Bayesian Belief Networks

— Characteristics of Bayesian Methods

. providing practical learning algorithms:

Naive Bayes learning

Bayesian belief network learning

. combining prior knowledge:

Causality relationship is represented by the graph.
Prior probabilities are obtained from the observed data.

- Bayes Theorem

. Let h be the hypothesis and D be the data
. The probability of h given D is determined by

P(DIn)P(h)
P(D)

P(hlD) =

where
P(h) = the prior probability of hypothesis h
P(D) = the prior probability of data D
P(DIh) = the probability of D given h



- Choosing Hypotheses

. Generally we want the most probable hypothesis given
the data, that is, P(h|D).
. The maximum a posteriori (MAP) hypothesis h,,,, is selected by

hyp=argmax, o oP(hlD)

P(DIn)P(h)
P(D)

=argmax, . ;2(DIh)P(h)

. If we assume that P(h;) = P(h;), we can further simplify and

choose the maximum likelihood (ML) hypothesis using
hyy =argmax, . zP(Dlh;)

=argmax, c g

- Example: Bayes Theorem

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive.
The test returns a correct possible result in 98% of the cases
in which the disease is actually present, and a correct negative
result in 97% of the cases in which the disease is not present.
Furthermore, 0.8% of the entire population have this cancer.

Let A~ = cancer, —-h = not cancer, + = positive result, and
— = negative result.



P(h)=0.008, P(—h)=0.992
P(+1h)=0.98, P(—|h)=0.02

hyp=argmax, . ,P(hl+) =argmax, . ,P(+|h)P(h)

P(+1h)P(h) =0.98 - 0.008 = 0.0078
P(+|-h)P(=h) =0.03 - 0.992 = 0.0298

Therefore, the selected hypothesis is —h, that is, not cancer.

— Basic Formulas for Probabilities

. Product Rule: probability P(AA B) of a conjunction of
two events A and B:
P(AANB) = P(AIB)P(B) = P(B|A)P(A)
. Sum Rule: probability of a disjunction of two events A and B:
P(AV B)=P(A)+ P(B)— P(AN\ B)
. Theorem of total probability: if events 4,,---, A, are

mutually exclusive with Y, P(4,)=1, then
1=1

n

E P(BIA,)P

1=1



— Relation to Concept Learning

. Consider our usual concept learning task
(1) instance space X, hypothesis space H, training examples D
(2) consider the FindS learning algorithm (outputs most

specific hypothesis from the version space VS;,)

. What would Bayes rule produce as the MAP hypothesis?

. Does FindS output a MAP hypothesis?

. Assume fixed set of instances (z,,---,z, >
. Assume D is the set of classifications D= (c(z,), -, c(z,,))
. Choose P(Dlh):

|1 if h is consistent with D
P(D|h)_{0 otherwise
1
P(h) == for all h € H.
(h) Vi
. Then,
P(Dlh) :{ /| VSHD| if his .conszstent with D
0 otherwise
since
PID) = P(DIL)P(R)  1-1/lH 1

P(D) N | VSypl/ 1 HI N | VSup) ™



— Evolution of Posterior Probabilities

i i i

Pih) PihlD1) PihlD1.D2)

hypotheses hypotheses hypotheses
(a) (b) (€)

As we get more samples, the probability distribution is
concentrated on certain hypotheses.

- Learning a Real Valued Function

. Consider any real—-valued target function f

. Training examples {z;d,> where d, is noisy training value
d; :f(xz) te;

where ¢; is random variable (noise) drawn independently for

each z, according to some Gaussian distribution with
mean zero.

. Then, the maximum likelihood hypothesis h,, is the one that
minimizes the sum of square errors, that is,

h,,; =argmax; . HZ (d; —h(x;)).
i=1



Proof:
h,; =argmax, . ,p(DIh)

=argmax, . HHp(dzlh)
=argmax; . HH oo exp| — 5( -

Maximize the natural log of this.

i 1 1 di_h(xi))
h,,; =argmax, . In ——(—
ML g h HZ; \/*J 9

S d; —h(z;)
—argmaxheHZ 2(—)

=1 o

=argmax; . HZ—(di—h(wi))Q
=1
=argmin, . HZ (di—h<$i))2
i=1
. Minimizing the mean square error can be interpreted as

the maximum likelihood estimate of h when the additive noise has
normal distribution.



— Learning to Predict Probabilities

. Consider predicting survival probability from patient data.

. Training examples (z;d;y where d; is 1 or 0

. Want to train neural network to output a probability given z..
. In this case, we can show that

h,; =argmax;, o HZdilnh(a:i) +(1 —di)ln(l —h(:z:z-)).

1=1

Proof:
The training data are given by
D={(zy,d,), ", (z,,d,)} where d, € {0,1}.

Assuming that each training example is drawn independently,

m

(D|h>=[[ P(x,,dh)
f[ d|ha: )

since z, is independent of h.

h(a:l) if d, =1
Pdfhoz;) = % hz,) if d;=0



This term can be rewritten as
P(di|h,g:l.) — h(:ci)d"(l —h(xi))l_di.
This implies that

P(DIh) = ﬁ P(dh,x;)P(x,)

I
mg I

hz,)" (1=h(z)" “Pla,)

1
1

.

/\H

Assuming P(z;) = P(x;) for i,j=1,---,m

hyy =argmax, . o] [h(z,)" (1—h(z;)' *

1=1

=argmax; . szilnh(azi) +(1—d)In(1—h(z,))

1=1

— Minimum Description Length (MDL) Principle
. Occam's razor: prefer the shortest hypothesis

. MDL: prefer the hypothesis A that minimizes
hypr =argming, o gL, (h)—i—L (D|h)

where L(x) is the description length of = under encoding C.

. Example: Let

H = decision tree and D = training data labels.



Then,
Lq(h) = the number of bits to describe tree h and

LCQ(DIh) = the number of bits to describe D given h.
Note that L, (DIh) =0 if examples classified perfectly by h,

that is, it needs only to describe exceptions.
Hence, h,,,, trades off tree size for training errors.

. Let us consider the MAP hypothesis:

hyup=argmax, . ,P(DIh)P(h)
=argmax, . glog, P(DIh)+log,P(h)
=argmin, _ ,—log,P(DIh) —1log,P(h)

Interesting fact from information theory:
the optimal (shortest expected coding length) code for
an event with probability p is —logyp bits.

So interpret h,,» as
(1) —log,P(h) is the length of h and
(2) —log,P(D|h) is the length of D given h under
the optimal code.

. We can say that MDL hypothesis is the hypothesis that
minimizes length(h)+length(misclassifications).



— Most Probable Classification of New Instances

. So far we've sought the most probable hypothesis given
the data D, that is, h,p
. Given a new instance x, what is its most
probable classification?
. hyup(h) is not the most probable classification!
. Consider three possible hypotheses:
P(h|D)=0.4, P(h,|D)=0.3, and P(hy/D)=0.3.
Given a new instance z, h,(z)=+, h,(z)=—, and hy(z) = —.
What is the most probable classification of x?
+ according to the MAP hypothesis.

— Bayes Optimal Classifier

. Let V={+,—}. Then, for v, €V

P(v|D)= Y, P(v)h,)P(h|D).
h; € H

. Bayes optimal classification:

argmax, c y Z P( v; |h ) (hi|D)
h,e H

That is, the most probable classification of new instance is
obtained by combining the prediction of all hypotheses
weighted by their posterior probabilities.



. Example:

P(h|D)=04, P(—|h,) =0, P(+h,) =1
P(h,|D) =0.3, P(—|h,) =1, P(+1|hy) =0
P(hs|D) = 0.3, P(—|hy) =1, P(+]h;) =0
therefore
Y P(+|h)P(h)|D) =0.4
h, € H
Y P(—Ih,)P(h|D) =0.6
h, € H
and
argmax,  y Z P(vj|h2-)P(hi|D) = —.

h,e H

— Gibbs Classifier

. Bayes optimal classifier provides the best result, but can be
expensive if there are many hypotheses.

. Gibbs algorithm:
Step 1. Choose one hypothesis at random according to P(hlD).
Step 2. Use this hypothesis to classify a new instance.

Surprising fact: Assume target concepts are drawn at random
from H according to prors on A. Then,

E [ermr@.bbs] <2F [error Bayewpﬁmal] .



Suppose uniform prior distribution over A.

Let us pick any hypothesis from VS with uniform probability to
classify a new instance.
Then, its expected error is no worse than twice Bayes optimal.

- Naive Bayes Classifier

. When to use:

(1) moderate or large training set available

(2) attributes that describe instances are
conditionally independent given classification

. successful applications: diagnosis, classifying text documents, ...

— Naive Bayes Classifier

. Assume target function f: X— 1 where each instance =z
described by attributes <{a;,a,---,a,). Then, the most probable
value of f(x) is

Upap = ATGMAX, Pjlay, ag, -+ a,)

P(ala QAgy """ an|Uj)P(Uj)
P(a'p Agy "y an)
=argmax, . VP(al, Ay ---,an|vj)P(vj)

Uppap = ATEMAX, ¢ y

Here, the naive Bayes assumption is given by
P(ap Qg """y a/n|v]’) = ]:[P((IA’U]-).



This implies that the naive Bayes classifier is

Uyp = AIgMax, . VP(vj)HP(ailvj).

- Naive Bayes Algorithm

For each target value v,
ﬁ(vj)%estimate of P(vj)
For each attribute value a, of each attribute «

}A)(aih}j) —estimate of P(aih)j)

Classify_New_Instance(x): v, =argmax, . Vﬁ(vj) 11 }A>(ailvj).

a,l-Ez

- Naive Bayes: Exampie of PlayTennis

Day Qutlook | Temperature | Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No




a new instance:
{ Outlook = Sunny, Temp = Cool, Humidity = High, Wind = Strong
What is the conclusion using v,;?

We need to compute vy, =argmax,  P(v;)] [Plao)).

From the example, we get

P(Yes) =9/14, P(No) =5/14

P(Sunny| Yes) = 2/9, P(SunnylNo) =3/5

P(Cool| Yes) =3/9, P(CoollNo) =1/5
P(High|Yes) =3/9, P(High|No) = 4/5
P(Strong| Yes) =2/9, P(StronglNo) = 3/5

That is,
P(Yes) P(Sunny| Yes) P(Cool| Yes) P(High| Yes ) P(Strongl Yes) = 0.005
P(No) P(Sunny|No) P(Cool| No ) P(High|No) P(Strong|No) = 0.021
Therefore,

Vg = No

- Naive Bayes: Subtleties

1. Conditional independence assumption is often violated
P(ap"°7an|vj) :]___[P(aih)j)
=1

but it works surprisingly well any way.



Note that we don't need estimated posteriors ﬁ(vjlx) to be
correct; need only that

A~ n A~
argmax, . VP(vj)HP(aij) =argmax, . VP(vj)P(al, Sl an|vj)
=1
Naive Bayes posteriors often unrealistically close to 1 or 0.

2. What if none of the training instances with target value v;
have attribute value «,? Then,

]D(al-|vj) =0 and

ﬁ(vj)f[lj’(aiwj) =0.

Typical solution is Bayesian estimate for j’(aih)j)

~ n,+mp
P(ai|vj)<—

n+m
where
n = the number of training examples for which V=,

n. = the number of examples for which v=wv; and a =g,
p = the prior estimate for P(a,v;)

m = the weight given to prior, that is, the number of
virtual examples



- Learning to Classify Text

. Problems:
Learn which news articles are of interest
Learn to classify web pages by topic
. Naive Bayes is among most effective algorithm
. What attributes shall we use to represent text documents?

. target concept Interesting?: Document —=> {+, -}
(1) represent each document by vector of words
(one attribute per word position in document)
(2) learning: use training examples to estimate

P(+), P(—), Pldocl+), P(docd—)

. Naive Bayes conditional independence assumption

length(doc)
P(doc|vj) = 111 Pla; = wk|”Uj)

where Pla;, =w,lv,) is the probability that word in position i is

wy, given v,

one more assumption:
P(a, Zwkh}j) = Pla,, :wkh}j) for all < and m.



Learning_Naive_Bayes_Text (Examples, V)

Step 1. Collect all words and other tokens occur in Examples
Vocabulary<— all distinct words and other tokens in Examples

Step 2. Calculate the required P(v;) and P(wlv;) probability terms
For each target value v, in V" do
— docs;<— subset of Examples for which the target value is v,
|docs |
P(Uj)<_ | Examples|

— Text;— a single document created by concatenating

all members of docsj

- n< the total number of words in Text,

(counting duplicate words multiple times)
— for each word w, in Vocabulary

n,<— the number of times word w, occurs in 7Zext,
n, +1
n~+| Vocbulary|

P(wk|fuj) “—

Classify_Naive_Bayes_Text (Doc)
— positions<— all word positions in Doc that contain tokens
found in Vocaburary
- Return v, where

Uyp = Argmax, . II Plal,)

i € positions



Given 1000 training documents from each group, learn to classify
new documents according to which news group it came from

comp.graphics
comp.os.ms—winodows

rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.nockey

Naive Bayes: 89% classification accuracy

Path: cantaloupe.srv.cs.cmu.edu!das-news.harvar
From: xxx@yyy.zzz.edu (John Doe)

Subject: Re: This year’s biggest and worst (opi
Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most
obvious candidate for pleasant surprise is Alex
Zhitnik. He came highly touted as a defensive
defenseman, but he’s clearly much more than tha
Great skater and hard shot (though wish he were
more accurate). In fact, he pretty much allowed
the Kings to trade away that huge defensive
liability Paul Coffey. Kelly Hrudey is only the
biggest disappointment if you thought he was an
good to begin with. But, at best, he’s only a
mediocre goaltender. A better choice would be
Tomas Sandstrom, though not through any fault o
his own, but because some thugs in Toronto deci



