- Bayesian Belief Networks

. Naive Bayes assumption of conditional independence is too restrictive.
. But it is intractable without some such assumptions
. Bayesian belief networks describe conditional independence among subsets of variables.
-> allow combining prior knowledge about (in)dependencies among variables with observed training data
. Bayes belief networks are also called Bayes nets.

- Conditional Independence

. definition: X is conditionally independent of Y given Z if the probability distribution governing X is independent of the value of Y given the value of Z, that is, if

$$
\left(\forall x_{i}, y_{j}, z_{k}\right) P\left(X=x_{i} \mid Y=y_{j}, Z=z_{k}\right)=P\left(X=x_{i} \mid Z=z_{k}\right)
$$

more compactly, we write

$$
P(X \mid Y, Z)=P(X \mid Z)
$$

. Example: Thunder is conditionally independent of Rain, given Lightning
$P($ Thunder \mid Rain, Lightning $)=P($ Thunder \mid Lightning $)$

- Bayesian Belief Network

. Each node represents a probability table of an attribute given its parents.
eg. $P($ Campfire $=T \mid$ Storm $=T$, Bus Tour Group $=T)=0.4$
. Each branch in the graph represents the conditional dependence.
. Bayesian belief network represents the joint probability distribution over all variables.
eg. $P($ Storm, Bus Tour Group, \cdots, ForestFire $)$
. In general,

$$
P\left(y_{1}, \cdots, y_{n}\right)=\prod_{i=1}^{n} P\left(y_{i} \mid \operatorname{Parents}\left(Y_{i}\right)\right)
$$

where Parents $\left(Y_{i}\right)$ denotes immediate predecessors of Y_{i} in graph.
. So, the joint distribution is fully defined by graph plus the conditional probability $P\left(y_{i} \mid \operatorname{Parents}\left(Y_{i}\right)\right)$.

- Inference in Bayesian Networks

. How can one infer the (probabilities of) values of one or more network variables, given observed values of others?
> Bayes net contains all information needed for this inference.
> If only one variable with unknown value, easy to infer it.
> In general case, problem is NP hard.
. In practice, can succeed in many cases
> Exact inference methods work well for some network structures.
> Monte Carlo methods simulate the network randomly to calculate approximate solutions.

- Learning of Bayesian Networks

. Several variants of this learning task
> Network structure might be known or unknown.
> Training examples might provide values of all network variables, or just some.
> If structure known and observe all variables, then it is easy as training a naive Bayes classifier.
> Suppose structure known, variables partially observable:
>> Similar to training neural network with hidden units.
>> In fact, can learn network conditional probability tables using gradient ascent.
>> Converge to network h that (loaclly) maximizes $P(D \mid h)$.

- Gradient Ascent for Bayes Nets

. Let $w_{i j k}$ denote one entry in the conditional probability table for variable Y_{i} in the network, that is,

$$
w_{i j k}=P\left(Y_{i}=y_{i j} \mid \operatorname{Parents}\left(Y_{i}\right)=\text { the list } u_{i k} \text { of values }\right)
$$

for example, if $Y_{i}=$ Campfire, then $u_{i k}$ might be

$$
\langle\text { Storm }=\text { T, Bus Tour Group }=F\rangle .
$$

. The update rule for $w_{i j k}$:

$$
w_{i j k}^{\neq w}=w_{i j k}^{o l d}+\eta \frac{\partial \ln P(D \mid h)}{\partial w_{i j k}}
$$

Let $P_{h}(D)=P(D \mid h)$. Then,

$$
\begin{aligned}
\frac{\partial \ln P_{h}(D)}{\partial w_{i j k}} & =\frac{\partial}{\partial w_{i j k}} \ln \prod_{d \in D} P_{h}(d) \\
& =\sum_{d \in D} \frac{\partial \ln P_{h}(d)}{\partial w_{i j k}} \\
& =\sum_{d \in D} \frac{1}{P_{h}(D)} \frac{\partial P_{h}(d)}{\partial w_{i j k}}
\end{aligned}
$$

Let $u_{i}=\operatorname{Parents}\left(Y_{i}\right)$. Then,

$$
\begin{aligned}
\frac{\partial P_{h}(D)}{\partial w_{i j k}} & =\frac{\partial}{\partial w_{i j k}} \sum_{j^{\prime}, k^{\prime}} P_{h}\left(d \mid y_{i j^{\prime}}, u_{i k^{\prime}}\right) P_{h}\left(y_{i j^{\prime}}, u_{i k^{\prime}}\right) \\
& =\frac{\partial}{\partial w_{i j k}} \sum_{j^{\prime}, k^{\prime}} P_{h}\left(d \mid y_{i j^{\prime}}, u_{i k^{\prime}}\right) P_{h}\left(y_{i j^{\prime}} \mid u_{i k^{\prime}}\right) P_{h}\left(u_{i k^{\prime}}\right)
\end{aligned}
$$

Since $P_{h}\left(y_{i j} \mid u_{i k}\right)=w_{i j k}$,

$$
\begin{aligned}
\frac{\partial \ln P_{h}(D)}{\partial w_{i j k}} & =\sum_{d \in D} \frac{1}{P_{h}(d)} \frac{\partial}{\partial w_{i j k}} P_{h}\left(d \mid y_{i j}, u_{i k}\right) P_{h}\left(y_{i j}, u_{i k}\right) \\
& =\sum_{d \in D} \frac{1}{P_{h}(d)} \frac{P_{h}\left(y_{i j}, u_{i k} \mid d\right) P_{h}(d) P_{h}\left(u_{i k}\right)}{P_{h}\left(y_{i j}, u_{i k}\right)} \\
& =\sum_{d \in D} \frac{P_{h}\left(y_{i j}, u_{i k} \mid d\right)}{P_{h}\left(y_{i j} \mid u_{i k}\right)} \\
& =\sum_{d \in D} \frac{P_{h}\left(y_{i j}, u_{i k} \mid d\right)}{w_{i j k}}
\end{aligned}
$$

Therefore,

$$
w_{i j k}^{\neq w}=w_{i j k}^{o l d}+\eta \sum_{d \in D} \frac{P_{h}\left(y_{i j}, u_{i k} \mid d\right)}{w_{i j k}} .
$$

Algorithm:

Perform the following gradient ascent repeatedly:
Step 1. Update all $w_{i j k}$ using training data D :

$$
w_{i j k}^{\neq w}=w_{i j k}^{o l d}+\eta \sum_{d \in D} \frac{P_{h}\left(y_{i j}, u_{i k} \mid d\right)}{w_{i j k}}
$$

Step 2. Then, normalize the $w_{i j k}$ to assure
(1) $0 \leqq w_{i j k} \leqq 1$ and
(2) $\sum_{j} w_{i j k}=1$.

- Expectation and Maximization [EM]

. When to use
> Data are only partially observable
> Unsupervised clustering (target value unobservable)
> Supervised learning (some instance attribute unobservable)
. Applications:
> Training Bayesian belief networks
> Unsupervised clustering
> Learning Hidden Markov Models

- EM algorithm

. Converges to local maximum likelihood h and provides estimates of hidden variables $z_{i j}$
. In fact, local maximum in $E[\ln P(Y \mid h)]$
$>Y$ is complete (observable plus unobservable variables) data.
> Expected value is taken over possible values of unobserved variables in Y.

- General EM Problem

. Given:
> Observed data $X=\left\{x_{1}, \cdots, x_{m}\right\}$
> Unobserved data $Z=\left\{z_{1}, \cdots, z_{m}\right\}$
> Parameterized probability distribution $P(Y \mid h)$ where
$Y=\left\{y_{1}, \cdots, y_{m}\right\}$ is the full data $y_{i}=x_{i} \cup z_{i}$ and
h are the parameters.
. Determine
$>h$ that (locally) maximizes $E[\ln P(Y \mid h)]$.

- General EM Method

. Define likelinood function $Q\left(h^{\prime} \mid h\right)$ which calculates $Y=X \cup Z$ using observed X and current parameters h to estimate Z :

$$
Q \leftarrow E\left[\ln P\left(Y \mid h^{\prime}\right) \mid h, X\right]
$$

. EM algorithm:
> Estimation (E) step: Calculate $Q\left(h^{\prime} \mid h\right)$ using the current hypothesis h and the observed data X to estimate the probability distribution over Y, that is,

$$
Q \leftarrow E\left[\ln P\left(Y \mid h^{\prime}\right) \mid h, X\right] .
$$

> Maximization (M) step: Replace hypothesis h by the hypothesis h^{\prime} that maximizes this Q function, that is, $h \leftarrow \operatorname{argmax}_{h^{\prime}} Q\left(h^{\prime} \mid h\right)$.

- Generating Data from Mixture of k Gaussians

. Each instance x is generated by
> Choosing one of the k Gaussians with uniform probability
> Generating an instance at random according to that Gaussian

x

- EM for Estimating k Means

. Given:
> Instances from X generated by the mixture of k Gaussian distributions
> Unknown means $\left\langle\mu_{1}, \cdots, \mu_{k}\right\rangle$ of the k Gaussians
> Don't know which instance x_{i} was generated by which Gaussian
. Determine:
> Maximum likelihood estimates of $\left\langle\mu_{1}, \cdots, \mu_{k}\right\rangle$

- EM for Estimating k Means

. Think of full description of each instance as

$$
y_{i}=\left\langle x_{i}, z_{i 1}, z_{i 2}\right\rangle
$$

where $z_{i j}$ is 1 if x_{i} is generated by the j th Gaussian Here, note that x_{i} is observable and $z_{i j}$ is unobservable.
. EM algorithm:
Pick the initial $h=\left\langle\mu_{1}, \mu_{2}\right\rangle$ at random and then iterate the E and M steps.
. E Step: Calculate the expected value $E\left[z_{i j}\right]$ of each hidden variable $z_{i j}$, assuming that the current hypothesis $h\left\langle\mu_{1}, \mu_{2}\right\rangle$ holds, that is,

$$
E\left[z_{i j}\right]=\frac{p\left(x=x_{i} \mid \mu=\mu_{j}\right)}{\sum_{n=1}^{2} p\left(x=x_{i} \mid \mu=\mu_{n}\right)}=\frac{\exp \left(-\left(x_{i}-\mu_{j}\right)^{2} /\left(2 \sigma^{2}\right)\right)}{\sum_{n=1}^{2} \exp \left(-\left(x_{i}-\mu_{n}\right)^{2} /\left(2 \sigma_{n}^{2}\right)\right)} .
$$

. M Step: Calculate a new maximum likelihood hypothesis $h^{\prime}=\left\langle\mu_{1}{ }^{\prime}, \mu_{2}{ }^{\prime}\right\rangle$ assuming that the value taken on by each hidden variable $z_{i j}$ is its expected value $E\left[z_{i j}\right]$ calculated above:

$$
\mu_{j}^{\prime} \leftarrow\left(\sum_{i=1}^{m} E\left[z_{i j}\right] x_{j}\right) /\left(\sum_{i=1}^{m} E\left[z_{i j}\right]\right), \quad j=1,2 .
$$

- EM for estimating k means

. Let $h^{\prime}=\left\langle\mu_{1}^{\prime}, \cdots, \mu_{k}{ }^{\prime}\right\rangle$. Then,

$$
\begin{aligned}
& P\left(y_{i} \mid h^{\prime}\right)= \\
& \begin{aligned}
& \ln P\left(Y\left|x_{i}, z_{i 1}, \cdots, z_{i k}\right| h^{\prime}\right)==\ln \prod_{i=1}^{m} P\left(y_{i} \mid h^{\prime}\right) \\
&=\sum_{i=1}^{m} \ln P\left(y_{i} \mid h^{\prime}\right) \\
&=\sum_{i=1}^{m}\left(\ln \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{k} z_{i j}\left(x_{i}-\mu_{j}^{\prime}\right)^{2}\right) \quad \text { and } \\
&\left.\sum_{j=1}^{k} z_{i j}\left(x_{i}-\mu_{j}^{\prime}\right)^{2}\right)
\end{aligned}
\end{aligned}
$$

Therefore,

$$
Q\left(h^{\prime} \mid h\right)=E\left[\ln P\left(Y \mid h^{\prime}\right) \mid h, X\right]=\sum_{i=1}^{m}\left(\ln \frac{1}{\sqrt{2 \pi} \sigma^{2}}-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{k} E\left[z_{i j}\right]\left(x_{i}-\mu_{j}^{\prime}\right)^{2}\right) .
$$

Here, from definition,

$$
E\left[z_{i j}\right]=\frac{p\left(x=x_{i} \mid \mu=\mu_{j}\right)}{\sum_{n=1}^{k} p\left(x=x_{i} \mid \mu=\mu_{n}\right)}=\frac{\exp \left(-\left(x_{i}-\mu_{j}\right)^{2} /\left(2 \sigma^{2}\right)\right)}{\sum_{n=1}^{k} \exp \left(-\left(x_{i}-\mu_{n}\right)^{2} /\left(2 \sigma_{n}^{2}\right)\right)} .
$$

(Expectation Step)
. We need to select h^{\prime} maximizing $Q\left(h^{\prime} \mid h\right)$, that is,

$$
\operatorname{argmax}_{h^{\prime}} Q\left(h^{\prime} \mid h\right)=\arg \max _{h^{\prime}} \sum_{i=1}^{m}\left(\ln \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{k} E\left[z_{i j}\right]\left(x_{i}-\mu_{j}^{\prime}\right)^{2}\right) .
$$

Alternatively,

$$
\operatorname{argmax}_{h^{\prime}} Q\left(h^{\prime} \mid h\right)=\operatorname{argmin}_{h^{\prime}} \sum_{i=1}^{m} \sum_{j=1}^{k} E\left[z_{i j}\right]\left(x_{i}-\mu_{j}^{\prime}\right)^{2} .
$$

From the condition of

$$
\frac{\partial}{\partial \mu_{j}^{\prime}} \sum_{i=1}^{m} \sum_{j=1}^{k} E\left[z_{i j}\right]\left(x_{i}-\mu_{j}^{\prime}\right)^{2}=0, \quad j=1, \cdots, k,
$$

$Q\left(h^{\prime} \mid h\right)$ is minimized when

$$
\mu_{j}^{\prime}=\frac{\sum_{i=1}^{m} E\left[z_{i j}\right] x_{i}}{\sum_{i=1}^{m} E\left[z_{i j}\right]} .
$$

(Maximization Step)

- EM algorithm for the training of Bayes Nets

. EM (expectation and maximization) algortihm can be used repeatedly:
Step 1. Calculate probabilities of unobserved variables, assuming h.
Step 2. Calculate new $w_{i j k}$ to maximize $E[\ln P(D \mid h)]$ where D now includes both observed and (calculated probabilities of) unobserved variables.
. When structure unkown
> Algorithms use greedy search to add/subtract edges and nodes. (active research topic)

- Inference in Bayes Nets

. Suppose we have a Bayes net, complete with conditional probabilities, and know the values or probabilities of some of the states, we will be able to determine the maximum posterior value of the unknown variables in the net.
. The belief of a set of propositions $\underline{x}=\left(x_{1}, x_{2}, \cdots\right)$ on node X describe the relative probabilities of the variables given all the evidence \underline{e} throughout the rest of the network, that is, $P(\underline{x} \mid \underline{e})$.
. Furthermore, we can divide the dependency of the belief upon the parents and the children in the following way:

$$
P(\underline{x} \mid \underline{e}) \propto P\left(\underline{e^{q}} \mid \underline{x}\right) P\left(\underline{x} \mid \underline{e}^{P}\right)
$$

where \underline{e} represents all evidence (i.e., values of variables on nodes other than X), \underline{e}^{P} the evidence of parents nodes, and e^{C} the children nodes.

- Example: classifying fish [salmon, sea bass]

. We have the following picture (evidence).
Is this fish salmon or sea bass?

. Bayes Net:

A and B are parents of X while C and D are children of X.

. Probability tables

$>P\left(x_{i} \mid a_{j}\right):$

	salmon	sea bass
winter	0.9	0.1
spring	0.3	0.7
summer	0.4	0.6
autumn	0.8	0.2

$>P\left(x_{i} \mid b_{j}\right):$

	salmon	sea bass
north	0.65	0.35
south	0.25	0.75

$>P\left(c_{i} \mid x_{j}\right):$

	light	medium	dark
salmon	0.33	0.33	0.34
sea bass	0.8	0.1	0.1

$>P\left(d_{i} \mid x_{j}\right):$

	wide	thin
salmon	0.4	0.6
sea bass	0.95	0.05

. We have the following evidence $\underline{e}=\left\{e_{A}, e_{B}, e_{C}, e_{D}\right\}$: winter: $P\left(a_{1} \mid e_{A}\right)=1, P\left(a_{i} \mid e_{A}\right)=0$ for $i=2,3,4$.
prefers to fish in the south atlantic: $P\left(b_{1} \mid e_{B}\right)=0.2, P\left(b_{2} \mid e_{B}\right)=0.8$.
fairly light: $P\left(e_{d} c_{1}\right)=1, P\left(e_{d} c_{2}\right)=0.5, P\left(e_{d} c_{3}\right)=0$.
no information on the width: $P\left(e_{D} \mid d_{1}\right)=P\left(e_{D} \mid d_{2}\right)$.
. What will you conclude about the fish in the picture?
That is, what is the probability of $P\left(x_{1} \mid \underline{e}\right)$ and $P\left(x_{2} \mid \underline{e}\right)$?

First. let us consider the expression of $P(\underline{x} \mid \underline{e})$.

$$
\begin{aligned}
P(\underline{x} \mid \underline{e}) & =P\left(\underline{x} \mid \underline{e}^{c} \underline{e}^{p}\right) \\
& =\frac{P\left(\underline{e^{c}} \underline{e}^{p} \mid \underline{x}\right) P(\underline{x})}{P\left(\underline{e^{c}} e^{p}\right)} \\
& =\frac{P\left(\underline{e^{c}} \mid \underline{e}^{p} \underline{x}\right) P\left(\underline{e}^{p} \mid \underline{x}\right) P(\underline{x})}{P\left(\underline{e}^{c} \underline{e^{p}}\right)} \\
& =\frac{P\left(\underline{e^{c}} \mid \underline{e^{p}} \underline{x}\right) P\left(\underline{x} \mid \underline{e}^{p}\right) P\left(\underline{e^{p}}\right)}{P\left(\underline{e^{c}} \underline{e}^{p}\right)}
\end{aligned}
$$

Thus, we can say $P(\underline{x} \mid \underline{e}) \propto P\left(\underline{e^{c}} \mid \underline{x}\right) P\left(\underline{x} \mid \underline{e}^{p}\right)$.

$$
\begin{aligned}
& P\left(x_{1} \mid \underline{e^{p}}\right)=\sum_{i=1}^{4} \sum_{j=1}^{2} P\left(x_{1} \mid a_{i} b_{j}\right) P\left(a_{i} \mid e_{A}\right) P\left(b_{j} \mid e_{B}\right)=0.82 \\
& P\left(x_{2} \mid \underline{e^{p}}\right)=\sum_{i=1}^{4} \sum_{j=1}^{2} P\left(x_{2} \mid a_{i} b_{j}\right) P\left(a_{i} \mid e_{A}\right) P\left(b_{j} \mid e_{B}\right)=0.18
\end{aligned}
$$

$$
\begin{aligned}
P\left(\underline{e^{c}} \mid x_{1}\right) & =P\left(e_{d} x_{1}\right) P\left(e_{D} \mid x_{1}\right) \\
& =\left(\sum_{i=1}^{3} P\left(e_{d} c_{i}\right) P\left(c_{i} \mid x_{1}\right)\right)\left(\sum_{j=1}^{2} P\left(e_{D} \mid d_{i}\right) P\left(d_{i} \mid x_{1}\right)\right) \\
& =0.495 \\
P\left(\underline{e^{c}} \mid x_{2}\right) & =P\left(e_{d} x_{2}\right) P\left(e_{D} \mid x_{2}\right) \\
& =\left(\sum_{i=1}^{3} P\left(e_{d} c_{i}\right) P\left(c_{i} \mid x_{2}\right)\right)\left(\sum_{j=1}^{2} P\left(e_{D} \mid d_{i}\right) P\left(d_{i} \mid x_{2}\right)\right) \\
& =0.85
\end{aligned}
$$

That is,

$$
\begin{aligned}
& P\left(x_{1} \mid \underline{e}\right) \propto P\left(\underline{e^{c}} \mid x_{1}\right) P\left(x_{1} \mid \underline{e}^{p}\right)=0.82 \cdot 0.495 \\
& P\left(x_{2} \mid \underline{e}\right) \propto P\left(\underline{e^{c}} \mid x_{2}\right) P\left(x_{2} \mid \underline{e}^{p}\right)=0.18 \cdot 0.85
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& P\left(x_{1} \mid \underline{e}\right)=\frac{0.82 \cdot 0.495}{0.82 \cdot 0.495+0.18 \cdot 0.85}=0.726 \\
& P\left(x_{2} \mid \underline{e}\right)=\frac{0.18 \cdot 0.85}{0.82 \cdot 0.495+0.18 \cdot 0.85}=0.274
\end{aligned}
$$

That is, the most probable outcome is
$x_{1}=$ salmon!

- Summary: Bayesian Belief Networks

. Combine prior knowledge with observed data . Impact of prior knowledge (when correct!) is to lower the sample complexity
. Active research area
> Extend from boolean to real-valued variables
> Parameterized distributions instead of tables
> More effective inference methods
> Configuring the graphic model from data
> ...

