
Support Vector Machines (SVM)Support Vector Machines (SVM)Support Vector Machines (SVM)

- optimal separating hyperplane- optimal separating hyperplane- optimal separating hyperplane

 . linearly separable case for binary classification . linearly separable case for binary classification . linearly separable case for binary classification

       samples of training data: samples of training data: samples of training data:

               ⋯  ,  ,  ,  ∊,  ,  ,  ∊

 . hyperplane decision function: . hyperplane decision function: . hyperplane decision function:

              ⋅

            ⋅≧ ,  ,  ,    ⋯ 

 . margin  . margin  . margin : the minimal distance from the separating hyperplnae: the minimal distance from the separating hyperplnae: the minimal distance from the separating hyperplnae

  (s. h.) to the closest data  (s. h.) to the closest data  (s. h.) to the closest data

 . optimal s. h.: the s. h. in which the margin  . optimal s. h.: the s. h. in which the margin  . optimal s. h.: the s. h. in which the margin  is maximum.  is maximum.  is maximum. 

 . distance between s. h. and a sample  . distance between s. h. and a sample  . distance between s. h. and a sample ′:  :  :  ∥∥
′

 . all samples obey   . all samples obey   . all samples obey  ∥∥


≧,  ,  ,    ⋯ ...

 . support vector (s.v.): the sample that exists at the margin . support vector (s.v.): the sample that exists at the margin . support vector (s.v.): the sample that exists at the margin



- VC dimension of Perceptrons- VC dimension of Perceptrons- VC dimension of Perceptrons

Theorem (Vapnik, 1998):Theorem (Vapnik, 1998):Theorem (Vapnik, 1998):

- Let - Let - Let   ⋯  be a set of  be a set of  be a set of  vectors in  vectors in  vectors in ...

- For any hyperplane - For any hyperplane - For any hyperplane ⋅    in   in   in , consider , consider , consider 

  the corresponding cannonical hyperplane defined by the set   the corresponding cannonical hyperplane defined by the set   the corresponding cannonical hyperplane defined by the set 

  such that   such that   such that 
∊ ⋅ ...

- A subset of cannonical hyperplane defined on - A subset of cannonical hyperplane defined on - A subset of cannonical hyperplane defined on ⊂ such that such that such that

      ≦, , , ∊ satisfying the constraint  satisfying the constraint  satisfying the constraint ≦ has  has  has 

  the VCD   the VCD   the VCD  bounded as follows: bounded as follows: bounded as follows:

            ≦   or    or    or  ≦





 


...



Theorem (Vapnik, 1998): Theorem (Vapnik, 1998): Theorem (Vapnik, 1998): 

  With the probability at least   With the probability at least   With the probability at least , one can assert that , one can assert that , one can assert that 

            ≦ 











  where  where  where

              




 



,,,

             the number of training samples that are the number of training samples that are the number of training samples that are 

        not separated correctly, and        not separated correctly, and        not separated correctly, and

             the upper bound of the VCD.the upper bound of the VCD.the upper bound of the VCD.

- support vector machine (SVM) learning- support vector machine (SVM) learning- support vector machine (SVM) learning

 . Learning problems is changed to the quadratic optimization  . Learning problems is changed to the quadratic optimization  . Learning problems is changed to the quadratic optimization 

  problems:  problems:  problems:

  Determine   Determine   Determine  and  and  and  that minimizes the functional  that minimizes the functional  that minimizes the functional , that is,, that is,, that is,

              

∥∥
  subject to  subject to  subject to

            ⋅≧   for   for   for   ⋯    

 . Dual problem: . Dual problem: . Dual problem:

  - If the cost and constraint functions are strictly convex, solving  - If the cost and constraint functions are strictly convex, solving  - If the cost and constraint functions are strictly convex, solving

    the dual problem is equivalent to solving the original problem.    the dual problem is equivalent to solving the original problem.    the dual problem is equivalent to solving the original problem.



  - Functions are convex if  - Functions are convex if  - Functions are convex if

             ≦      ∀  ∊, , ,  

    example: quadratic functions    example: quadratic functions    example: quadratic functions

  - Procedure of formulating the dual problem  - Procedure of formulating the dual problem  - Procedure of formulating the dual problem

  (1) Constructing the Lagrangian function:  (1) Constructing the Lagrangian function:  (1) Constructing the Lagrangian function:

                

⋅

 



 ⋅ 

    where     where     where  is Lagrangian multiplier. is Lagrangian multiplier. is Lagrangian multiplier.

  (2) Searching for the optimal conditions:  (2) Searching for the optimal conditions:  (2) Searching for the optimal conditions:

    (a)     (a)     (a) 




       

       ->         ->         ->   
 




, , , 

 ≧ , for , for , for   ⋯ ...

    (b)     (b)     (b) 




 

       ->         ->         ->  






  , , , 

 ≧ , for , for , for   ⋯ ...

      



  (3) Formulating the dual problem:  (3) Formulating the dual problem:  (3) Formulating the dual problem:

    Find the parameters     Find the parameters     Find the parameters  for  for  for   ⋯  maximizing the functional maximizing the functional maximizing the functional

             
 



  



 




 



⋅, , ,  ≧, for , for , for   ⋯ ...

    subject to    subject to    subject to

            




  , , ,  ≧, for , for , for   ⋯ ...

  - Kuhn-Tucker Theorem:  - Kuhn-Tucker Theorem:  - Kuhn-Tucker Theorem:

    Any parameter     Any parameter     Any parameter 
 is non-zero only if   is non-zero only if   is non-zero only if  

             ⋅  ,  for ,  for ,  for   ⋯ , that is,, that is,, that is,

            
 ⋅  ,  for ,  for ,  for   ⋯ ...

    -> the data corresponding to non-zero     -> the data corresponding to non-zero     -> the data corresponding to non-zero 
 are support vectors. are support vectors. are support vectors.

    -> the resulting equation for s. h.:    -> the resulting equation for s. h.:    -> the resulting equation for s. h.:

                         
 




⋅



- non-separable problems- non-separable problems- non-separable problems

 . For non-separable problems,  . For non-separable problems,  . For non-separable problems, 

  apply the positive slack variables   apply the positive slack variables   apply the positive slack variables , that is,, that is,, that is,

             ⋅ ≧ ,  for ,  for ,  for   ⋯ 



  For a training sample   For a training sample   For a training sample , the slack variable , the slack variable , the slack variable  is  is  is 

  the deviation from the margin border corresponding to   the deviation from the margin border corresponding to   the deviation from the margin border corresponding to 

  the class   the class   the class  ...

  if   if   if   , non-separable sample, non-separable sample, non-separable sample

  if   if   if   , misclassified sample, misclassified sample, misclassified sample

 . optimization problem with slack variables: . optimization problem with slack variables: . optimization problem with slack variables:

            



 



  

∥∥
  where   where   where  is a positive constant. is a positive constant. is a positive constant.

  subject to  subject to  subject to

            ⋅≧   for   for   for   ⋯ .   .   .   



  Applying the dual problem procedure, we get the following   Applying the dual problem procedure, we get the following   Applying the dual problem procedure, we get the following 

  dual problem:  dual problem:  dual problem:

             
 



  



 




 



⋅

  subject to  subject to  subject to

            




   and  and  and ≦ ≦ 


  for   for   for   ⋯ ...

- kernel basis functions- kernel basis functions- kernel basis functions

 . constructing the nonlinear s. h. . constructing the nonlinear s. h. . constructing the nonlinear s. h.

 . decision function in linear case: . decision function in linear case: . decision function in linear case:

             
 




⋅



  Here,   Here,   Here, ⋅ is replaced by a kernel function  is replaced by a kernel function  is replaced by a kernel function ...

 . condition for kernel functions (Mercer's theorem) . condition for kernel functions (Mercer's theorem) . condition for kernel functions (Mercer's theorem)

  A kernel is a continuous function that maps  A kernel is a continuous function that maps  A kernel is a continuous function that maps

              ×  →

  such that   such that   such that  ...



       is said to be non-negative definite if and only if is said to be non-negative definite if and only if is said to be non-negative definite if and only if

            





 



 ≧ 

  for all finite sequences of points   for all finite sequences of points   for all finite sequences of points ⋯  of  of  of    and  and  and 

  all choices of real numbers   all choices of real numbers   all choices of real numbers ⋯ ...

  Associated to   Associated to   Associated to  is a linear operator on functions defined by  is a linear operator on functions defined by  is a linear operator on functions defined by 

  the integral  the integral  the integral

             






  We assume that   We assume that   We assume that  can range through the space  can range through the space  can range through the space     of of of

  square integrable real-valued functions.  Since   square integrable real-valued functions.  Since   square integrable real-valued functions.  Since  is a linear is a linear is a linear

  operator, we can talk about eigenvalues and eigenfunctions of   operator, we can talk about eigenvalues and eigenfunctions of   operator, we can talk about eigenvalues and eigenfunctions of ...

Mercer's theorem:Mercer's theorem:Mercer's theorem:

  Suppose   Suppose   Suppose  is a continuous symmetric non-negative definite  is a continuous symmetric non-negative definite  is a continuous symmetric non-negative definite 

  kernel.  Then, there is an orthonormal basis   kernel.  Then, there is an orthonormal basis   kernel.  Then, there is an orthonormal basis  of  of  of       

  consisting of eigenfunctions of   consisting of eigenfunctions of   consisting of eigenfunctions of  such that corresponding  such that corresponding  such that corresponding 

  sequence of eignevalues   sequence of eignevalues   sequence of eignevalues  is non-negative.   is non-negative.   is non-negative.  

  The eigenfunctions corresponding to non-zero eigenvalues are  The eigenfunctions corresponding to non-zero eigenvalues are  The eigenfunctions corresponding to non-zero eigenvalues are

  continuous on   continuous on   continuous on    and  and  and  has the representation has the representation has the representation

             
 

∞



  where the convergence is absolute and uniform.  where the convergence is absolute and uniform.  where the convergence is absolute and uniform.



  Examples of kernel functions:  Examples of kernel functions:  Examples of kernel functions:

  (a) polynomials of degree   (a) polynomials of degree   (a) polynomials of degree : : : ′  ⋅′
  (b) radial basis functions:   (b) radial basis functions:   (b) radial basis functions: ′  

′ 
  (c) sigmoid functions:  (c) sigmoid functions:  (c) sigmoid functions:′  ⋅′

  Dual problem:  Dual problem:  Dual problem:

             
 



 









    subject to    subject to    subject to

            




    and    and    and  ≦≦ 


  for   for   for   ⋯ 

  The resulting equation for s. h.  The resulting equation for s. h.  The resulting equation for s. h.

             
 




...

- SVMs for regression- SVMs for regression- SVMs for regression

 . Estimation function: . Estimation function: . Estimation function:

             
 





  where   where   where  represents the kernel function located at  represents the kernel function located at  represents the kernel function located at ...



  . Vapnik's e-sensitive loss function:  . Vapnik's e-sensitive loss function:  . Vapnik's e-sensitive loss function:

                 ≦ 
 

 . learning problem: . learning problem: . learning problem:

  finding   finding   finding  that minimizes that minimizes that minimizes

              


 



 under the constraint  under the constraint  under the constraint ∥∥ ≦   

      

 . quadratic problem: . quadratic problem: . quadratic problem:

            



 



 
 



′ 
∥∥

  subject to  subject to  subject to

             
 



≦ ′, , , 




 ≦ , , , 

             ≧  and  and  and ′≧



 . dual problem: . dual problem: . dual problem:

             
 



 
 



 

 



 




 



  

  subject to  subject to  subject to

            




 
 



, , , ≦ ≦ 


 and  and  and ≦ ≦ 


  for   for   for   ⋯ ...

 . the final estimation function . the final estimation function . the final estimation function

             
 




 



 . the generalization bound of SVM using the non-negative  . the generalization bound of SVM using the non-negative  . the generalization bound of SVM using the non-negative 

  loss function:  loss function:  loss function:

  Let  Let  Let

              for   for   for  .  .  .  

  Then, with the probability at least   Then, with the probability at least   Then, with the probability at least 

            ≦  



      



  where  where  where

             




 
 



, , ,   




 



, and, and, and

       is the VCD of  is the VCD of  is the VCD of 

              ∥∥ ≦...

- multi-class SVMs- multi-class SVMs- multi-class SVMs

 . k-class pattern recognition . k-class pattern recognition . k-class pattern recognition

  Constructing a decision function given   Constructing a decision function given   Constructing a decision function given    i.i.d.i.i.d.i.i.d. samples: samples: samples:

            ⋯ 

  where   where   where , , ,   ⋯  are vectors of length  are vectors of length  are vectors of length  and and and

       ∊⋯  are classes of samples. are classes of samples. are classes of samples.

  Here, the loss function is given by  Here, the loss function is given by  Here, the loss function is given by

                    

  where   where   where  is a parameter vector. is a parameter vector. is a parameter vector.



 . Example: binary classification . Example: binary classification . Example: binary classification

              ,  ,  ,   ∊...

  (1) optimization problem:  (1) optimization problem:  (1) optimization problem:

                    


⋅

 





    subject to    subject to    subject to

                  ⋅≧  for   for   for   ⋯   and  and  and

                   ≧   for   for   for   ⋯ ...

  (2) dual problem:  (2) dual problem:  (2) dual problem:

                   
 



  



 




 



⋅

    subject to    subject to    subject to

                  ≦ ≦   for   for   for   ⋯   and    and    and  




  ...

  (3) the optimal decision function:  (3) the optimal decision function:  (3) the optimal decision function:

                    




 




⋅





...



 . one-against-the rest method . one-against-the rest method . one-against-the rest method

  The problem is converted into k binary classification problems.  The problem is converted into k binary classification problems.  The problem is converted into k binary classification problems.

  For the ith class  For the ith class  For the ith class

                if   if   if  belongs to the ith class; -1  otherwise. belongs to the ith class; -1  otherwise. belongs to the ith class; -1  otherwise.

  That is, we have k l-variable quadratic optimization problems.  That is, we have k l-variable quadratic optimization problems.  That is, we have k l-variable quadratic optimization problems.

  In general, this method gives good performance but it is  In general, this method gives good performance but it is  In general, this method gives good performance but it is

  computationally expensive and SVMs have many overlapped  computationally expensive and SVMs have many overlapped  computationally expensive and SVMs have many overlapped

  support vectors.  support vectors.  support vectors.

      

 . one-against-one method . one-against-one method . one-against-one method

  This method selects binary classifier among k classes, that is,   This method selects binary classifier among k classes, that is,   This method selects binary classifier among k classes, that is, 

  we have   we have   we have    classifiers. classifiers. classifiers.

  On the average, each class has   On the average, each class has   On the average, each class has  samples.  This implies that samples.  This implies that samples.  This implies that

  this method needs to solve   this method needs to solve   this method needs to solve   variable quadratic variable quadratic variable quadratic

  optimization problem.  optimization problem.  optimization problem.

  For each classifier, small number of samples is need to be   For each classifier, small number of samples is need to be   For each classifier, small number of samples is need to be 

  trained compared to the one-against-one method.    trained compared to the one-against-one method.    trained compared to the one-against-one method.  

  Overall computational complexity is same as the one-against-one  Overall computational complexity is same as the one-against-one  Overall computational complexity is same as the one-against-one

  method.  However, if we use systematic reduction of samples   method.  However, if we use systematic reduction of samples   method.  However, if we use systematic reduction of samples 

  such as tree structure, further reduction of computational   such as tree structure, further reduction of computational   such as tree structure, further reduction of computational 

  complexity is possible.  complexity is possible.  complexity is possible.



 . k-class SVMs . k-class SVMs . k-class SVMs

  General case of the binary class SVMs.  General case of the binary class SVMs.  General case of the binary class SVMs.

  (1) optimization problem:  (1) optimization problem:  (1) optimization problem:
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    subject to    subject to    subject to

                  ⋅
 ≧

⋅ 
  for   for   for   ⋯   and  and  and

                  
 ≧   for   for   for   ⋯ ...

  That is, we need to solve 1   That is, we need to solve 1   That is, we need to solve 1  variable quadratic optimization  variable quadratic optimization  variable quadratic optimization 

  problem.  problem.  problem.

  (2) dual problem:  (2) dual problem:  (2) dual problem:
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    subject to    subject to    subject to

                  





 

 




  for   for   for   ⋯ ,,,

                  ≦
 ≦ ,  and  ,  and  ,  and  

    for   for   for   ⋯ 

  (3) the optimal decision function:  (3) the optimal decision function:  (3) the optimal decision function:
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- reducing the computational complexity in SVM learning- reducing the computational complexity in SVM learning- reducing the computational complexity in SVM learning

 . dual problem: . dual problem: . dual problem:

             
⋅ 




  subject to  subject to  subject to

            ⋅   and    and    and  ≦≦

  where  where  where

             ⋯  
, , ,    , and, and, and

              ...

  If   If   If    samples, we need  samples, we need  samples, we need  memory for writing  memory for writing  memory for writing ...

  each sample takes 4 bytes -> 1.6 Gbytes to store   each sample takes 4 bytes -> 1.6 Gbytes to store   each sample takes 4 bytes -> 1.6 Gbytes to store ...

   . chunking method:. chunking method:. chunking method:

  reducing the size of samples  reducing the size of samples  reducing the size of samples

  algorithm:  algorithm:  algorithm:

    Given training set     Given training set     Given training set 

    Select an arbitrary working set (chunk)     Select an arbitrary working set (chunk)     Select an arbitrary working set (chunk) ⊂...

    Repeat    Repeat    Repeat

      solve the optimization problem on       solve the optimization problem on       solve the optimization problem on ...

      select a new working set (chunk) from data not satisfying      select a new working set (chunk) from data not satisfying      select a new working set (chunk) from data not satisfying

        Kuhn-Tucker conditions.        Kuhn-Tucker conditions.        Kuhn-Tucker conditions.

    until stopping criterion satisfied.    until stopping criterion satisfied.    until stopping criterion satisfied.

    Return     Return     Return ...



 . decomposition method . decomposition method . decomposition method

  reducing the size of   reducing the size of   reducing the size of : divide : divide : divide  into two sets, into two sets, into two sets,

    a working set     a working set     a working set  and the remaining set  and the remaining set  and the remaining set , that is,, that is,, that is,

             


  dual problem:  dual problem:  dual problem:

              







 














  subject to  subject to  subject to

                and    and    and  ≦≦...

  the reduced problem:  the reduced problem:  the reduced problem:

    treat     treat     treat  as variables and  as variables and  as variables and  as constraints, that is, as constraints, that is, as constraints, that is,

            
  





  subject to  subject to  subject to

            
  

  and    and    and  ≦ ≦

  where   where   where     ...

  -> no theoretical proof the convergence of this method has been   -> no theoretical proof the convergence of this method has been   -> no theoretical proof the convergence of this method has been 

     given, but in practice this method works very well.     given, but in practice this method works very well.     given, but in practice this method works very well.



  algorithm:  algorithm:  algorithm:

    Given training set     Given training set     Given training set 

    Select an arbitrary working set     Select an arbitrary working set     Select an arbitrary working set ...

    Repeat    Repeat    Repeat

      solve the optimization problem on       solve the optimization problem on       solve the optimization problem on  with  with  with  as constraints. as constraints. as constraints.

      select a new working set not satisfying      select a new working set not satisfying      select a new working set not satisfying

        Kuhn-Tucker conditions.        Kuhn-Tucker conditions.        Kuhn-Tucker conditions.

    until stopping criterion satisfied.    until stopping criterion satisfied.    until stopping criterion satisfied.

    Return     Return     Return ...
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