Bagging and Boosting Methods

- Motivation for combining learning machines

. Suppose you have many "easy rules": combining them may be a good idea.
. Parameter estimation: combine many machines with different parameters?
. Bootstrap: may helps with "variance"?

- Voting classification

. Methods for voting classification algorithms have been shown to be very successful in improving the accuracy.
. Voting algorithms can be divided into two types:

- change the distribution of the training set based on the performance of previous classifiers
eg. Boosting.
- those that do not
eg. Bagging.

- Strong and weak learning models

. Strong learning models:
have classification rate $1-\delta$, where δ is small positive number.
. Weak learning models:
have classification rate on slightly better than 1/2.

- Bagging methods

. Bagging = bootstrap agregation.

- Training data $Z=\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)$,
obtaining the prediction $\hat{f}(x)$ at input x.
. For each bootstrap sample $Z^{*}, b=1,2, \ldots, B$.
fit a model, giving prediction $f^{\widehat{*} b}(x)$.
. The bagging estimate: $\widehat{f_{\text {bag }}}(x)=\frac{1}{B} \sum_{b=1}^{B} f^{\widehat{b} b}(x)$
. bootstrap process

Bootstrap
replications

. Bagging average this prediction over collection of bootstrap samples, thereby reducing its variance.
. Denote by \hat{P} the empirical distribution putting equal probability $1 / N$ on each of the data points $\left(x_{i}, y_{i}\right)$.
. Let "true" bagging estimate: $E_{\hat{P}} \widehat{f^{*}}(x)$,
where $Z^{*}=\left(x_{1}^{*}, y_{1}^{*}\right),\left(x_{2}^{*}, y_{2}^{*}\right), \ldots,\left(x_{N}^{*}, y_{N}^{*}\right)$ and each $\left(x_{i}^{*}, y_{i}^{*}\right) \sim \hat{P}$.
. $\widehat{f_{\text {bag }}}(x)$ is a Monte Carlo estimate of the true Bagging estimate, approaching it as $B \rightarrow \infty$.
. If perturbing the learning set can cause significant change in the predictor constructed, then bagging can improve accuracy.

- Bagging [Bootstrap AGGregatING]

. Given a training set $D=\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{l}, y_{l}\right)\right\}$,
> Sample N sets of l elements from D with replacement (bootstraping procedure), that is, D_{1}, \cdots, D_{N}
(N quasi replica training sets).
> Train a machine on each $D_{i}, i=1, \cdots, N$ and obtain a sequence of N outputs $f_{1}(x), \cdots, f_{N}(x)$.
> The final aggregate classifier can be
(1) for regression

$$
\bar{f}(x)=E\left\{f_{i}(x)\right\},
$$

that is, the average of f_{i} for $i=1, \cdots, N$.
(2) for classification

$$
\bar{f}(x)=\theta\left(E\left\{f_{i}(x)\right\}\right)
$$

where θ represents the indicator function. In this case, $\bar{f}(x)$ will be the majority vote from $f_{i}(x)$.

- Bias and variance for regression

. Let

$$
I[f]=\int(f(x)-y)^{2} p(x, y) d x d y
$$

be the expected risk and f_{0} the regression function. With $\bar{f}(x)=E\left\{f_{i}(x)\right\}$, if we define the bias as

$$
\int\left(f_{0}(x)-\bar{f}(x)\right)^{2} p(x) d x
$$

and the variance as

$$
E\left\{\int\left(f_{i}(x)-\bar{f}(x)\right)^{2} p(x) d x\right\},
$$

we have the following decomposition:

$$
E\left\{I\left[f_{i}\right]\right\}=I\left[f_{0}\right]+\text { bias }+ \text { variance } .
$$

- Bias and variance for classification

. No unique decomposition for classification exists.
In the binary case, with $\bar{f}(x)=\theta\left(E\left\{f_{i}(x)\right\}\right)$, the decomposition suggetsed by Kong and Dietterich (1995) is

$$
I[\bar{f}]-I\left[f_{0}\right]
$$

for the bias, and

$$
E\left\{I\left[f_{i}\right]\right\}-I[\bar{f}]
$$

for the variance, which (again) gives

$$
E\left\{I\left[f_{i}\right]\right\}=I\left[f_{0}\right]+\text { bias }+ \text { variance } .
$$

- Bagging reduces variance

. If each single classifier is unstable, that is, it has high variance, the aggregated classifier \bar{f} has a smaller variance than a single original classifier.
. The aggregated classifier \bar{f} can be thought of as an approximation to the true average f obtained by replacing the probability distribution p with the bootstrap approximation to p obtained concentrating mass $1 / l$ at each point $\left(x_{i}, y_{i}\right)$.
cf. combining independent unbiased estimators:
Let d_{1} and d_{2} denote independent unbiased estimators of θ, having known variances σ_{1}^{2} and σ_{2}^{2}.

Then, we can consider an unbiased estimator of the form

$$
d=\lambda d_{1}+(1-\lambda) d_{2}
$$

Here, the mean square error is given by

$$
r(d, \theta)=\operatorname{Var}(d)=\lambda^{2} \sigma_{1}^{2}+(1-\lambda)^{2} \sigma_{2}^{2}
$$

To get the smallest possible mean square error,

$$
\left.\frac{d r}{d \lambda}\right|_{\lambda=\hat{\lambda}}=0 . \rightarrow \hat{\lambda}=\frac{1 / \sigma_{1}^{2}}{1 / \sigma_{1}^{2}+1 / \sigma_{2}^{2}}
$$

In other words, the optimal weight to give an MMSE estimator is inversely proportional to its variance when all the estimators are unbiased and independent.
Here, note that the MSE of d is

$$
r(d, \theta)=\frac{1}{1 / \sigma_{1}^{2}+1 / \sigma_{2}^{2}}<\min \left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)
$$

In general, if we combine n independent unbiased estimators, the MMSE estimator is given by

$$
d=\frac{\sum_{n=1}^{n} d_{i} / \sigma_{i}^{2}}{\sum_{i=1}^{n} 1 / \sigma_{i}^{2}}
$$

and the MSE of d is given by

$$
r(d, \theta)=1 /\left(\sum_{i=1}^{n} 1 / \sigma_{i}^{2}\right)
$$

- Ensembles of kernel machines

. What happens when combining SVMs with kernels?
> different subsamples of training data (bagging)
> different kernels or different features
> different parameters, that is, regularization parameters
. Combination of SVMs
Let $f_{1}(x), \cdots, f_{N}(x)$ be SVM machines we want to combine and

$$
f(x)=\sum_{i=1}^{N} c_{n} f_{n}(x)
$$

for some fixed $c_{n}>0$ with $\sum_{n} c_{n}=1$.

- Leave-one-out error

. The leave-one-out error is computed in three steps
(1) Leave a training point out
(2) Train the remaining points and test the point left out
(3) Repeat for each training point and count "errors".
. Theorem (Luntz and Brailovski, 1969)
$E\left\{I\left[f_{l}\right]\right\}=E\left\{C V\right.$ error of $\left.f_{l+1}\right\}$
where f_{l} represents the l th regression function.
. Leave-one-out bound for an SVM:
For SVM classification

$$
\sum_{i=1}^{l} \theta\left(\alpha_{i} K\left(x_{i}, x_{i}\right)-y_{i} f\left(x_{i}\right)\right) \leqq \frac{r^{2}}{\rho^{2}}
$$

where r is the radius of the smallest sphere containing the SVs and ρ is the true margin. (Jaakkola and Haussler, 1998)
. Leave-one-out bound for a kernel machine ensemble The leave-one-out error of an SVM ensemble

$$
f(x)=\sum_{i=1}^{N} c_{i} f_{i}(x)
$$

is upper bounded by

$$
\sum_{i=1}^{l} \theta\left(\sum_{n=1}^{N}\left(\alpha_{i} K^{(n)}\left(x_{i}, x_{i}\right)\right)-y_{i} f\left(x_{i}\right)\right) \leqq \sum_{i=1}^{N} \frac{r_{(n)}^{2}}{\rho_{(n)}^{2}}
$$

where $r_{(n)}$ is the radius of the smallest sphere containing the SVs of machine n and $\rho_{(n)}$ the margin of SVM n. This suggests that bagging SVMs can be a good idea!
. Trough a modified version of the notion of stability, it is possible to study conditions under which bagging should or shoud not improve performances. (Evgeniou et al, 2001)

- The original boosting [Schapire, 1990]

1. Train a first classifier f_{1} on a training set drawn from a probability $p(x, y)$. Let ϵ_{1} be the obtained performance.
2. Train a second classifier f_{2} on a training set drawn from a probability $p_{2}(x, y)$ such that it has half its measure on the event that f_{1} makes a mistake and half on the rest. Let ϵ_{2} be the obtained performance.
3. Train a third classifier f_{3} on disagreements of the first two, that is, drawn from a probability $p_{3}(x, y)$ which has its support on the event that f_{1} and f_{2} disagree. Let ϵ_{3} be the obtained performance.
. Main result:

If $\epsilon_{i}<p$ for all i, the boosted hypothesis

$$
f=\operatorname{Majority} \operatorname{Vote}\left(f_{1}, f_{2}, f_{3}\right)
$$

has performance no worse than $\epsilon=3 p^{2}-2 p^{3}$.
This implies that the boosting is effective when $p<0.5$.

- Adaboost [Freund and Schapire, 1996]

The idea is adaptively resampling the data.
. Maintain a probability distribution over training set.
. Generate a sequence of classifier in which the next classifier focuses on sample where the previous classifier failed.
. Weigh machines according to their performance.
. Adaboost algorithm

Step 1. Initialize the distribution as $P_{1}(i)=1 / l$.
Step 2. For $i=1, \cdots, N$ repeat the following procedure:
(1) Train a machine with weights $P_{n}(i)$ and get f_{n}.
(2) Compute the weighted error

$$
\epsilon_{n}=\sum_{i=1}^{l} P_{n}(i) \theta\left(-y_{i} f_{n}\left(x_{i}\right)\right) .
$$

(3) Compute the importance of f_{n} as

$$
\alpha_{n}=\frac{1}{2} \ln \left(\frac{1-\epsilon_{n}}{\epsilon_{n}}\right) .
$$

(4) Update the distribution $P_{n+1}(i) \propto P_{n}(i) e^{-\alpha_{n} y f_{n}\left(x_{i}\right)}$.
. The final hypothesis is given by

$$
f(x)=\operatorname{sign}\left(\sum_{n=1}^{N} \alpha_{n} f_{n}(x)\right) .
$$

Final Classifier

$$
G(x)=\operatorname{sign}\left[\sum_{m=1}^{M} \alpha_{m} G_{m}(x)\right]
$$

Weighted Sample • $G_{M}(x)$

Weighted Sample •... $G_{3}(x)$

Weighted Sample $\cdots G_{2}(x)$

Training Sample

- $G_{1}(x)$
- Example of Adaboost: decision tree learning

- Theory of boosting

. We define the margin of $\left(x_{i}, y_{i}\right)$ according to the real-valued function f to be

$$
\operatorname{margin}\left(x_{i}, y_{i}\right)=y_{i} f\left(x_{i}\right) .
$$

Note that this notion of margin is different from the SVM margin. This defines a margin for each training sample.

- The first theorem on boosting

. Theorem (Schapire et al, 1997)
If running adaboost generates functions with errors

$$
\epsilon_{1}, \cdots, \epsilon_{N},
$$

then $\forall \gamma$

$$
\sum_{i=1}^{l} \theta\left(\gamma-y_{i} f\left(x_{i}\right)\right) \leqq \prod_{n=1}^{N} \sqrt{4 \epsilon_{n}^{1-\gamma}\left(1-\epsilon_{n}\right)^{1+\gamma}} .
$$

Thus, the running margin error drops exponentially fast if $\epsilon_{n}<0.5$.

- The second theorem on boosting

. Theorem (Shapire et al, 1997)
Let H be an hypothesis space with VC-dimension d and C the convex hull of H, that is,

$$
C=\left\{f: f(x)=\sum_{h \in H} \alpha_{h} h(x) \mid \alpha_{h} \geqq 0, \sum_{h \in H} \alpha_{h}=1\right\} .
$$

Then, $\forall f \in C$ and $\forall \gamma>0$

$$
I[f] \leqq \sum_{i=1}^{l} \theta\left(\gamma-y_{i} f\left(x_{i}\right)\right)+O\left(\frac{d / l}{\gamma}\right)
$$

This holds for any voting method!

- Are these theorems really usefulp

. The first theorem simply ensures that the training error goes to zero.
. The second theorem gives a loose bound which does not account for the success of boosting as a learning technique.
. More realistic bound accommodating the estimation function ensemble generated by boosting algorithm so that we can find the optimal boosting number N.

- Generalization error

. Let sample size m, the VC-dimension d of the weak hypothesis space and the number of boosting rounds T.
. The generalization error is at most $\hat{P r}[H(x) \neq y]+\widetilde{O}\left(\sqrt{\frac{T d}{m}}\right)$
where $\operatorname{Pr}[\cdot]$ denotes empirical probability on the training sample.
. This bound suggests that boosting can have a over-fit for large T. In fact, over-fitting can happen in the boosting method.
. However, in general, over-fitting is not observed empirically even for large number of boosting rounds.
. Moreover, it was observed that AdaBoost would sometimes continue to drive down the generalization error long after the training error has reached zero, clearly contradicting the generalization bounds.
. Boosting is particularly aggressive at reducing the margin since it concentrates on the examples with the smallest margins.

- Generalization error with margin

. In response to theses empirical findings, gave an alternative analysis in terms of the margins of the training examples.
. The margin of example $(x, y): y f(x)$ or $y \sum_{t} \alpha_{t} h_{t}(x)$.
Margin is a number in $[-1,+1]$.
Margin is positive $\Leftrightarrow H$ correctly classifies the example.
. The magnitude of the margin can be interpreted as a measure of confidence in the prediction.
. Larger margins on the training set translate into a superior upper bound on the generation error.
. The generation error is at most
$\hat{P} r[\operatorname{margin}(x, y) \leq \theta]+\widetilde{O}\left(\sqrt{\frac{d}{m \theta^{2}}}\right)$ for any $\theta>0$ with high probability.
. This bound is entirely independent of T, the number of boosting rounds. However, even in this case, the over-fitting in boosting can not be explained.

- Compare Bagging with Boosting

. Bagging
distribution :1/N.
always improve an learning system.
high computational complexity for learning.
unstable learning system \rightarrow improve accuracy.
. Boosting
change the distribution.
medium computational complexity for learning. in general, over-fitting does not occur. sometimes over-fitting does occur.

- References.

. Breiman, L. "Bagging predictors." Machine Learning 24, 123-140, 1996.
. Yoav Freund, "Boosting a weak learning algorithm by majority," Information and Computation, 121(2):256-285, 1995.
. Harris Drucker and Corinna Cortes, "Boosting decision trees;" In Advances in Neural Information Processing Systems 8, pages 479-485, 1996.
. Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," The annals of Statistics, 26(5):1651-1686, 1998.
. Ratsch, G., Onoda, T., and Muller, K. R. "Soft margins for adaboost," Machine Learning, 42, 287-320, 2000.
. Quinlan, J. R., "Bagging, boosting, and C4.5," in Proceedings of the Thirteenth Natural Conference on Artificial Intelligence, AAAI Press and MIT Press, pp. 725-730, 1996.
. Richard Maclin and David Opits, "An empirical evaluation of bagging and boosting," In Proceedings of the Fourteenth National Conference on Artificial Intelligence, pages 546-551, 1997.
. Maclin, R. and Opitz, D., "An empirical evaluation of bagging and boosting," In AAAI-97 (pp. 546-551), 1997.

