to be
margin(z,,y;) = y,f (z;).

Note that this notion of margin is different from
the SVM margin. This defines a margin for each
training sample.

- The first theorem on boosting

. Theorem (Schapire et al, 1997)
If running adaboost generates functions with errors

€ En

then Vv~

N
29 y—yif(z,) H Ve T(1=¢,) .

Thus, the running margin error drops exponentially fast
if €, <0.5.




- The second theorem on boosting

. Theorem (Shapire et al, 1997)
Let 4 be an hypothesis space with VC—-dimension d and
C the convex hull of A, that is,

C= {f: fla)=Y aqh@)le, 20, Y o, :1}.

he H he H
Then, Vfe Cand V~y>0

1712 Y0l-uste))+ 0| L)

This holds for any voting method!

- Are these theorems really useful?

. The first theorem simply ensures that the training error
goes to zero.

. The second theorem gives a loose bound which does not
account for the success of boosting as a learning technique.

. More realistic bound accommodating the estimation function
ensemble generated by boosting algorithm so that we can find
the optimal boosting number V.



— Generalization error

. Let sample size m, the VC—-dimension d of the weak hypothesis
space and the number of boosting rounds T.

. The generalization error is at most

Prlae) = y)+ 04/ )

where 15;“[ - | denotes empirical probability on the training sample.

. This bound suggests that boosting can have a over—fit for
large T. |In fact, over—fitting can happen in the boosting method.

. However, in general, over—fitting is not observed empirically
even for large number of boosting rounds.

. Moreover, it was observed that AdaBoost would sometimes
continue to drive down the generalization error long after
the training error has reached zero, clearly contradicting
the generalization bounds.

. Boosting is particularly aggressive at reducing the margin since
it concentrates on the examples with the smallest margins.



— Generalization error with margin

. In response to theses empirical findings, gave an alternative
analysis in terms of the margins of the training examples.

. The margin of example (z,y): yf(z) or yY,a,h,(z).
t

Margin is a number in [-1, +1].
Margin is positive < H correctly classifies the example.

. The magnitude of the margin can be interpreted as a measure of
confidence in the prediction.

. Larger margins on the training set translate into a superior upper
bound on the generation error.

. The generation error is at most

~ —~

Primargin(z,y) < 0]+ O( ) for any 6> 0 with high probability.

mo>
. This bound is entirely independent of T, the number of boosting

rounds. However, even in this case, the over—fitting in boosting
can not be explained.



— Compare Bagging with Boosting

. Bagging
distribution :1/N.
always improve an learning system.
high computational complexity for learning.
unstable learning system — improve accuracy.

. Boosting
change the distribution.
medium computational complexity for learning.
in general, over—fitting does not occur.
sometimes over—fitting does occur.
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