## Support Vector Machines [SVM]

- optimal separating hyperplane
. linearly separable case for binary classification
$l$ samples of training data:

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{l}, y_{l}\right), \quad x \in R^{n}, \quad y \in\{-1,+1\}
$$

. hyperplane decision function:

$$
\begin{aligned}
& D(x)=(w \cdot x)+w_{0} \\
& y_{i}\left[\left(w \cdot x_{i}\right)+w_{0}\right] \geqq 1, \quad i=1, \cdots, l
\end{aligned}
$$

. margin $\rho$ : the minimal distance from the separating hyperplnae (s. h.) to the closest data
. optimal s. h.: the s. h. in which the margin $\rho$ is maximum.
. distance between s. h. and a sample $x^{\prime}: \frac{\left|D\left(x^{\prime}\right)\right|}{\|w\|}$
. all samples obey $\frac{y_{k} D\left(x_{k}\right)}{\|w\|} \geqq \rho, \quad k=1, \cdots, l$.
. support vector (s.v.): the sample that exists at the margin


## - VC dimension of Perceptrons

Theorem (Vapnik, 1998):

- Let $x^{*}=\left(x_{1}, \cdots, x_{l}\right)$ be a set of $l$ vectors in $R^{n}$.
- For any hyperplane $(x \cdot w)+w_{0}=0$ in $R^{n}$, consider the corresponding cannonical hyperplane defined by the set $X^{*}$ such that $I N F_{x \in X^{\dagger}}(x \cdot w)+w_{0} \mid=1$.
- A subset of cannonical hyperplane defined on $X^{*} \subset R^{n}$ such that $|x| \leqq D, x \in X^{*}$ satisfying the constraint $|w| \leqq A$ has the VCD $h$ bounded as follows:

$$
h \leqq \min \left(\left[D^{2} A^{2}\right], n\right)+1 \quad \text { or } \quad h \leqq \min \left(\left[\frac{D^{2}}{\rho^{2}}\right], n\right)+1 .
$$

Theorem (Vapnik, 1998):
With the probability at least $1-\delta$, one can assert that

$$
R\left(\alpha_{l}\right) \leqq \frac{m}{l}+\frac{\epsilon}{2}\left(1+\sqrt{\frac{4 m}{\epsilon}}\right)
$$

where

$$
\begin{aligned}
& \epsilon=4 \frac{h\left(1+\ln \frac{2 l}{h}\right)-\ln \frac{\delta}{4}}{l}, \\
& m= \\
& \quad \text { the number of training samples that are } \\
& \quad \text { not separated correctly, and }
\end{aligned}
$$

$h=$ the upper bound of the VCD.

## - support vector machine [SVM] learning

. Learning problems is changed to the quadratic optimization problems:
Determine $w$ and $w_{0}$ that minimizes the functional $\eta(w)$, that is,

$$
\min _{w} \eta(w)=\frac{1}{2}\|w\|^{2}
$$

subject to

$$
y_{i}\left[\left(w \cdot x_{i}\right)+w_{0}\right] \geqq 1 \quad \text { for } i=1, \cdots, l
$$

. Dual problem:

- If the cost and constraint functions are strictly convex, solving the dual problem is equivalent to solving the original problem.
- Functions are convex if

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leqq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right) \quad \forall x_{1}, x_{2} \in C, 0<\alpha<1
$$

example: quadratic functions

- Procedure of formulating the dual problem
(1) Constructing the Lagrangian function:

$$
Q\left(w, w_{0}, \alpha\right)=\frac{1}{2}(w \cdot w)-\sum_{i=1}^{l} \alpha_{i}\left\{y_{i}\left[(w \cdot x)+w_{0}\right]-1\right\}
$$

where $\alpha_{i}$ is Lagrangian multiplier.
(2) Searching for the optimal conditions:
(a) $\frac{\partial Q\left(w^{*}, w_{0}^{*}, \alpha^{*}\right)}{\partial w}=0$
$\rightarrow w^{*}=\sum_{i=1}^{l} \alpha_{i}^{*} y_{i} x_{i}, \quad \alpha_{i}^{*} \geqq 0$, for $i=1, \cdots, l$.
(b) $\frac{\partial Q\left(w^{*}, w_{0}^{*}, \alpha^{*}\right)}{\partial w_{0}}=0$
-> $\quad \sum_{i=1}^{l} \alpha_{i}^{*} y_{i}^{*}=0, \alpha_{i}^{*} \geqq 0$, for $i=1, \cdots, l$.
(3) Formulating the dual problem:

Find the parameters $\alpha_{i}$ for $i=1, \cdots, l$ maximizing the functional $Q(\alpha)=\sum_{i=1}^{l} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i} \cdot x_{j}\right), \quad \alpha_{i} \geqq 0$, for $i=1, \cdots, l$.
subject to

$$
\sum_{i=1}^{l} \alpha_{i} y_{i}=0, \quad \alpha_{i} \geqq 0, \text { for } i=1, \cdots, l .
$$

- Kuhn-Tucker Theorem:

Any parameter $\alpha_{i}^{*}$ is non-zero only if
$y_{i}\left[\left(w \cdot x_{i}\right)+w_{0}\right]=1$, for $i=1, \cdots, l$, that is, $\alpha_{i}^{*}\left\{y_{i}\left[\left(w^{*} \cdot x_{i}\right)+w_{0}^{*}\right]-1\right\}=0, \quad$ for $i=1, \cdots, l$.
-> the data corresponding to non-zero $\alpha_{i}^{*}$ are support vectors.
-> the resulting equation for s. h.:

$$
D(x)=\sum_{i=1}^{l} \alpha_{i}^{*} y_{i}\left(x \cdot x_{i}\right)+w_{0}^{*}
$$

- non-separable problems
. For non-separable problems, apply the positive slack variables $\xi_{i}$, that is,

$$
y_{i}\left[\left(w \cdot x_{i}\right)+w_{0}\right] \geqq 1-\xi_{i} \text {, for } i=1, \cdots, l
$$



For a training sample $x_{i}$, the slack variable $\xi_{i}$ is the deviation from the margin border corresponding to the class $y_{i}\left(=D\left(x_{i}\right)\right)$.
if $\xi_{i}>0$, non-separable sample if $\xi_{i}>1$, misclassified sample
. optimization problem with slack variables:

$$
\min _{w} \frac{c}{l} \sum_{i=1}^{l} \xi_{i}+\frac{1}{2}\|w\|^{2}
$$

where $c$ is a positive constant.
subject to

$$
y_{i}\left[\left(w \cdot x_{i}\right)+w_{0}\right] \geqq 1-\xi_{i} \quad \text { for } i=1, \cdots, l \text {. }
$$

Applying the dual problem procedure, we get the following dual problem:

$$
\max _{\alpha} Q(\alpha)=\sum_{i=1}^{l} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i} \cdot x_{j}\right)
$$

subject to

$$
\sum_{i=1}^{l} \alpha_{i} y_{i}=0 \text { and } 0 \leqq \alpha_{i} \leqq \frac{c}{l} \quad \text { for } i=1, \cdots, l .
$$

## - kernel basis functions

. constructing the nonlinear s. h.
. decision function in linear case:

$$
D(x)=\sum_{i=1}^{l} \alpha_{i}^{*} y_{i}\left(x \cdot x_{i}\right)+w_{0}^{*}
$$

Here, $\left(x \cdot x_{i}\right)$ is replaced by a kernel function $K\left(x, x_{i}\right)$.
. condition for kernel functions (Mercer's theorem)

A kernel is a continuous function that maps
$K:[a, b] \times[a, b] \rightarrow R$
such that $K(x, s)=K(s, x)$.
$K$ is said to be non-negative definite if and only if

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} K\left(x_{i}, x_{j}\right) c_{i} c_{j} \geqq 0
$$

for all finite sequences of points $x_{1}, \cdots, x_{n}$ of $[a, b]$ and all choices of real numbers $c_{1}, \cdots, c_{n}$.
Associated to $K$ is a linear operator on functions defined by the integral

$$
\left[T_{K} \phi\right](x)=\int_{a}^{b} K(x, s) \phi(s) d s
$$

We assume that $\phi$ can range through the space $L^{2}[a, b]$ of square integrable real-valued functions. Since $T$ is a linear operator, we can talk about eigenvalues and eigenfunctions of $T$.

## Mercer's theorem:

Suppose $K$ is a continuous symmetric non-negative definite kernel. Then, there is an orthonormal basis $\left\{e_{i}\right\}$ of $L^{2}[a, b]$ consisting of eigenfunctions of $T_{K}$ such that corresponding sequence of eignevalues $\left\{\lambda_{i}\right\}$ is non-negative.
The eigenfunctions corresponding to non-zero eigenvalues are continuous on $[a, b]$ and $K$ has the representation

$$
K(s, t)=\sum_{j=1}^{\infty} \lambda_{j} e_{j}(s) e_{j}(t)
$$

where the convergence is absolute and uniform.

Examples of kernel functions:
(a) polynomials of degree $p: K\left(x, x^{\prime}\right)=\left[\left(x \cdot x^{\prime}\right)+1\right]^{p}$
(b) radial basis functions: $K\left(x, x^{\prime}\right)=\exp \left(-\frac{\left|x-x^{\prime}\right|^{2}}{\sigma^{2}}\right)$
(c) sigmoid functions: $K\left(x, x^{\prime}\right)=\tanh \left(\nu\left(x \cdot x^{\prime}\right)+a\right)$

Dual problem:

$$
\max _{\alpha} Q(\alpha)=\sum_{i=1}^{l} \alpha-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right)
$$

subject to

$$
\sum_{i=1}^{l} \alpha_{i} y_{i}=0 \quad \text { and } \quad 0 \leqq \alpha \leqq \frac{c}{l} \quad \text { for } i=1, \cdots, l
$$

The resulting equation for s. h.

$$
D(x)=\sum_{i=1}^{l} \alpha_{i}^{*} y_{i} K\left(x, x_{i}\right) .
$$

## - SVMs for regression

. Estimation function:

$$
f(x, w)=\sum_{i=1}^{m} w_{i} K\left(x, x_{i}\right)
$$

where $K\left(x, x_{i}\right)$ represents the kernel function located at $x_{i}$.
. Vapnik's e-sensitive loss function:

$$
L_{e}(y, f(x, w))= \begin{cases}0 & \text { if }|y-f(x, w)| \leqq e \\ |y-f(x, w)|-e & \text { otherwise }\end{cases}
$$


. learning problem:
finding $w$ that minimizes

$$
R_{e m p}(w)=\frac{1}{l} \sum_{i=1}^{l} L_{e}(y, f(x, w)) \text { under the constraint }\|w\|^{2} \leqq C
$$

. quadratic problem:

$$
\min _{w} \frac{c}{l}\left(\sum_{i=1}^{l} \xi_{i}+\sum_{i=1}^{l} \xi_{i}^{\prime}\right)+\frac{1}{2}\|w\|^{2}
$$

subject to

$$
\begin{aligned}
& y_{i}-\sum_{i=1}^{l} w_{i} K\left(x, x_{i}\right) \leqq e+\xi_{i}^{\prime}, \sum_{i=1}^{l} w_{i} K\left(x, x_{i}\right)-y_{i} \leqq e+\xi_{i}, \\
& \xi_{i} \geqq 0 \text { and } \xi_{i}^{\prime} \geqq 0
\end{aligned}
$$

. dual problem:

$$
\begin{aligned}
\max _{\alpha, \beta} Q(\alpha, \beta)= & -e \sum_{i=1}^{l}\left(\alpha_{i}+\beta_{i}\right)+\sum_{i=1}^{l} y_{i}\left(\alpha_{i}-\beta_{i}\right) \\
& -\frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l}\left(\alpha_{i}-\beta_{i}\right)\left(\alpha_{j}-\beta_{j}\right) K\left(x_{i}, x_{j}\right)
\end{aligned}
$$

subject to

$$
\sum_{i=1}^{l} \alpha_{i}=\sum_{i=1}^{l} \beta_{i}, 0 \leqq \alpha_{i} \leqq \frac{c}{l} \text { and } 0 \leqq \beta_{i} \leqq \frac{c}{l} \quad \text { for } i=1, \cdots, l .
$$

. the final estimation function

$$
f(x)=\sum_{i=1}^{l}\left(\alpha_{i}^{*}-\beta_{i}^{*}\right) K\left(x, x_{i}\right)
$$

. the generalization bound of SVM using the non-negative loss function:

Let

$$
\text { for } p>2 \text {. }
$$

Then, with the probability at least $1-\delta$

$$
R\left(\alpha_{l}\right) \leqq e+\frac{R_{e m p}\left(\alpha_{l}\right)-e}{(1+a(p) \tau \sqrt{\epsilon})_{+}}
$$

where

$$
a(p)=\sqrt[p]{\frac{1}{2}\left(\frac{p-1}{p-1}\right)^{p-1}}, \epsilon=4 \frac{h_{n}\left(1+\ln \frac{2 l}{h_{n}}\right)-\ln \frac{\delta}{4}}{l}, \text { and }
$$

$h_{n}$ is the VCD of

$$
S_{n}=\left\{L_{e}(y, f(x, w)) \mid\|w\|^{2} \leqq C\right\} .
$$

## - multi-class SVMs

. k-class pattern recognition
Constructing a decision function given li.i.d. samples:

$$
\left(x_{1}, y_{1}\right), \cdots,\left(x_{l}, y_{l}\right)
$$

where $x_{i}, i=1, \cdots, l$ are vectors of length $d$ and $y_{i} \in\{1, \cdots, k\}$ are classes of samples.
Here, the loss function is given by

$$
L(y, f(x, w))= \begin{cases}0 & \text { if } y=f(x, w) \\ 1 & \text { otherwise }\end{cases}
$$

where $w$ is a parameter vector.
. Example: binary classification

$$
k=2, \quad y_{i} \in\{-1,+1\} .
$$

(1) optimization problem:

$$
\min _{w} \phi(w, \xi)=\frac{1}{2}(w \cdot w)+c \sum_{i=1}^{l} \xi_{i}
$$

subject to

$$
\begin{aligned}
& y_{i}\left(\left(w \cdot x_{i}\right)+b\right) \geqq 1-\xi_{i} \text { for } i=1, \cdots, l \text { and } \\
& \xi_{i} \geqq 0 \text { for } i=1, \cdots, l .
\end{aligned}
$$

(2) dual problem:

$$
\max _{\alpha} Q(\alpha)=\sum_{i=1}^{l} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} y_{i} y_{j} \alpha_{i} \alpha_{j}\left(x_{i} \cdot x_{j}\right)
$$

subject to

$$
0 \leqq \alpha_{i} \leqq c \quad \text { for } i=1, \cdots, l \quad \text { and } \quad \sum_{i=1}^{l} \alpha_{i} y_{i}=0
$$

(3) the optimal decision function:

$$
f(x)=\operatorname{sign}\left[\sum_{i=1}^{l} \alpha_{i}^{*} y_{i}\left(x \cdot x_{i}\right)+b^{*}\right] .
$$

. one-against-the rest method
The problem is converted into k binary classification problems.
For the ith class
$y_{j}=1$ if $x_{j}$ belongs to the ith class; -1 otherwise.
That is, we have k I-variable quadratic optimization problems.

In general, this method gives good performance but it is computationally expensive and SVMs have many overlapped support vectors.
. one-against-one method
This method selects binary classifier among k classes, that is, we have ${ }_{k} C_{2}=k(k-1) / 2$ classifiers.
On the average, each class has $l / k$ samples. This implies that this method needs to solve $(k(k-1) / 2)(2 l / k)$ variable quadratic optimization problem.

For each classifier, small number of samples is need to be trained compared to the one-against-one method. Overall computational complexity is same as the one-against-one method. However, if we use systematic reduction of samples such as tree structure, further reduction of computational complexity is possible.

## . k-class SVMs

General case of the binary class SVMs.
(1) optimization problem:

$$
\min _{w} \phi(w, \xi)=\frac{1}{2} \sum_{m=1}^{k}\left(w_{m} \cdot w_{m}\right)+c \sum_{i=1}^{l} \sum_{m \neq y_{i}}^{k} \xi_{i}^{m}
$$

subject to

$$
\begin{aligned}
& \left(w_{y_{i}} \cdot x_{i}\right)+b_{y_{i}} \geqq\left(w_{m} \cdot x_{i}\right)+b_{m}+2-\xi_{i}^{m} \text { for } i=1, \cdots, l \text { and } \\
& \xi_{i}^{m} \geqq 0 \quad \text { for } i=1, \cdots, l .
\end{aligned}
$$

That is, we need to solve $1 k l$ variable quadratic optimization problem.
(2) dual problem:

$$
\begin{aligned}
\max _{\alpha} Q(\alpha)= & 2 \sum_{i, m \neq y_{i}} \alpha_{i}^{m}+ \\
& \sum_{i, j, m \neq y_{i}}\left[-\frac{1}{2} c_{j}^{y_{i}} A_{i} A_{j}+\alpha_{i}^{m} \alpha_{j}^{y_{i}}-\frac{1}{2} \alpha_{i}^{m} \alpha_{j}^{m}\right]\left(x_{i} \cdot x_{j}\right)
\end{aligned}
$$

subject to

$$
\begin{aligned}
& \sum_{i=1}^{l} \alpha_{i}^{n}=\sum_{i=1}^{l} c_{i}^{n} A_{i} \text { for } n=1, \cdots, k \\
& 0 \leqq \alpha_{i}^{m} \leqq c, \quad \text { and } \quad \alpha_{i}^{y_{i}}=0 \quad \text { for } i=1, \cdots, l
\end{aligned}
$$

(3) the optimal decision function:

$$
D(x)=\operatorname{argmax}_{n}\left[\sum_{i=1}^{l}\left(c_{i}^{n} A_{i}-\alpha_{i}^{n}\right)\left(x_{i} \cdot x\right)+b_{n}\right]
$$

## - reducing the computational complexity in SVM learning

. dual problem:

$$
\max _{\alpha} Q(\alpha)=\alpha^{T} \cdot 1-\frac{1}{2} \alpha^{T} D \alpha
$$

subject to

$$
\alpha^{T} \cdot y=0 \quad \text { and } \quad 0 \leqq \alpha \leqq c
$$

where

$$
\begin{aligned}
& \alpha=\left[\alpha_{1}, \cdots, \alpha_{l}\right]^{T}, D=\left[d_{i j}\right], \text { and } \\
& d_{i j}=y_{i} y_{j} K\left(x_{i}, x_{j}\right) .
\end{aligned}
$$

If $l=10 K$ samples, we need $l^{2}$ memory for writing $D$. each sample takes 4 bytes -> 1.6 Gbytes to store $D$.
. chunking method:
reducing the size of samples
algorithm:
Given training set $S$
Select an arbitrary working set (chunk) $\hat{S} \subset S$.
Repeat
solve the optimization problem on $\hat{S}$.
select a new working set (chunk) from data not satisfying Kuhn-Tucker conditions.
until stopping criterion satisfied.
Return $\alpha$.
. decomposition method
reducing the size of $\alpha$ : divide $\alpha$ into two sets,
a working set $\alpha_{W}$ and the remaining set $\alpha_{R}$, that is,

$$
\alpha=\left[\alpha_{W} \mid \alpha_{R}\right]^{T}
$$

dual problem:

$$
\max _{\alpha}\left[\alpha_{W} \mid \alpha_{R}\right] 1-\frac{1}{2}\left[\alpha_{W} \mid \alpha_{R}\right]\left[\begin{array}{c}
D_{W W} D_{W R} \\
D_{R W} D_{R R}
\end{array}\right]\left[\begin{array}{c}
\alpha_{W} \\
\alpha_{R}
\end{array}\right]
$$

subject to

$$
\left[\alpha_{W} \mid \alpha_{R}\right] y=0 \quad \text { and } \quad 0 \leqq \alpha \leqq c .
$$

the reduced problem:
treat $\alpha_{W}$ as variables and $\alpha_{R}$ as constraints, that is,

$$
\max _{\alpha_{W}} \alpha_{W}^{T}\left(1-D_{W R} \alpha_{R}\right)-\frac{1}{2} \alpha_{W}^{T} D_{W W} \alpha_{W}
$$

subject to

$$
\alpha_{W}^{T} y_{W}=-\alpha_{R}^{T} y_{R} \quad \text { and } \quad 0 \leqq \alpha_{W} \leqq c
$$

where $y=\left[y_{W} \mid y_{R}\right]$.
-> no theoretical proof the convergence of this method has been given, but in practice this method works very well.
algorithm:
Given training set $S$
Select an arbitrary working set $\alpha_{W}$.
Repeat
solve the optimization problem on $\alpha_{W}$ with $\alpha_{R}$ as constraints.
select a new working set not satisfying
Kuhn-Tucker conditions.
until stopping criterion satisfied.
Return $\alpha$.

## - References

. S/W packages:
MINOS (Stanford Univ.)
LOQO (Princeton Univ., http://www.princeton.edu/rvdv)
SVMFu (MIT, http://fpn.mit.edu/SvmFu)
LIBSVM, BSVM (NTU, http://www.csie.ntu.edu.tw/~cjlin)
MATLAB optimization package (QP solver)
. general information:
Support Vector Machines (http://www.support-vector.net)

