
Supervised Models

C1.4 Stochastic neural networks

Harold Szu and Masud Cader

Abstract

Deterministic neural networks such as backpropagation of error, multilayer perceptrons,
and locally based radial basis methods have been a major focus of the neural network
community in recent years. However, there has been a distinct, albeit less pronounced,
interest in stochastic neural networks. In this review we provide the reader with a sense
of the defining components of a stochastic neural network, as well as some of the issues
arising from working with stochastic neural networks. In particular, issues revolving
around hardware implementation, software simulation, and innovation are developed.

C1.4.1 Introduction

The term stochastic neural network refers to a model of computation whose output is a stochastic function
of its inputs and interactions among its neurons. It primarily differs from the more popular deterministic
gradient descent algorithms (e.g.,backpropagation) in that a unit activation is not a deterministic sigmoidC1.2.3

function of the inputs, but rather a stochastic function. In addition, the learning algorithm for a stochastic
machine usually implements a procedure for finding a minimum on the energy surface as well as entropy
maximization (Szu 1986). Although the stochastic component increases the complexity of understanding
and implementation, the reward follows from the fact that a training algorithm based on simulated annealing
is, theoretically, assured to converge to the global minimum, albeit slowly.

Recent developments in stochastic neural network modeling have attempted to improve computational
performance either by parallel implementation or by replacing the computation of stochastic dynamics with
simpler deterministic mean field approximations (Peterson 1987, Hertz 1991, Zerubia and Rama 1993,
Yuille 1994, Kappen 1995a, b), that is, estimating stochastic transitions by the mean of the transitions.
The performance of such annealed estimates is addressed by Tishby (1995).

Primarily, this line of accelerating the search algorithms has been based on a deterministic Boltzmann
learning procedure proposed by Hinton (1989); the ‘Cauchy Machine’, invented by Szu (Szu and Messner
1986, Szu 1987), which uses a Cauchy distribution to generate random flights as well as walks to new states;
‘adaptive simulated annealing’ models (Ingber 1995) which permit fast learning via the use of differing
annealing schedules across parameter dimensions; and Markov chain Monte Carlo sampling methods
for state generation (Geyer 1993). These approaches offer a faster learning procedure than the original
Boltzmann machine (Hintonet al 1984); however, they are not without their drawbacks (Wasserman
1989a, b, Galland 1993, Ingber 1995).

Other approaches, based on the fact that sufficiently simple architectures of Boltzmann machines can
learn by gradient descent on the objective function (Hopfield 1987), utilize hierarchical configurations
of simple Boltzmann machines so that training may proceed by gradient descent rather than involving
simulated annealing. More complex interaction is enabled through the use of configurations or Boltzmann
trees (Saul and Michael 1994). Still other approaches consider the problem of training a Boltzmann
machine from an information geometrical view. The alternating minimization algorithm (Byrne 1992)
proposes that the learning problem be addressed by minimizing the information divergence of repeated
projections of the machine states and shows the equivalence of the algorithm to gradient descent and the
expectation maximization technique under specific conditions.

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 C1.4:1

Stochastic neural networks

Further, the stochastic Helmholtz machine (Dayanet al 1995) illustrates an innovative statistical
learning algorithm (the wake-sleep algorithm of Hintonet al 1995) where the stochastic neural network
architecture is unsupervised. That is, a multilayer network of stochastic binary neurons is augmented by
two groups of weights, a top-down generative set in addition to the bottom-up recognition set (resembling
very much the biweight connectivity of theARTmodel of Carpenter and Grossberg). C2.2.1

Parberry and Schnitger (1989) augment the ‘classical’ Boltzmann machine model, and show that in
some cases Boltzmann machines may not be much more powerful than combinatorial circuits built from
Boolean threshold gates. They make a number of useful comments about the practical implementation of
Boltzmann machines.

An electronic chip implementationof a Boltzmann machine has been developed by Alspectoret E1.3, E1.4

al (1989) at Bellcore, and Skubiszewski (1992), with anoptical versionby Farhat (Farhat and PsaltisE1.5

1987, Farhat 1987). Similarly, an electronic Cauchy machine has been designed by Takefuji and Szu
(1989), and its optical version realized by Scheff and Szu (1987). Recently, a Gaussian machine based on
both the minimization of Helmholtz’s free energy and the maximization of entropy has been studied and
implemented in a chip by Akiyamaet al (1990) at Keio University.

C1.4.2 Simulated annealing

Since the major ingredient in stochastic machines is the simulated annealing algorithm, we compare the
Boltzmann machine and Cauchy machine in terms of different algorithms:Boltzmann annealing(BA) and
Cauchy annealing(CA) in section C1.4.2. Then, we review two benchmark applications; one for finding
the global minimum solution of the Traveling Salesman Problem (TSP) and a second which searches for
the mini-max feature in an image processing problem in section C1.4.3.

We shall discuss the sequential algorithms used in the above parallel machine implementations as
follows. In BA, a Gaussian random process is used to generate new states in the sequential algorithm.
Geman and Geman (1984) have proved that the cooling scheduleT (t) must be inversely proportional to
the logarithm of timet , in order to guarantee convergence to the global minimum. This relatively slow
convergence is due to the bounded variance of the Gaussian process which constrains the neighborhood
of successive samples. This bounded-variance random walk is called a local search strategy. On the other
hand, if one uses an infinite-variance Cauchy random process, a faster cooling schedule that is inversely
proportional to timet has been deduced by Szu (1987) in one dimension and Szu and Hartley (Szu 1987,
Szu and Hartley 1987) in arbitrary higher dimensions (as applied to solving the bearing fix problem with
multiple sensors and multiple targets). This new class of algorithms, implementing a semilocal search
strategy, permits occasionally long steps (the so-called Lévy–Doob diffusion) far from the neighborhood
of the previous sample. These random flights are indicative of the divergence of the second moment of
the Cauchy probability distribution.

In a convex optimization problem, one can start at any point in the function space, measure the local
gradient, and take a step in any direction which is lower in altitude than the current position. Repetition of
this process will assure asymptotic convergence to the minimum (i.e., optimum) solution. In a nonconvex
problem, the optimization function has multiple local minima, each with different depths, for which the
optimum is defined to be the global minimum. The application of local gradient techniques to nonconvex
optimization creates a problem where one becomes caught in a local minimum with no way of determining
whether the local minimum is also the desired global minimum. One solution to this dilemma is to permit
steps whose magnitude and direction are dependent on the local gradient and to add random noise in an
annealing process Wasserman (1989a, b).

Further, for the algorithm to converge, the magnitude of the random component of the step size
must decrease in a statistically monotonic fashion. In the physical annealing process these steps can be
equated with Brownian motion of a particle, traveling at statistical velocityV , over an intersample time
1t . The expectation ofV 2 is linearly related to the temperature of the particle. The simulated annealing
community (Kirkpatricket al 1983) therefore refers to the ‘temperature’ of the random process and uses
the term ‘cooling schedule’ to refer to the algorithm for monotonically reducing the temperature.

An annealing methodology requires three major steps: (i) the generation of a new search state by
means of a random process covering all phase space without the barrier of an energy landscape (section
C1.4.2.1); (ii) the acceptance criterion of the new state, based on the energy landscape property at the new
and the old states (section C1.4.2.2); and (iii) the cooling schedule for quenching the random noise used

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 C1.4:2

Stochastic neural networks

to generate a new state together with an appropriate change in the new-state acceptance criterion (section
C1.4.2.3).

C1.4.2.1 State-generating probability density

The Boltzmann machine uses a Gaussian probability density to generate the incremental displacementX

between the old statex and the new statex ′ as follows:

GT (x ′|x ′ = x + X) = (1/2πT 1/2 exp(−X2/T). (C1.4.1)

Based on the central limit theorem (CLT), any random variable with a bounded variance approaches the
Gaussian distribution in the large-sampling limit.

The Cauchy state generating probability density is:

GT (x ′|x ′ = x + X) = [T/π(T 2 + |X|2)]. (C1.4.2)

Both distributions can be expanded in Taylor series and become identically quadratic for small
displacements. This means that locally they are both identical to random walks. However, when the
second moment is taken, the Cauchy density produces an infinite divergence while the Gaussian density
gives the value of the temperature. This illustrates that the Cauchy distribution will generate random flights
in long steps (Ĺevy flights), and that the CLT does not apply.

For an optical implementation, the random displacementX can be easily generated by a uniform
angle distribution between±π/2 by a light beam deflected from a suspended mirror on a flat screen as
demonstrated previously for an optical Cauchy machine (Scheff and Szu 1987). The displacementX is
measured from the center and is given by

X = T tan(θ) (C1.4.3)

since with d tan(θ)/dθ = 1/(1 + tan(θ)2), we can replace tan(θ) with X/T yielding equation (C1.4.3).

C1.4.2.2 Local and distributed acceptance criteria

The primary difference between sequential simulations and parallel implementations of simulated annealing
is that the former relies on a centralized acceptance criterion (anuphill energy concept), while parallel
versions require a distributed criterion (an against peer pressure concept).

The total system energy is convenient for a top-down design, but is not suited for parallel
implementations. Any criterion based on the total system energy requires a central processor to tally
the contribution from all distributed processors. If each processor is waiting for a centralized decision, the
speed of parallel execution will be slowed down.

A natural choice for a distributed acceptance criterion is one based on the interaction forces carried
by local communication links. These interactions can be related to the entire energy landscape.

For example, the natural phenomenon occurring in a water–ice phase transition is a parallel and
collective computation without central control where a slow cooling or annealing schedule insures the
low-energy crystalline state of ice. In other words, during the occasional uphill climb of the energy
landscape to detrapping (or a metastable crystalline state), there is an occasional thermal fluctuation against
peer pressure. This fluctuation manifests itself via the interacting Coulomb forces which communicate
instantaneously among all processors or molecules, rather than through the posterior energy landscape. A
neural network is similar to this liquid–solid phase transition which promises the minimum-energy crystal
state if it is cooled down properly.

If the energy change1E = Enew − Eold is less than zero, the new state is accepted. On the other
hand, if the energy change1E is greater than zero, then the following acceptance probability is computed:

PT = 1/[1 + exp(−1E/T)] (C1.4.4)

(which is larger than a uniformly generated random number) and the uphill state is accepted, otherwise the
state is rejected. Such an energy landscape formula can be thought of as a two state normalized transition
probability: exp(−Enew)/[exp(−Enew) + exp(−Eold)] and therefore works well on a conventional serial
machine for one neuron decision at a time.

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 C1.4:3

Stochastic neural networks

For a Gaussian noise model, the appropriate Metropolis acceptance criterion (Metropoliset al 1953)
cannot be integrated into an elementary quadrature, which yields, by the steepest-descent approximation, the
energy landscape concept1E. Hinton and Sejnowski have interpreted the acceptance criterion, equation
(C1.4.4), as the energy change for each neuron,1Ei , which is used to derive a specific hidden layer
weight, in order to derive a local acceptance criterion (cf see appendix of Hinton and Sejnowski (1986)).

A one-dimensional optically implemented neural network utilizing CA has been developed as the
Cauchy Machine (Scheff and Szu 1987). However, a local distributed VLSI design could not be
implemented until a distributed acceptance criterion was derived for the Cauchy density (Takefuji and
Szu 1989).

If the total inputui to the McCulloch–Pitts model of a binary neuron is defined as

ui =
∑

j

Tij vj

then, as consistent with the Metropolis acceptance criterion, the outputvi is locally set to be one only
if random numbers generated within the interval [0, 1] are less than the acceptance function—which is
integrated exactly for each total input as follows:

(1/πT)

∫ ∞

0
dx/[1 + ((x − ui)/T)2] = (1/2) + tan−1(ui/T (t))/π. (C1.4.5)

In the case of annealing, the inverse of the cooling schedule is defined to be the piecewise constant gain
coefficient,Gn, at a positive integer time pointtn:

G(tn) = 1/T (tn) = Gn. (C1.4.6)

Then, the outputvi also fluctuates within a finite bound described as both firing rate transfer functions:

vi = σ1n(ui) = (1/2) + tan−1(uiGn)/π. (C1.4.7)

Note that equation (C1.4.7) is almost identical to the standard sigmoidal/logistic function of 1/[1 +
exp(−uiGn)], except that the arctangent function becomes slightly rounded near the central region. In the
case of the sigmoidal function, the slopeσ ′

n is proportional to the gain coefficientGn:

σ ′
n = dvi/dui = Gnvi(1 − vi). (C1.4.8)

WhenT = 0, the infinite gainG implies an infinite slope. In this limit, both firing rate transfer functions
become a binary step functionvi = step(ui) describing a binary neuron model. Thus, the annealing process
gradually changes a sigmoidal neuron toward a binary neuron.

C1.4.2.3 Annealing cooling schedules

The cooling schedule is critical to the performance of the learning algorithm. For a given random process,
cooling at too fast a rate will probably ‘freeze’ the system in a nonglobal minimum. Cooling at too slow
a rate, while reaching the desired global minimum, is a waste of computational resources. The technical
problem is to derive the fastest cooling schedule that will guarantee convergence to the global minimum.
With this understanding, the term ‘cooling schedule’ is synonymous with ‘permissible fastest cooling
schedule’ during which the complete phase space is guaranteed to be available for searching at all time.

Without any knowledge of energy landscapes, one can only hope to derive an appropriate cooling
schedule for a specific stochastic process. The necessary condition is that at any temperature the phase
space is always accessible infinitely often in time (IOT). In other words, an inappropriately fast cooling
schedule may quench the IOT availability of some remote states, and hence, not find the global minimum.
The specific energy landscape and an appropriate acceptance criterion must be taken into consideration
to determine whether the minimum will be actually be found. Ingber (1993), has shown that exponential
cooling schedules may be used but only with specific distributional forms used as the state generating
function.

For a Gaussian random process, Geman and Geman (1984) have proved that the simulated annealing
cooling schedule of the temperatureT (t) must be decreased (from a given sufficiently high temperature
T0 down to zero ‘degrees’) according to the inverse logarithmic formula:

T = T0/ log(1 + t). (C1.4.9)

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 C1.4:4

Stochastic neural networks

Thus, in the interest of speeding up the annealing process and yet maintaining the capability of finding the
global minimum, Szuet al applied Cauchy colored noise to the problem, instead of a Gaussian random
process. The resultant cooling schedule for an arbitrary initial temperature is derived:

T = T0/(1 + t) (C1.4.10)

which is indeed faster, and was shown to insure that the complete search space is available at all
temperatures.

The mathematical truth in both proofs is based on the fact that the infinite series of the inverse time
steps is divergent from an arbitrary initial time pointt0

∞∑
t=t0

1

t
= ∞. (C1.4.11)

The complete proofs for both are provided in appendix A.
It is useful to note that CA ist/ log(t) faster than a Gaussian (white noise) simulated annealing

algorithm which in turn is superior to the conventional Monte Carlo method in which the temperature is
held constant.

C1.4.3 Applications

A stochastic neural network model, the Boltzmann machine, has been used in demonstrating the celebrated
Net-Talk (Sejnowski and Rosenberg 1987). Similarly, the problem of obtaining rapid and accurate
estimations of the locations of moving emitters from samples of imprecise bearing only data has been
addressed with the Cauchy machine (Szu 1987). Another innovative application has been the use a class
of BM (in which visible units are connected only to hidden units) to repair a dataset with missing values
(Kappen 1995a, b).

In the remainder of this section, we illustrate two applications of the Cauchy machine. The first, a
benchmark problem in this area, is that of determining the shortest tour length of a traveling salesman
through a set of cities only taking into account the constraint of distance between cities. The second is a
problem related to optical character recognition, where the idea is to automatically extract features from
the character pattern sets.

C1.4.3.1 Constraint specifications

A traveling salesman problem (TSP), which attempts to find the shortest possible tour through a given
number of cities, can be stochastically solved by generating noise via the leptokurtic Cauchy probability
density,T/π(T 2+X2) (Szu 1990). The noise must be quenched with the inversely linear cooling schedule:
T = T0/(1+ t) as described earlier. Moreover, the schedule must be followed consistently for every time
step, both in generating new states and in visiting some of the states whenever the acceptance criterion is
met.

The performance of CA was calibrated by comparing against the results obtained by an exhaustive
search through all possible TSP solutions. This is possible due to a novel factorial number representation
for each TSP configuration by an integern described as follows.

We require a one-dimensional coding scheme for the TSP search space that is one-to-one unique.
Due to the combinatorial nature of the TSP, a good guess at a number representation might be a factorial
number base system. We adopt, in the following manner, a coding scheme as follows:

(i) The real linex is sampled by the set of real integersx, using the function Int().
(ii) Then, integers are made periodically in the modulus base set of(N −1)!, using the Mod(,) function.
(iii) Such an integer number represents a state of a valid tour since a factorial base set is related to the tour

order permutations. Thus, one represents the integer in terms of the factorial number base system by
calculating the most significant numbers denoted by the index tuple,

Xnew =
∑

n

indexn × n! (C1.4.12a)

Xnew ↔ (indexN−1, indexN−2, . . . , index1, index0) (C1.4.12b)

sequentially for alln beginning withN − 1 down to 0.

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 C1.4:5

Stochastic neural networks

To produce the set of indices, one considers an example for five cities,N = 5, denoted by city: Nos
1–5. GivenXold = 0 = (No 1, No 2, No 3, No 4, No 5) as a reference (the diagonal matrix element of
Hopfield–Tank), where the arbitrary tour order is that city No 1 is visited first, and so on. One finds,

Xnew = 15 = 0 × 0! + 1 × 1! + 1 × 2! + 2 × 3! + 0 × 4! ↔ (No 1, No 4, No 3, No 5, No 2)

where the representation index= (0, 1, 1, 2, 0) is obtained with respect to the base set (0!, 1!, 2!, 3!, 4!).
The energy corresponding to each of the possible round-trip routes throughn cities, 4 ≤ n ≤ 10,

has been reported (Szu and Scheff 1990), so, while the exhaustive search through hundreds of thousand
of possible cases used several hours of computer time on a Mac II (with factorial scaling implying that
five hours for ten cities would require 50 hours for 11 cities). In contrast, CA took about 10 minutes or
less to find the global minima for the ten-city problem. As the shortest tours agreed with those found by
CA, it is clear that CA is superior because the search required a sampling of less than 1% of the states,
with another 2% sampling to verify the stability. Thus, it is evident that traditional Monte Carlo random
sampling should be replaced with the CA algorithm.

C1.4.3.2 Image processing and pattern recognition F1.2, F1.6

Geman and Geman (1984) have applied Boltzmann annealing to the problem of noisy image restoration.
Smith et al (1983) have also applied BA to radiology image reconstructions. Szu and Scheff (1990) have
shown that CA can also be useful in pattern recognition. In particular, they have used a minimax cost
function to investigate the self-extraction of unkown features, previously accomplished using self-reference
matched filters (Szuet al 1980, Szu and Blodgett 1982, Szu and Messner 1986).

Let the critical feature of the template classc be denoted asfc(x, y). Then, a space-filling curve,
PeanoN -curve, is employed to replace the traditional line-by-line scan sampling, in order to preserve the
neighborhood proximity relationship.

The performance criterion seeks to minimize the distance between the image templateIc of the c-
class (c = 1, 2), to minimize the inner product between classes〈fc|fc′ 〉, and to maximize the distance
|fc − fc′ |2 between two feature vectors. Thus, theminimax energy for the determination of the global
minimum associated with the unknown featurefc is given by,

E(fc) = a
∑
c 6=c′

(〈fc|fc′ 〉) + b
∑
c=1,2

|fc − Ic|2 + d
∑
c 6=c′

1/|fc − fc′ |2. (C1.4.13)

Note how the representation permits parametrization of relative feature importance. For example, the
Lagrangian multipliersa = 10 andd = 10 are set higher thanb = 1 to reflect the less important fact that
featurefc should resemble imageIc. The results using the CA algorithm are provided by Szu (1990). A
sample listing in a variant of Basic is provided in appendix B.

In these examples, we have focused on representation issues which clearly have significant impact on
the performance of the algorithms. There is nothing significantly unique about the need for representation
encodings in neural network applications; however, in digital simulations of stochastic neural models any
time improvement afforded by clever representation greatly facilitates the application.

C1.4.4 Summary

We have illustrated that Cauchy annealing is superior to Boltzmann annealing, which in turn is superior to
conventional Markov Monte Carlo methods. We have illustrated or referenced how digital implementations
of stochastic neural networks are inefficient, except, perhaps, when coupled with mitigating factors such
as clever problem representation, deterministic annealing, adaptive simulated annealing, or composite
hierarchical architectural topologies (trees for example). It is also clear that for hard problems of large
scale, analog (especially optical) implementations hold great promise for extending the applicability of
stochastic neural networks.

Appendix A. Proofs of both cooling schedules

There are a number of similarities in the proofs of the cooling schedules for the CA and BA algorithms
in D-dimensional vector spaces. For the convenience of comparison, the proofs will be demonstrated in

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 C1.4:6

Stochastic neural networks

parallel. In locating the minimum, one must start at some position or state in aD-dimensional space,
evaluate the function at that state, and generate the next state vector.

The CA and BA algorithms are different in that CA uses a Cauchy distribution and BA uses a
Gaussian distribution in their respective state generating functions. Both the BA and CA algorithms will
use as their next state either the current state vector or the next state vector provided its incremental cost
increase is less than the time-dependent noise bound, which is temperature (and therefore time) dependent.

The CA algorithm requires thatstate generatingbe infinitely often in time (IOT)(in the sense of
accumulation in time defined by the negation below) whereas the BA requires thestate visitingbe IOT.
At some cooling temperatureTc(t) at time t , let the state generating probability of being within a specific
neighborhood be lower bounded bygt . Then the probability of not generating a state in that neighborhood
is upper bounded by(1 − gt). To insure a globally optimum solution for all temperatures, a state in an
arbitrary neighborhood must be able to be generated IOT, which however does not imply ergodicity, the
latter requiring actual visits IOT. To prove that a specific cooling schedule maintains the state generation
IOT, it is easier to prove thenegation of the converse, namely theimpossibility of never generating a
state in the neighborhood after an arbitrary timet0. Mathematically this is equivalent to stating that the
infinite product of |1 − gt | terms is zero. Taking the Taylor series expansion of the logarithm of the
product, one can alternatively prove that the sum of thegt terms is infinite. One can now verify cooling
schedules in aD-dimensional neighborhood|1x0| and arbitrary timet0. Among the various Ĺevy–Doob
distributions (including Cauchy, Holtzmach, and Gaussian) there are two different classes, local (as in CA)
and semilocal (as in CA). There exists an initial temperatureT0 and for t > 0, such that

BA : Ta(t) = T0/ log(t) (C1.4.A1a)

CA : Tc(t) = T0/t (C1.4.A1b)

BA : gt ≈ exp

(|1x2
0|

−Ta(t)

)
Ta(t)

D/2 (C1.4.A2a)

CA : gt ≈ Tc(t)(
T 2

c − |1x0|2
)(D+1)/2

≈ T0

t |1x0|D+1
(C1.4.A2b)

BA :
∞∑

t=t0

gt ≥
∞∑

t=t0

exp(− log(t)) =
∞∑

t=t0

1

t
= ∞ (C1.4.A3a)

CA :
∞∑

t=t0

gt ≈ T0

|1x0|D+1

∞∑
t=t0

1

t
= ∞. (C1.4.A3b)

Appendix B. Cauchy annealing algorithm (Macintosh QuickBasic version)

! input two known images and known feature
DATA 4,5,8,9,11,14,15,16,17,38,41,44,46,47,50,51,52,53,56,57 !input 81 Peano-scanning pixel#

for the black value=1
DATA 58,59,67,69,70,71,72,78,79 !1= black gun barrel, track belt
DATA 4,5,8,9,12,13,14,15,16,17,30,31,37,42,43,46,47,50,51,52
DATA 53,56,57,58,59,62,63,69,70
DIM f1(81),f2(81),ave1(81),ave2(81),ft1(81),ft2(81)
MAT ave2 =0 ! TrueBasic Matrix Equating
FOR n=1 to 29 ! read the tank into ave1, namely I1

READ k
LET ave1(k)=1

NEXT n
FOR m = 30 to 58 !read the carrier into ave2, namely I2
READ J
LET ave2(J)=1
NEXT m
! set up Cauchy annealing to determine the unknown feature by mini-max
RANDOM !random number rnd generated [0,1]
FOR t=1 to tmax !after initialize the display-

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 C1.4:7

Stochastic neural networks

LET temp=To/(1+t) !Cauchy annealing cooling schedule
LET theta=(rnd-.5)*Pi !uniform theta using the radian angle option
LET dx=int(temp*tan(theta)) ! new pixel by T tan(theta)
LET xnew=mod(x+dx,82) ! modulo for 81 scan pixels
IF xnew=0 then LET xnew=81
IF f2(xnew)=0 THEN

LET ft2(xnew)=ave2(xnew)
LET ft1(xnew)=0

ELSE
LET ft2(xnew)=0
LET ft1(xnew)=ave1(xnew)

END IF
LET enew= 0
LET denominator=0
LET ef1=0
LET ef2=0
FOR n=1 to 81

LET ef1=ef1+(ft1(n)-ave1(n))*(ft1(n)-ave1(n))
LET ef2=ef2+(ft2(n)-ave2(n))*(ft2(n)-ave2(n))
LET denominator=denominator+(ft1(n)-ft2(n))*(ft1(n)-ft2(n))
LET enew = enew + ft1(n)*ft2(n)

NEXT n
LET enew= a*enew + b*ef1 + c*ef2 + (d/denominator)
IF enew<eold then

MAT f2=ft2
MAT f1=ft1
LET eold=enew
LET x=xnew

END IF
IF enew>=eold then

IF(rnd*0.5)< (1/(1 + exp((enew-eold)/temp))) then !up-hill climbing
MAT f2=ft2
MAT f1=ft1
LET eold=enew
LET x=xnew

END IF
END IF

! plotting search states, accepted states, and its minimax energy value
PLOT POINTS :t,xnew+200
PLOT POINTS :t,x+100
PLOT POINTS :t,eold/2

References

Akiyama Y Y, Anzai Y and Aiso H 1990 The Gaussian machine: a stochastic, continuous neural network modelJ.
Neural Network Comput.2 (3) 43–51

Alspector J, Guputa B and Allen R 1989 Performance of stochastic learning microchipNeural Information Processing
Systems I(Morgan Kaufmann)

Byrne W 1992 Alternating minimization and Boltzmann machine learningIEEE Trans. Neural Networks3 612–20
Dayan P, Hinton G E and Neal R M 1995 The Helmholtz machineNeural Comput.7 889–904
Farhat N H 1987 Optoelectronic analogs of self-programming neural nets: Architecture and methodologies for

implementing fast stochastic learning by simulated annealingAppl. Opt.26 5093–103
Farhat N H and Psaltis D 1987 Optical implementation of associative memory based on models of neural networks

Optical Signal Processinged J L Horner (New York: Academic)
Galland C C 1993 The limitations of deterministic Boltzmann machine learningNetwork: Computational Neural Syst.

4 355–79

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 C1.4:8

Stochastic neural networks

Geman S and Geman D 1984 Stochastic relaxation, Gibbs distributions and the Bayesian restoration of imagesIEEE
Trans. Pattern Anal. Machine Intell.6 614–34

Geyer C J 1993Annealing Markov Chain Monte Carlo with Applications to Ancestral InferenceUniversity of Minnesota
Hertz J A P,Krogh R G and Anders S 1991Introduction to the Theory of Neural Computation(Reding, MA: Addison-

Wesley)
Hinton G E 1989 Deterministic Boltzmann learning performs most steep descent is weight space.Neural Comput.1

143–50
Hinton G E, Dayan P, Frey B J and Neal R N 1995The Wake–Sleep Algorithm for Unsupervised Neural Networks

University of Toronto
Hinton G E and Sejnowski T J 1986 Learning and Relearning in Boltzmann MachinesParallel Distributed Processing

ed J Clelland and D Rumelhart (Cambridge, MA: MIT Press) pp 282–317
Hinton G E, Sejnowski T J and Ackley D H 1984Boltzmann Machines: Constrained Satisfaction Networks that Learn

Carnegie Mellon University
Hopfield J J 1987 Learning algorithms and probability distributions in feed-forward and feed-back networksProc.

Natl Acad. Sci. USA84 8429–33
Ingber L 1993 Simulated annealing: Practice versus theoryMath. Comp. Modeling18 29–57
——1995 Adaptive simulated annealing (ASA): lessons learnedControl and Cybernetics Preprint
Kappen H J 1995a Deterministic learning rules for Boltzmann Machines.Neural Networks8 537–548
——1995bRadial basis Boltzmann machines and learning with missing valuesUniversity of Nijmegen
Kirkpatrick S, Gelatt C Jr and Vecchi M P 1983 Optimization by simulated annealingScience220 671–80
Metropolis N, Rosenbluth A W, Rosenbluth M N and Teller A H 1953 Equations of state calculations for fast computing

machinesJ. Chem. Phys.21 1087–91
Parberry I and Schnitger G 1989 Relating Boltzmann machines to conventional models of computation.Neural

Networks2 29–67
Peterson C 1987 A mean field theory learning algorithm for neural networksComplex Syst.1 995–1019
Saul L J and Michael I 1994 Learning in Boltzmann treesNeural Comput.6 1174–84
Scheff K and Szu H 1987 1-D optical Cauchy machine infinite film spectrum searchIEEE Int. Conf. on Neural

Networks (San Diego, 1987)
Sejnowski T J and Rosenberg C R 1987 Parallel networks that learn to pronounce English textComplex Syst.1 145–68
Skubiszewski M 1992An Exact Hardware Implementation of the Boltzmann MachineDigital Equipment Corporation
Smith W E, Barrett H H and Paxman R G 1983 Reconstruction of objects from coded images by simulated annealing

Opt. Lett.8 199–201
Szu H H 1986 Non-convex optimization. Real time signal processing IXSPIE vol 698 (Bellingham, WA: SPIE)

pp 59–65
——1987Fast simulated annealingNeural Networks for Computing, Snow Bird, Utah (New York: AIP)
Szu H and Blodgett J 1982 Self-reference spatiotemporal image–restoration technique.J. Opt. Soc. Am.72 1666–9
Szu H, Blodgett J and Sica L 1980 Local instances of good seeingOpt. Commun.35 317–22
Szu H and Hartley R 1987 Nonconvex optimization by fast simulated annealingProc. IEEE 75 1538–40
Szu H and Messner R 1986 Adaptive invariant novelty filtersProc. IEEE 74 519
Szu H and Scheff K 1990 Simulated annealing feature extraction from occluded and cluttered objectsInt. Joint Conf.

on Neural Networks (Washington, DC, 1990)
Takefuji Y and Szu H 1989 Parallel distributed cauchy machineInt. Joint Conf. on Neural Networks (Washington, DC,

1990)
Tishby N 1995 Statistical physics models of supervised learningThe Mathematics of Generalization. Proc. SFI/CNLS

Workshop on Formal Approaches to Supervised Learning(Santa Fe, NM: Addison-Wesley)
Wasserman P D 1989a A combined back-propagation/Cauchy machine networkJ. Neural Network Comput.1 (3)

34–40
——1989bNeural Computing Theory and Practice(New York: Van Nostrand Reinhold)
Yuill e A L 1994 Statistical Physics Algorithms that Converge.Neural Comput.6 341–56
Zerubia J and Rama C 1993 Mean field annealing using compound Gauss–Markov random fields for edge detection

and image estimationIEEE Trans. Neural Networks4 703–9

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 C1.4:9

