Support Vector Machines (SVM)

— optimal separating hyperplane

. linearly separable case for binary classification
[ samples of training data:

(1'1791)7(xzayg)v'”a(xpyl), r e R", Yy e {_1a+1}
. hyperplane decision function:

D(z) = (w - 93)—|—w0
yllw - z,)tw,] 21, i=1,--,1

. margin p: the minimal distance from the separating hyperplnae
(s. h.) to the closest data

. optimal s. h.: the s. h. in which the margin p is maximum.

. all samples obey

. support vector (s.v.): the sample that exists at the margin



- VC dimension of Perceptrons

Theorem (Vapnik, 1998):
- Let ¢ =(x,,---,2;) be a set of I vectors in R".

— For any hyperplane (z - w)+w, =0 in R", consider

the corresponding cannonical hyperplane defined by the set X~
such that INF _ |(z - w) +w|=1.

— A subset of cannonical hyperplane defined on X — R" such that

z|< D, z € X satisfying the constraint |w|< 4 has
the VCD h bounded as follows:

2
h <min([D°47,n)+1 or h= min([%
p

,n)-|—1.




Theorem (Vapnik, 1998):
With the probability at least 1—4§, one can assert that

£ 4_m)
2 €

m= the number of training samples that are
not separated correctly, and
h = the upper bound of the VCD.

— support vector machine (SVM) learning

. Learning problems is changed to the quadratic optimization
problems:
Determine w and w, that minimizes the functional n(w), that is,

1
minwn(w) =3 | w2

subject to
yllw - z,)+w) =1 for i=1,--,1

. Dual problem:
- If the cost and constraint functions are strictly convex, solving
the dual problem is equivalent to solving the original problem.



— Functions are convex if
f(a:c1+(1—a)x2) < af(x1)+(1—a)f(x2) Ve,z, € C, 0<a<l1

example: quadratic functions
— Procedure of formulating the dual problem

(1) Constructing the Lagrangian function:
1 l
(w - w)—Zai{yi[(w . x)—i—wo]—l}
1=1

2
where «, is Lagrangian multiplier.

Q(w, wy, ) =

(2) Searching for the optimal conditions:

() Q(w ,wy,a) 0

ow

!
-> w =Y ayzx, o, =0, for i=1,-,1.
i=1

(b) 8 Q(w ,wy, ):0

ow,

!
-> Ea:y:ZO, 04: =0, for :=1,---,1.
i=1



(3) Formulating the dual problem:
Find the parameters «, for i=1,---,1 maximizing the functional

l 1
1 .
1= i=1j=

subject to

l
Yoy, =0, a; 20, for i=1,--,1.

1=1

— Kuhn—-Tucker Theorem:
Any parameter o, is non-zero only if
y,[(w -+ x;) +wy|=1, for i=1,---,1, that is,

E3

a:{yi[(w -xi)—lrw;]—l}:O, for i=1,--,1.

-> the data corresponding to non-zero «, are support vectors.
—> the resulting equation for s. h.:

!
D(x) = Ea:%(l’ . xi)—i_w;

1=1
— non-—separable problems

. For non—separable problems,
apply the positive slack variables ¢, that is,

yz[(w . xi)ero] =>1-¢, fori=1,---,1



For a training sample z,, the slack variable ¢ is

the deviation from the margin border corresponding to
the class y; (= D(z,)).

if & >0, non—separable sample

if & >1, misclassified sample

. optimization problem with slack variables:
minﬁé}lg +olwl?

where c¢ is a positive constant.

subject to
yl(w - ;) +w,] =1-¢ fori=1,--,1.



Applying the dual problem procedure, we get the following

dual problem:
l

max,, Z Z Z Q; ijzyj ( j)

=1 z 15=
subject to

z
Yoy =0and 0= q; =
i=1

N'Q

for i=1,---,1.

- kernel basis functions

. constructing the nonlinear s. h.
. decision function in linear case:
l
D(w) - E%yz(x . $¢)+w0
1=1

Here, (z - x;) is replaced by a kernel function Al(x,z;).

. condition for kernel functions (Mercer's theorem)

A kernel is a continuous function that maps
K: [a,b] % [a,b] >R
such that A(z,s)= K(s,z).



K is said to be non—negative definite if and only if

ZZK clcj =0

1=1j=
for all finite sequences of points z,,---,z, of [a,b] and

all choices of real numbers ¢, -, c,.

Associated to K is a linear operator on functions defined by
the integral

[TK¢ fl(xs

We assume that ¢ can range through the space L?[a,b] of
square integrable real-valued functions. Since 7' is a linear
operator, we can talk about eigenvalues and eigenfunctions of 7.

Mercer's theorem:
Suppose A is a continuous symmetric non—negative definite

kernel. Then, there is an orthonormal basis {¢;} of L*[a,b]
consisting of eigenfunctions of 7} such that corresponding

sequence of eignevalues {);,} is non—negative.

The eigenfunctions corresponding to non-zero eigenvalues are
continuous on [a,b] and K has the representation

s,t) = Z)\jej(s)e t
j=1

where the convergence is absolute and uniform.



Examples of kernel functions:
(a) polynomials of degree p: A(z,z’)=[(z - 2')+1]?
h—xV)

2
o

(b) radial basis functions: K(z,z")=exp

(c) sigmoid functions: K(x,z") =tanh(v(z « ')+ a)

Dual problem:

l
1
max,, Qla) = Zla D) E Zai&jyiyj[((xi’ Ij)
1= 1 J

subject to

l
May =0 and 0§04§% for i=1,---,1
=1

The resulting equation for s. h.

l
D(z) = Za:yil((x,xi).
i=1

- SVMs for regression

. Estimation function:
flow) =Y jw,K(x,z,)
1 =1

where K(x,z;) represents the kernel function located at ;.



. Vapnik's e—sensitive loss function:

_ o if ly—flzw)=e
l%(y”f(x’UO)__.hy——f(x,uﬁk—ez otherwise

gk

|
0 0

. learning problem:
finding w that minimizes

l
R, (w)= %ZLe(y,f(a:,w)) under the constraint wll* < C
1=1

. qQuadratic problem:
l l
, 1
min, (Y& + 3¢ + = w2
L3 i=1 2
subject to

I !
Y — sz[((xvxz) = e+€i/’ sz]((x’xz)_yz =e+¢,
i=1 i=1

&=0and =0



. dual problem:
l l
maxaﬁQ a,3) = 62 +5i)+zyi<ai_ﬁi)
i=1
1
_%ZZ(ai_ﬁixo{j_ﬁj)[((xi’xj)

i=1j=1

—_

subject to

. the generalization bound of SVM using the non—negative
loss function:

Let

for p> 2.

Then, with the probability at least 1—6

R, (q)—e
R(al)éeJr P!

1—|—a 7'\/_




where

hn(1+ln2—l)—ln£

1 (p—1yt B, 4
a(p)—\/Q(p_l) , e=4 l , and

h, is the VCD of
S, ={L(y.flzw) lwll? = C}.

n

— multi-class SVMs

. k—class pattern recognition
Constructing a decision function given [ /i/id. samples:

(:Ul’yl)7 Tt (171791)
where z;,, i=1,---,] are vectors of length d and
y, € {1,---,k} are classes of samples.
Here, the loss function is given by

Ly flaw)) = {0 1 U= o)

1 otherwise
where w is a parameter vector.



. Example: binary classification
k=2, y, € {—1+1}.

(1) optimization problem:

!
min, ¢ (w,) = l("w -w)+e) ¢
i=1

2

subject to
y,((w+x,)+b) =1-¢ for i=1,---,1 and
& =0 fori=1,--,1.

(2) dual problem:

l [ l
max,, = Z Z Zyiyjoziozj(xi . l'j)
= i=1j=1
subject to

l
0<ao,<c fori=1,---,1 and Y, o, =0.
1 =1

(3) the optimal decision function:

l
f(x)=sign Za:yi(m’ . a:z-)-l—b* .
i=1



. one—against-the rest method
The problem is converted into k binary classification problems.
For the ith class

y;=1 if z; belongs to the ith class; =1 otherwise.

That is, we have k |-variable quadratic optimization problems.

In general, this method gives good performance but it is
computationally expensive and SVMs have many overlapped
support vectors.

. one—against—one method
This method selects binary classifier among k classes, that is,
we have ,C,=k(k—1)/2 classifiers.

On the average, each class has [/k samples. This implies that
this method needs to solve (k(k—1)/2) (21/k) variable quadratic
optimization problem.

For each classifier, small number of samples is need to be
trained compared to the one—against—one method.

Overall computational complexity is same as the one—against-one
method. However, if we use systematic reduction of samples
such as tree structure, further reduction of computational
complexity is possible.



. k—class SVMs
General case of the binary class SVMs.

(1) optimization problem:

1 k l k
min, ¢(w.8) =5 3 (w, - w,)+ed] D] &"

m=1 i=1m#y,
subject to
(w, »z;)+b, = (w,, - z;)+0b, +2—¢" for i=1,--,1 and

g'=0 fori=1,---, 1L

That is, we need to solve 1 kl variable quadratic optimization
problem.

(2) dual problem:
max, Qo) =2 Z o)+

1,m # y;

D —lcyiAA +amayi—lamam (z; + ;)
- 9 J T s A I iy
i, j,m # vy,

subject to
l l
ZQ?ZZC?AZ for n:l’,k,
=1 =1
0<a"<e¢, and o) =0 fori=1,--,1

(3) the optimal decision function:

!
D(x) = argmax,, Z(C?AZ- —a?)(azi - x)+b
i=1

n



- reducing the computational complexity in SVM learning

. dual problem:

1
maXaQ(a) =al 1—=a’Da

2
subject to
a’-y=0 and 0=a<=c
where

a=[ap-ql’, D= d;;], and
dij Zyl-yj[((xi,xj).

If =10k samples, we need > memory for writing D.
each sample takes 4 bytes —> 1.6 Gbytes to store D.

. chunking method:
reducing the size of samples

algorithm:
Given training set S

Select an arbitrary working set (chunk) S S
Repeat

~

solve the optimization problem on 6.
select a new working set (chunk) from data not satisfying
Kuhn-Tucker conditions.
until stopping criterion satisfied.
Return a.



. decomposition method
reducing the size of o: divide a into two sets,
a working set «, and the remaining set o, that is,

a=[aylag]”

dual problem:

DWWDWR] {aw}

o)1= = [ay)
maxa[aW&R] 2 [OéWOéR] DRW DRR aR

subject to

laylagly=0 and 0=a=ec.

the reduced problem:
treat o, as variables and «j, as constraints, that is,

1
maXaWO‘ZV;/(l — Dyoe) — EO‘ZV;/DWWO‘W

subject to

aryp=—apy, and 0=a, =<c

where y= [y,lyz].

—> no theoretical proof the convergence of this method has been
given, but in practice this method works very well.



algorithm:
Given training set S
Select an arbitrary working set o«

Repeat
solve the optimization problem on « with «, as constraints.

select a new working set not satisfying
Kuhn—-Tucker conditions.
until stopping criterion satisfied.
Return a.
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