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Abstract

The computational power of formal models for networks of spiking neurons
is compared with that of other neural network models based on McCulloch
Pitts neurons (i.e. threshold gates), respectively sigmoidal gates. In particular
it is shown that networks of spiking neurons are, with regard to the number
of neurons that are needed, computationally more powerful than these other
neural network models. A concrete biologically relevant function is exhibited
which can be computed by a single spiking neuron (for biologically reasonable
values of its parameters), but which requires hundreds of hidden units on a
sigmoidal neural net. On the other hand it is known that any function that can
be computed by a small sigmoidal neural net can also be computed by a small
network of spiking neurons.

This article does not assume prior knowledge about spiking neurons, and it
contains an extensive list of references to the currently available literature on
computations in networks of spiking neurons and relevant results from neuro-
biology.

Keywords: spiking neuron, integrate-and-fire neuron, computational complexity,
sigmoidal neural nets, lower bounds



1 Definitions and Motivations

If one classifies neural network models according to their computational units, one can
distinguish three different generations. The first generation is based on McCulloch-
Pitts neurons as computational units. These are also referred to as perceptrons or
threshold-gates. They give rise to a variety of neural network models such as mul-
tilayer perceptrons (also called threshold circuits), Hopfield nets, and Boltzmann
machines. A characteristic feature of these models is that they can only give digital
output. In fact they are universal for computations with digital input and output,
and every boolean function can be computed by some multi-layer perceptron with a
single hidden layer.

The second generation is based on computational units that apply an “activation
function” with a continuous set of possible output values to a weighted sum (or
polynomial) of the inputs. Common activation functions are the sigmoid function
o(y) = 1/(1 + e7¥) and the linear saturated function 7 with n(y) = y for 0 <
y <1, w(y) =0fory <0, m(y) =1 for y > 1. Besides piecewise polynomial
activation functions we consider in this paper also “piecewise exponential” activation
functions, whose pieces can be defined by expressions involving exponentiation (such
as the definition of o). Typical examples for networks from this second generation are
feedforward and recurrent sigmoidal neural nets, as well as networks of radial basis
function units. These nets are also able to compute (with the help of thresholding
at the network output) arbitrary boolean functions. Actually it has been shown
that neural nets from the second generation can compute certain boolean functions
with fewer gates than neural nets from the first generation ([44], [12]). In addition,
neural nets from the second generation are able to compute functions with analog
input and output. In fact they are universal for analog computations in the sense
that any continuous function with a compact domain and range can be approximated
arbitrarily well (with regard to uniform convergence, i.e. the Ly-norm) by a network
of this type with a single hidden layer. Another characteristic feature of this second
generation of neural network models is that they support learning algorithms that
are based on gradient descent such as backprop.

For a biological interpretation of neural nets from the second generation one views
the output of a sigmoidal unit as a representation of the current firing rate of a bio-
logical neuron. Since biological neurons, especially in higher cortical areas, are known
to fire at various intermediate frequencies between their minimum and maximum fre-
quency, neural nets from the second generation are, with regard to this “firing rate
interpretation”, biologically more realistic than models from the first generation.

However, at least with regard to fast analog computations by networks of neurons
in the cortex, the “firing rate interpretation” itself has become questionable. Perrett



et al. ([54]) and Thorpe et al. ([70]) have demonstrated that visual pattern analysis
and pattern classification can be carried out by humans in just 100 msec, in spite
of the fact that it involves a minimum of 10 synaptic stages from the retina to the
temporal lobe. The same speed of visual processing has been measured by Rolls et al.
([59]) in macaque monkeys. Furthermore they have shown that a single cortical area
involved in visual processing can complete its computation in just 20-30 msec ([58],
[59]). On the other hand the firing rates of neurons involved in these computations
are usually below 100 Hz, and hence at least 20-30 msec would be needed just to
sample the current firing rate of a neuron. Thus a coding of analog variables by firing
rates seems quite dubious in the context of fast cortical computations.
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Figure 1: Simultaneous recordings (over 4 seconds) of the firing times of 30 neurons
from monkey striate cortex by Kriger and Aiple [33]. Each firing is denoted by a
short vertical bar, with a separate row for each neuron.

For comparison we have marked the length of an interval of 100 msec by two vertical
lines. This time span is known to suffice for the completion of some complex multilayer
cortical computations.

On the other hand experimental evidence has accumulated during the last few
years which indicates that many biological neural systems use the timing of single



action potentials (or ”spikes”) to encode information ([1], [2], [3], [5], [6], [7], [15],
[22], [30], [36], [56], [60], [65], [66], [70]).

These experimental results from neurobiology have lead to the investigation of a
third generation of neural network models wich employ spiking neurons (or “integrate
and fire neurons”) as computational units. Recently, one has also started to carry out
experiments with related new types of electronic hardware such as pulse stream VLSI
(see e.g. [13], [14], [24], [25], [26], [47], [48], [50], [51], [52], [53], [55], [73]). In these
new chips one can encode analog variables by time differences between pulses, which
has practical advantages over other encoding methods. The goal of understanding
the capabilities and limitations of this new type of analog neural hardware provides
additional motivation for theoretical investigation of the third generation of neural
network models.

One may also view threshold circuits (i.e. neural nets from the first generation)
as abstract models for digital computation on networks of spiking neurons, where the
bit 1 is coded by the firing of a neuron within a certain short time window, and 0
by the non-firing of this neuron within this time window (see e.g. [72]). However,
under this coding scheme a threshold circuit provides a reasonably good model for
a network of spiking neurons only if the firing times of all neurons that provide the
input bits for another spiking neuron are synchronized (up to a few msec). Apparently
such strongly synchronized activity does occur in biological neural systems (see [2],
[6]) but many argue that it is not their typical mode of operation.

Mathematical models for “integrate and fire neurons” (or “spiking neurons” as
they have been called more recently) can be traced back to [34] (see [71]). There exist
a number of variations of this model, which are described and compared in a recent
survey (see [17]). With regard to the relationship of these mathematical models to
the known behaviour of biological neurons we refer to [1], [3], [5], [9], [10], [22], [27],
[56], [63], [64], [71], and [69]. These mathematical models for spiking neurons do not
provide a complete description of the extremely complex computational function of
a biological neuron. Rather, like the computational units of the previous two gen-
erations of neural network models, these are simplified models that focus on just a
few aspects of biological neurons. However, in comparison with the previous two
models they are substantially more realistic. In particular, they describe much better
the actual output of a biological neuron, and hence they allow us to investigate on
a theoretical level the possibilities of using time as a resource for computation and
communication. Whereas the timing of computation steps is usually “trivialized” in
the models from the preceding two generations (either through an assumed synchro-
nization, or through an assumed stochastic asynchronicity), the timing of individual
computation steps plays a key-role for computations in networks of spiking neurons.
In fact, the output of a spiking neuron v consists of the set F,, C R of points in time
when v “fires” (where RT = {z € R:z > 0}).



In the simplest (deterministic) model of a spiking neuron one assumes that a neu-
ron v fires whenever its “potential” P, (which models the electric membrane potential
at the “trigger zone” of neuron v) reaches a certain threshold ©,. This potential P,
is the sum of socalled excitatory postsynaptic potentials (“EPSP’s”) and inhibitory
postsynaptic potentials (“IPSP’s”), which result from the firing of other neurons u
that are connected through a “synapse” to neuron v .The firing of a “presynaptic”
neuron v at time s contributes to the potential P, at time ¢ an amount that is mod-
elled by the term wy, - €4,(t — s) , which consists of a “weight” w,, > 0 and a
response-function €,,(t — s) . Biologically realistic shapes of such response functions
are indicated in Figure 2.
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Figure 2: Typical shape of response functions (EPSP and IPSP) of a biological neuron.

The “weight” w,, > 0 in the term w,, - €,,(t — s) reflects the “strength” (called
“efficacy” in neurobiology) of the synapse between neuron u and neuron v . In the
context of learning one can replace w,, by a function w,,(t) . In addition it has
been conjectured that rapid changes of the value of w,,(t) are also essential for
computations in biological neural systems. However for simplicity we view here w,,
just as a constant.

The restriction of w,, to non-negative values is motivated by the assumption
that a biological synapse is either “excitatory” or “inhibitory”, and that it does not



change its “sign” in the course of a “learning-process”. In addition, for most biological
neurons u , either all response-functions su,,,(t — s) for postsynaptic neurons v are
“excitatory” (i.e. positive), or all of them are “inhibitory” (i.e. negative). Obviously
these constraints have basically no impact on theoretical complexity investigations
(just consider pairs of excitatory and inhibitory neurons instead of single neurons),
unless one cares about small constant factors in the size of networks, or one wants to
model the actual architecture of cortical circuits (see [14], [64]).

It is mathematically more convenient to assume that the potential P, has value 0
in the absence of postsynaptic potentials, and that the threshold value ©, is always
> 0. In a “typical” biological neuron the resting membrane potential is around -70
mV, the firing threshold of a “rested” neuron is around -50 mV, and a postsynaptic
potential (i.e. EPSP or IPSP) changes the membrane potential temporarily by at
most a few mV.

If a neuron v has fired at time ¢’ , it will not fire again for a few msec after ¢ , no
matter how large its current potential P,(t) is ( “absolute refractory period”). Then
for a few further msec it is still “reluctant” to fire, i.e. a firing requires a larger value
of P,(t) than usual ( “relative refractory period”). Both of these refractory effects are
modelled by a suitable “threshold function” ©,(t — t') , where ¢’ is the time of the
most recent firing of v. In the deterministic (i.e. noise free) version of the spiking
neuron model one assumes that v fires whenever P,(t) crosses from below the function
O,(t—t') . A typical shape of the function 6, (t—t') for a biological neuron is indicated
in Figure 3. We assume that ©,(t — t') = 0,(0) for large values of t — ¢’ . We will
consider in this article only computations in models for networks of spiking neurons
where can assume that each neuron v did not fire for a while (i.e. ¢ — t' is large),
hence its threshold function has returned to its “resting value” ©,(0) . Therefore the
shape of O, is not relevant for these arguments, provided that ©,(z) = ©,(0) for
sufficiently large z .
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v

Figure 3: Typical shape of the threshold function of a biological neuron.

A formal Spiking Neuron Network (SNN) — which was introduced in [38], [39] —
consists of a finite set V' of spiking neurons, a set E C V x V of synapses, a weight

Wy > 0 and a response function €,, : RT — R for each synapse (u,v) € E (where
R :={z € R:z > 0}), and a threshold function ©, : RT — R" for each neuron



veV.

If F, C R" is the set of firing times of a neuron v , then the potential at the
trigger zone of neuron v at time ¢ is given by

Pv(t) = Zu:(u,v)EE‘ ZsEFu:s<t Wuw - gu’v(t o 8) )

In a noise-free model a neuron v fires at time ¢ as soon as P,(t) reaches ©,(t — 1) ,
where t' is the time of the most recent firing of v .

For some specified subset V;p,; C V of input neurons one assumes that the firing
times (“spike trains”) F, for neurons u € Vi, are not defined by the preceding
convention, but are given from the outside. The firing times F, for all other neurons
v € V are determined by the previously described rules, and the output of the network
is given in the form of the spike trains F,, for the neurons v in a specified set of output
neurons Voyput C V.

Experiments have shown that in vitro biological neurons fire with slightly varying
delays in response to repetitions of the same current injection ([3]). Only under certain
conditions neurons are known to fire in a more reliable manner ([49]). Therefore
one also considers the stochastic or noisy version of the SNN model ([41]), where
the difference P,(t) — ©,(t — t') just governs the probability that neuron v fires at
time t. The choice of the exact firing times is left up to some unknown stochastic
processes, and it may for example occur that v does not fire in a time interval I
during which P,(t) — ©,(t —t') > 0, or that v fires “spontaneously” at a time ¢ when
P,(t) —0,(t—1) <0.

The previously described noisy version of the SNN model is basically identical
with the spike response model in [17], [18], and with the other common mathematical
models for networks of spiking neurons (see e.g. [1], [5], [71]). Subtle differences exist
between these models with regard to their treatment of the refractory effects and
the “reset” of the membrane potential after a firing. But these differences will be
irrelevant for the results that are considered in this article.

For theoretical results about stable states, synfire chains, associative memory
etc. in networks of spiking neurons we refer to [1], [4], [8], [11], [16], [18], [19], [21],
[23], [57]. Results about computations with stochastic spiking neurons in firing rate
coding can be found in [31], [62], and results about the information transmitted by
spiking neurons in [68]. Computations with a somewhat different model of a stochastic
spiking neuron are studied in [28] (see also the discussion in [39]), and in [62], [74].
The possible use of phases of periodically firing neurons for the dynamic binding of
variables is investigated in [61].

We use in this article the terms analog, numerical and real-valued interchangeably
to denote variables that range over R or an interval of R . For simplicity we assume



that all neural nets from the first two generations that are considered in the following
have a feedforward architecture.

2 Simulation and Separation Results

The mathematically simplest one within the range of SNN-models is the one where
the firing is deterministic, and both the response functions and the threshold functions
are piecewise constant (i.e. “step functions”) as indicated in Figure 4. In the following
we refer to this version as type A. This version of the SNN-model actually captures
quite well the intended capabilities of artificial spiking neurons in pulse stream VLSI.

We will later also discuss SNN-models of type B, where we assume that response-
and threshold functions are continuous and piecewise linear. Examples for the sim-
plest nontrivial response functions of type B are indicated in Figure 5. By using
4 or 5 linear segments one can appoximate quite well the response- and threshold
functions of biological neurons with continuous piecewise linear functions (and hence
with spiking neurons of type B).
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Figure 4: Response- and threshold functions of a spiking neuron of type A.



2.1 Computation of Boolean Functions

We first observe that for the case of boolean input this model is computationally at
least as powerful as neural nets from the first generation. We assume that n input
bits x1,...,x, are given to the SNN via n input neurons a4, ..., a, , where a; fires at
a specific time Ty if z; = 1, and «a; does not fire at all if x; = 0. We assume that the
output bit of the SNN is given by the firing or non-firing of a specified output neuron
during some specified time-window. One can then simulate any layered feedforward
neural net N from the first generation by an SNN A’ of type A which has basically
the same architecture as A/. Only if one wants to respect in N’ the biologically
motivated constraint that each neuron in N’ should only trigger EPSP’s, or only
IPSP’s, then each gate of N has to be simulated by a pair consisting of an excitatory
and an inhibitory spiking neuron that both get the same input. In N one need not
make use of the possibility to assign different values to the delays A, , of a neuron
v (which model the time that passes until a firing of u has an effect on P,(t) , see
Figure 4) for different neurons u with (u,v) € E . For a biological neuron, these
delays A, , may very well be different, depending on the length of the axon of v and
the distance from the synapse to the trigger zone of v , but also on the distribution
of ion-channels in the dendritic tree of v . In fact, it is frequently assumed that the
delays A, , = A,,(t) are parameters that are tuned by some learning algorithm in
biological neural systems (see e.g. [30]). Recent theoretical results [46] indicate that
the expressive power of a neuron of type A with n variable delays is larger than that
of a neuron of type A with n variable weights: its VC-dimension is ©(nlogn) in the
former case, but only O(n) in the latter case.

If one makes use of the possibility to employ for certain neurons v different delays
A, for different neurons v , then one can show that an SNN of type A is in fact
computationally more powerful than neural nets of the same or similar size from the
first or second generation. For that purpose we consider the concrete boolean function
CD,, : {0,1}*" — {0,1} , which is defined by

CDp(x1, oy Ty Y1y -y Yn) = for some i € {1,...,n}
0, otherwise .

This function appears to be relevant in a biological context, since it formalizes some
form of pattern-matching respectively coincidence-detection.

A single spiking neuron v of type A (or of any other “reasonable” type) can
compute C'D,, . One just has to choose the delays to v from the input nodes a4, ..., a,
(for zy,...,x,) and the input nodes bi,...,b, (for yi,...,y,) in such a way that
Ayw = Ay fori=1,...,n,and A, , is so much larger than A, , for j > i that
the nonzero parts of the response functions ¢, , and €, , do not overlap if a; and a;
fire simultaneously. All weights can be chosen equal to 1.



On the side we would like to point out that a single spiking neuron of type A
(or of type B) can compute this function C'D,, in a noise-robust fashion, where small
deviations in the firing times of the input neurons a4, ..., a, , in the delays from these
input neurons, in the weights or in the firing threshold do not affect the correctness
of the output. To achieve this, it suffices to assign to the firing threshold ©,(0) of
the spiking neuron a value such as 1.5-(maximal value of an EPSP).

Theorem 1

a) Any threshold circuit N that computes CD,, has at least n/log(n + 1) gates.

b) Any sigmoidal neural net N with piecewise polynomial activation functions that
computes CD,, has Q(n'/?) gates. For the case of piecewise exponential activa-
tion functions (such as o) one gets a lower bound of Q(n'/*).

Proof: Let ay,...,a,, bi,...,b, be the input nodes of ' where it receives the values
TiyeeesTyy Yi,---, Y, Of its 2n input variables. We show in fact a slightly stronger
result than claimed: The lower bounds hold already for the numbers of those gates
in NV that have a direct edge from at least one of the input nodes by,...,b, . Thus
in the case of layered neural nets these are lower bounds for the number of gates on
the first hidden layer.

We consider computations of N where some “fixed” vector ¢ € {0,1}" is assigned

to the input nodes by, ...,b, , so that the output of N’ may be viewed as a function
of the assignments to the input nodes a4, ..., a, . We only consider the set S of those
n assignments e;,...,e, € {0,1}" to ai,...,a, where exactly one of the n input

variables has the value 1 . Since N computes CD, , it is obvious that for the 2"
different choices of ¢ € {0,1}" the network computes 2" different functions from S
into {0,1} .

For the proof of part a) we fix a linear order < on the computation nodes in
N so that each computation node g receives (apart from input nodes ay,...,a, and
bi,-..,b,) only edges from other computation nodes in N that precede g in this linear
order. Consider some arbitrary computation node g in N, and a set @) of assignments
q € {0,1}" to by, ..., by, so that every computation node before g computes a function
from S into {0,1} (with regard to assignments of inputs from S to the input nodes
ai,-...,0y), which is the same for each of the assignments ¢ € ) to b,...,b, . Note
that for the first computation node in N we can set @ := {0,1}" .

Then for assignments from S to ay,...,a, , the values received by gate g from
other computation nodes do not depend on the chosen assignment g € Q to by, ..., b, .
Hence, the weighted sum of the values received by ¢ via direct edges from the input
nodes aq,...,a, , and from computation nodes that precede ¢ in < , assumes at most
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n different values r; < ... < r, for the n different assignments from S to aq,...,a,
and arbitrary assignments from @ to bq,...,b, . Obviously the output of g depends
only on the value of this weighted sum and on the weighted sum r of those values
that g receives via direct edges from input nodes b, ...,b, . If © is the threshold of
the threshold gate g , then the minimal ¢ such that r; +r > © can assume at most
n + 1 different values (including the value i = n+ 1 if r, + 7 < ©) . Consequently,
with different fixed assignments of ¢ € @ to by,...,b, the node g can compute at
most n + 1 different functions from S into {0,1} . This yields a partition of @) into
n + 1 equivalence classes, and one can apply the same argument — for each of these
equivalence classes — to the next node in A/ (with regard to the linear order <).

If one starts this construction with @ = {0,1}" for the first computation node in
N, after the k-th node one gets a partition of @ into at most (n + 1)* equivalence
classes. On the other hand the fact that N' computes C'D,, implies that the output
node of N computes for each assignment to by, ..., b, a different function from S into
{0,1} , i.e. it partitions {0,1}" into 2" different equivalence classes ) . Hence, the
number s of computation nodes in N that have a direct edge from at least one of the
input nodes by, ...,b, satisfies (n 4+ 1)* > 2" ie. s > n/log(n+1) .

In the proof of part b) we construct from N a related sigmoidal neural net N’
for which we can show that it has “high” VC-dimension, and hence must contain a
substantial number of sigmoidal gates. Such proof structure was first used by Koiran
[32], in a somewhat different context.

If one considers just ai,...,a, as input nodes of N, then different fixed assign-
ments to by, ...,b, can only shift the threshold of those s computation nodes in N
that have direct edges from by,...,b, . We now consider a variation A" of N/ where
the input nodes by, ...,b, are deleted, and the thresholds of the abovementioned s
gates in N are viewed as the only “programmable parameters” (or “weights”) in the
usual sense of VC-dimension theory for neural networks (for a brief survey see [37]).
The fact that NV computes CD,, implies that N shatters S (with regard to different
assignments to these s programmable parameters). Thus N’ has a VC-dimension of
at least n . On the other hand, the results of Goldberg and Jerrum [20] and Karpinski
and Macintyre [29] imply that in this case the number s of programmable parameters
in N satisfies n = O(s?) in the case of piecewise polynomial activation functions,
respectively n = O(s*) in the case of piecewise exponential activation functions. R
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2.2 Computation of Functions with Analog Input and Boolean
Output

We have already shown that for boolean inputs a network of spiking neurons of type
A has the full computational power of a neural net from the first generation of similar
size, and is in fact more powerful. However neural nets from all three generations are
also able to process numerical inputs from R" or [0, 1]™ , instead of just boolean inputs
from {0,1}" . For networks of spiking neurons it is natural to encode a numerical
input variable z; € R by the firing time T}, — z; - ¢ of input neuron a; (see also
[22]), where ¢ > 0 is some constant and T}y, is a parameter that depends on the time
when the input arrives, but not on the values of the input variables z; . Similarly one
expects that a numerical output y € R is realized in an SNN by the firing of a certain
“output neuron” at time Toypyr — ¥ + ¢ Where Touspyt > Tinpur is independent from
the values x4, ..., z, of the input variables. We will refer to this method of encoding
analog variables by the timing of single spikes as “linear temporal coding”. For the
computation of functions with boolean output one can either employ the same output
convention as before, or apply rounding (i.e. one considers a firing of the output
neuron before a certain fixed time 7" as an output of “17).

A concrete example for an interesting function with analog input and boolean
output is the “element distinctness function” ED, : (R")" — {0, 1} defined by

1, if z; = z; for some i # j
ED,(x1,...,2,) = 0, if |z; — ;| > 1 for all 4, j with ¢ # j
arbitrary, otherwise .

If one encodes the value of input variable z; as the firing time T}y, — @; - ¢ (of input
neuron a;), then for sufficiently large values of the constant ¢ > 0 a single spiking
neuron v can compute ED, (even with A, , = A, for all 4,5 € {1,...,n}) .
This holds for any reasonable type of response function, e.g. type A, or the type B
considered below.

We also would like to point out that E'D, can be computed by a single spiking
neuron in a very noise robust fashion. Let €,,,, be the maximal value that is assumed
by an EPSP, and let £(c) be the maximal value that can be achieved by the sum of
two EPSP’s that arrive with a temporal difference of at least ¢ . By choosing the
value 6,(0) = w for the firing threshold of a “rested”neuron v one achieves
that v definitely fires if z; = z; for some ¢ # j , and that it does definitely not fire if
|z; — ;| > 1 for any two different inputs z; , z; given in temporal coding. In addition
with this choice of ©,(0) the neuron v gives the correct output even if its membrane
potential, its firing threshold, and the arrival times of its input-EPSP’s are subject

to noise. Furthermore its “safety margin” of 26%_8(0) can be increased up to the
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value €222 if ¢ is chosen so large that £(c) = emaq -

This noise robust computation of E'D, by a spiking neuron is made possible
through the way in which this function ED,, is defined: If min{|z; —z;|: i # j} has
a value between 0 and 1 for some input (zi,...,z,) € R" , then it does not matter
whether the neuron fires or not. Thus the clause “arbitrary” in the definition of E D,
makes sure that “hair-trigger situations” can be avoided by a spiking neuron that
computes ED,, .

Theorem 2 Any layered threshold circuit N that computes ED,, has Q(n - log n)
gates on its first hidden layer.

Proof: Let k be the number of gates in N on the first hidden layer. The corresponding
k halfspaces partition the input space R" into at most 2¥ different polytopes (i.e.
intersections of halfspaces) so that N gives the same output for all inputs from the
same polytope. For this consideration one has to allow polytopes that are intersections
of closed and open halfspaces.

We now consider those n! inputs z, = (w(1),---,7(n)) € {1,...,n}" that repre-
sent all n! permutations 7 of {1,...,n} . It suffices to show that each z, lies in a
different polytope, since this implies that 2¥ > n! . Thus assume for a contradiction
that two permutations z, and z, lie in the same polytope P . By construction the
threshold circuit N gives the same output for all z € P . Since P is convex, N gives
not only the same output for z, and z; , but also for all points on the line L that con-
nects these two points. This yields a contradiction, since ED,(z,) = ED,(z;) =0,
but ED,(z) =1 for some point z on this line L . |

In order to analyze the complexity of functions with boolean output on sigmoidal
neural nets, one needs to fix a suitable convention for rounding the real-valued out-
put of such nets. In order to make our subsequent lower bound result as strong as
possible, one may assume here the weakest possible rounding convention, where for
some arbitrary parameter © the real-valued output r of the output node of the net is
rounded to 1 if r > © . No separating interval is required between outputs that are
rounded to 0 respectively 1 .

In the same way as for CD,, one can show that any neural net from the second
generation that computes ED, needs to have Q(n'/*) gates. This lower bound will be
improved to (n—1)/4 in the following theorem. The proof of this stronger separation
result exploits, instead of a bound for the VC-dimension, Sontag’s better upper bound
of 2w + 1 [67] for the maximal number d such that every set of d different inputs in
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general position can be shattered by a sigmoidal neural net with w programmable
parameters. In order to apply his result in our lower bound argument one has to
construct from an arbitrary sigmoidal neural net which computes ED,, a related net
that shatters every set of n — 1 inputs.

Theorem 3 Any sigmoidal neural net N that computes ED,, has at least ”7_4 -1
hidden units.

Proof: Let A be an arbitrary sigmoidal neural net with k gates that computes ED,,.

Consider any set S C R" of size n — 1. Let A > 0 be sufficiently large so that the
numbers in A- S have pairwise distance > 2 . Let A be a set of n — 1 numbers > max
(A - S) + 2 with pairwise distance > 2 .

By assumption A can decide for n arbitrary inputs from ) - S U A whether they
are all different. Let N, be a variation of N' where all weights on edges from the
first input variable are multiplied by A\. Then by assigning suitable fixed sets of n — 1
pairwise different numbers from X - S U A to the other n — 1 input variables, N,
computes any characteristic function over S .

Thus, if one considers as programmable parameters of N the < k weights on edges
from the first input variable of N and the < k thresholds of gates that are connected
to some of the other n — 1 input variables, then N shatters S with 2k programmable
parameters. Actually in the more general setting of the subsequent argument we have
only k£ 4 1 programmable parameters, since the k£ occurrences of the factor A in the
weights may be counted as a single programmable parameter.

Since the set S C R* of size n — 1 was chosen arbitrarily, we can now apply the
result from Sontag [67], which implies that n—1 < 2(k+1)+1, hence k > (n—4)/2.
Thus N has at least (n—4)/2 computation nodes, and therefore at least (n—4)/2—1
hidden units. |

Remarks:

1. The lower bound of §2(n) in Theorem 3 is the largest lower bound for the size of
sigmoidal neural nets that has so far been achieved (not just for ED,, , but for any
concrete function). The best previously known lower bound was 2(n'/*) for some
other function, due to Koiran [32].

2. The result of section 4 in Sontag [67] implies that his upper bound, and hence the
lower bound of the preceding Theorem 3, remain valid if the neural net N' computing
ED,, employs both sigmoidal gates and threshold gates.
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Apparently for most neurons v in the cortex it is not likely that the “weights”
Wy, of its synapses are large enough such that just two synchronous EPSP’s suffice
to increase the potential P, over the firing threshold ©,(0) of a “rested” neuron v .
In that regard the common mathematical model for a spiking neuron “overestimates”
the computational capabilities of a biological neuron. It is more realistic to assume
that 6 simultaneously arriving EPSP’s can cause a neuron to fire (see the discussion
in [72]). Therefore we consider the following variation ED,, : (R")® — {0,1} of the
function ED,,: -

ED,(z,...,2z,) =

(1, if there exists some k& > 1 such that z, zo, x3,
T3k+1, T3k+2, Tak+3 all have the same value
¢ 0, if every interval I C R of length 1 contains the values

of at most 3 input variables z;

| arbitrary, otherwise .

In the common model of a spiking neuron the membrane potential P,(t) is assumed
to be a linear sum of the postsynaptic potentials. This is certainly an idealization,
since isolated EPSP’s that arrive at synapses far away from the trigger zone (which
is located at the beginning of the axon) are subject to an exponential decay on their
way to the trigger zone. Hence such isolated EPSP’s have hardly any impact on the
membrane potential P,(t) at the trigger zone. On the other hand, EPSP’s that arrive
synchronously at adjacent synapses are “boosted” at “hot spots” of the dendritic
tree, and hence may have a significant impact on the membrane potential P,(t) at
the trigger zone [63]. We have defined ED,, in such a way that, in spite of these
nonlinear effects in the integration of EPSP’s, it is quite plausible that a biological
neuron can compute ED,, in temporal coding for a fairly large value of n . A neuron
computing E D, needs to fire only when two “blocks” consisting of 3 adjacent synapses
all receive synchronous EPSP’s. Furthermore a “hair-trigger” situation is avoided,
since no requirements are made for the case when the neuron receives just 4 or 5
synchronous (or almost synchronous) EPSP’s. Non-firing is required only in the case
when the neuron receives at most 3 EPSP’s during any time interval of length c .

In order to prove a lower bound for the number of hidden units in arbitrary neural
nets N that compute ED, with sigmoidal and threshold gates, one proceeds as in
the proof of Theorem 3. One now considers arbitrary sets S C R* of size |(n—3)/3|
and divides the remaining n — 3 input variables into | (n — 3)/3] blocks of 3 variables
that always receive the same input value. Let Ny be a variation of N” which identifies
the first 3 input variables, and multiplies all their weights by a common factor A .
Since N computes ED, , the network Ny with k¥ computation nodes shatters S
with the help of k + 1 programmable parameters. Hence Sontag’s result [67] yields
[(n—3)/3] <2(k+1)+1,ie. k> (n—15)/6.
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If one plugs in a common estimate for the number n of synapses at a biological
neuron, such as n = 10000 , the preceding inequality yields a lower bound of 1663
for the number ¥ — 1 of hidden units in A/ . Hence, even if one prefers to plug in
somewhat different values for some of the abovementioned constants, the preceding
proof for ED, (respectively for a variation of ED, that reflects different choices
of the parameters involved) still yields a lower bound of several hundreds for the
minimal size of a sigmoidal neural net which computes the same function. Thus
we have demonstrated a substantial difference between the computational power of
biological neurons and sigmoidal “neurons” (i.e. computational units from the second
generation).

For numerical inputs our previously sketched simulation of threshold circuits (i.e.
neural nets from the first generation) by a network of spiking neurons of type A fails.
More surprisingly, one can prove that no such simulation is possible. Let f: N — N
be any function. Then for numerical inputs there ezists no way of simulating an
arbitrary threshold circuit with s gates by a network of f(s) spiking neurons of type A.
Consider a threshold circuit that outputs 1 for inputs z1, zo, x3 € [0,1] if 21+ 22 = 3,
and 0 else. Obviously this can be achieved by a circuit with just 3 threshold gates:
the circuit outputs 1 if (z1+x9 > 23 AND z;+125 < x3) . However, it has been shown
that this function from [0,1]? into {0, 1} (as well as any restriction to [0,7]® for some
v > 0) cannot be computed by any network of spiking neurons of type A, no matter
how many neurons and how much computation time it employs. This follows from a
general characterization of the computational power of networks of spiking neurons
of type A for numerical inputs in terms of the computational power of a restriction
called N"-RAM of the common model of a random access machine (RAM) that is
given in [43].

Thus, we have arrived here at a limit of the computational power of spiking
neurons of type A for numerical inputs. The question arises whether this limitation
indicates a weakness of spiking neurons in general, or just a weakness of the extremely
simple response- and threshold functions of type A. For answering this question let
us consider spiking neurons with continuous piecewise linear (instead of piecewise
constant) response- and threshold functions, to which we refer as spiking neurons
of type B . Examples for the simplest nontrivial response functions for the type B
spiking neuron are indicated in Figure 5.

With regard to the computational power of spiking neurons of type B it does not
make much difference whether one allows here piecewise constant, piecewise linear, or
more general types of threshold functions ©, , as long as we consider only feedforward
computations and the threshold functions ©, have the value “c0” for small arguments.
In addition the concrete shape of the response functions of type B will be irrelevant
in the following.
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Figure 5: Response functions (EPSP and IPSP) of a spiking neuron of type B. The
particular shape of the “triangle”is not important for the results in this article.
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One can show that in contrast to the abovementioned negative result about neural
nets of type A, a network of O(1) spiking neurons with response functions of type B
(e.g. as indicated in Figure 5) can simulate any threshold gate even for n real valued
input variables. This simulation exploits an important effect of spiking neurons of
type B that cannot be realized with spiking neurons of type A: incoming EPSP’s
and IPSP’s can shift the firing time of a neuron in a continuous manner ([42]). More
precisely, for a certain range of the parameters involved, the firing time ¢, of a neuron
v in response to the firings of presynaptic neurons u at times Tmput — x, - ¢ can be
written in the form

t, = Toutput - Z Sign(gu,v) Wy - Ty (1)
u(u,v)eE

where Tyt does not depend on the values of the z, , and where sign(e,,) =1 in
the case of an EPSP and sign(e,,) = —1 in the case of an IPSP. Thus, neuron v
outputs the weighted sum

Z SIgN(Eyp) * Wy * Ty
u(u,v)EE

in temporal coding (in response to analog inputs x, given in temporal coding).
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Equation (1) reveals the somewhat surprising fact that, in the context of temporal
coding, the “weights” w,, of synapses of spiking neurons are able to play the same
role as those of computational units of the first two generations of neural network.

All subsequent, layers after the first hidden layer in a layered neural net from the
first generation receive just boolean inputs, even if the network inputs are real-valued.
Hence, these subsequent layers can easily be simulated by spiking neurons of type
A (as indicated before). However, a subtle but serious problem arises if one wants
to simulate threshold circuits with boolean inputs and outputs (or any other type of
boolean circuit) with spiking neurons of type B, e.g. with response functions as in
Figure 5, which are substantially closer to the biological prototypes in Figure 2 than
response functions of type A. It is obvious that a spiking neuron of type B can simulate
a boolean gate only if it receives synchronized input spikes. The problem is that even
if a layer of spiking neurons of type B receives boolean input via synchronized input
spikes (e.g. in a coding where a spike corresponds to “1” and no spike corresponds to
“0”), the neurons on this layer will not fire in a synchronized manner, but at slightly
different times that depend on their concrete input “bits”. The root of this problem
(which does not arise for spiking neurons of type A) is the fact that a potential P,(t)
that is the sum of several EPSP’s and IPSP’s of type B will itself be continuous and
piecewise linear, and that the slopes of its linear pieces will depend in particular on the
number of EPSP’s that it receives simultaneously (hence on the concrete “boolean”
input in our interpretation). Thus the precise time when P,(t) crosses the threshold
©,(0) will in general depend on the “boolean” input of the spiking neuron. This
causes a serious problem for the simulation of multilayer threshold circuits (or other
multilayer boolean circuits) by SNN’s of type B, because if those neurons v on the
considered layer that are firing (and hence represent a “1” in the simulation of a
boolean circuit) do not fire in a synchronized manner, the simulation of threshold
gates, or even of simpler boolean gates (such as AND), by the next layer of spiking
neurons of type B becomes impossible.

Theorem 4 Any threshold circuit of s gates having real-valued inputs from [0, 1]"
can be simulated by a network of O(s) spiking neurons of type B.

Proof: Consider first an arbitrary threshold gate G with inputs (z1,...,z,) from
[0,1]™ that outputs 1 if > ; a;@; > «p , and 0 otherwise. We show that G' can be
simulated by a network having a constant number (i.e. O(1)) of spiking neurons of
type B with regard to temporal coding of network inputs z, ..., z, (for a sufficiently
small value of the constant ¢). One employs here the same construction as for the
simulation of a linear (respectively sigmoidal) gate given in [42], which yields a spiking
neuron v whose firing time represents the weighted sum >7" ; o;z; in temporal coding.
In particular v fires at or before a fixed time 7' (which does not depend on zy, ..., z,)
if 3%, a;x; > ap , and after time 7" otherwise. We arrange that the resulting EPSP
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from v arrives at a subsequent spiking neuron v’ , which receives in addition an EPSP
from an auxiliary spiking neuron whose firing time depends on Tj,;,; , but not on
Zi,...,T, . With a suitable choice of weights and delays for v’ , the neuron will fire
if and only if v fires at or before time 7" .

Obviously one can simulate in the same way the whole first layer of any given
threshold circuit C' . In order to simulate the subsequent layers of C' with spiking
neurons of type B, one can employ the construction from [39]. The previously de-
scribed spiking neurons v’ represent the outputs of gates from the first layer of C' by
firing if and only if the corresponding gate in C' outputs 1. However, the precise time
at which ¢ fires in this case depends on z1,...,z, . Hence, before one can use the
“boolean” outputs of these gates v' as inputs for other spiking neurons of type B to
simulate the subsequent layers of C' according to the construction in [39], one has to
employ a synchronization module as constructed in the proof of Theorem 2.1 in [39]. B

2.3 Further Results for Networks of Spiking Neurons of
Type B

We have shown in the preceding section that in contrast to SNN’s of type A, networks
of spiking neurons of type B can simulate neural nets from the first generation even
for the case of real-valued network input. Hence, the question arises whether networks
of spiking neurons of type B can also simulate (respectively approximate) neural nets
from the second generation which have real-valued input and output. This question
is answered affirmatively in [42], by showing that, with regard to temporal coding
of real-valued variables z, any continuous function F : [0,1]* — [0,1]* can be
approximated arbitrary closely (with regard to uniform convergence, i.e. L) by a
one hidden layer network of spiking neurons of type B.

In fact, this result holds not just for the simple scheme of linear temporal coding
described at the beginning of section 2.2, but also for any other scheme of coding
analog variables by the timing of single spikes that is “continuously related” to this
scheme. Thus for example, it also holds if a neuron that fires at time 7" — x - ¢ does
not encode the analog number x , but instead e * or 23 .

In addition there exists evidence that many practically relevant analog function F'
can be approximated by small networks of spiking neurons of type B. A large number
of results regarding practical applications of learning with backprop on sigmoidal
neural nets suggest that the relevant target functions F' for these applications can be
learnt (and hence approximated) by sigmoidal neural nets with a rather small number
of sigmoidal gates. Additional empirical evidence suggests that the precise form of the
sigmoidal acitvation function is not important for the number of sigmoidal gates that
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are needed. Thus one can argue that the target functions F : [0,1]" — [0,1]* that
arise in application problems can in general be approximated quite well by sigmoidal
neural nets with a small number s of sigmoidal units that employ the following linear
saturated activation function m :

0, ify<0
m(y) =< y, if0<y<1
1, ify>1.

The approximation result of [35] implies that in this case F' can also be approximated
quite well by a network of O(s) spiking neurons of type B.

Thus, one may say that with regard to circuit complexity for computing analog
functions, networks of spiking neurons of type B are at least as powerful as neural
nets from the second generation. Furthermore, our previously described lower bounds
for the size of neural nets from the first two generations (for nets that compute the
functions CD,, , ED,, or ED,,) imply that networks of spiking neurons of type B are
in fact strictly more powerful than neural nets from the first two generations: in order
to achieve separation results between SNN’s of type B and neural nets from the first
two generations it just remains to verify that instead of a single spiking neuron of
type A also a single spiking neuron of type B can compute C'D,, , ED,, and ED, .

We refer to [39] and [42] for details of the proofs of the abovementioned sim-
ulation results. It can be seen from these proofs that — for positive results about
the computational power of SNN’s of type B — they do not actually require that the
response- or threshold functions are piecewise linear (i.e. of type B). Rather it suffices
to assume that EPSP’s have some small linearly increasing segment and IPSP’s have
some small linearly decreasing segment. These properties are approximately satisfied
by EPSP’s and IPSP’s of biological neurons (see Figure 2). In [38], [40] a complete
characterization of the computational power of SNN’s of type B is given in terms of
a restriction (called N-RAM) of the familiar model of a random access machine.

In addition it is shown in [42] that the simulation of sigmoidal neural nets by SNN’s
can also be carried out with the biologically more realistic model of a stochastic or
notsy spiking neuron. It is easy to see that the functions CD, , ED, and ED,
considered here, can be computed by a single noisy spiking neuron of type A or B.
Furthermore, it is shown in [41] that even with very noisy spiking neurons of type A
or B one can in principle carry out arbitrary digital computations with any desired
degree of reliability. However, noise certainly affects the computational power of
networks of spiking neurons for analog input, and we refer to [45] with regard to
limits of the computational power of networks of noisy spiking neurons with analog
input.
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3 Conclusions

We have analyzed in this article the computational power of networks of spiking
neurons with regard to temporal coding with single spikes. It turns out that this
computational model has at least the same computational power as neural nets from
the first two generations (i.e. multilayer perceptrons and sigmoidal neural nets) of
a similar size. Furthermore we have exhibited concrete functions which require for
their computation significantly fewer neurons in a network of spiking neurons.

The proof of Theorem 3 appears to be of independent interest in the theory of
sigmoidal neural nets, since it provides the strongest lower bound result for sigmoidal
neural nets that is currently known. It improves the largest previously known lower
bound Q(n'/*) [32] to 2(n) . This new lower bound result is also of interest from
the technical point of view, since it provides the first known application of recent
results [67] about the “Sontag-dimension” of neural nets. This is a new notion of a
“dimension” for a neural net that is in a certain sense dual to the familiar concept
of the Vapnik-Chervonenkis dimension of a neural net (one replaces “there exists a
set S of d inputs ...” by “for all sets S of d inputs ...” in the definition of the
dimension).

As the references in this article indicate, the theoretical investigation of networks
of spiking neurons is not a new research topic. In fact it has a long tradition in theo-
retical neurobiology, biophysics, and theoretical physics. However, a mathematically
rigorous analysis of the computational power of networks of spiking neurons has so
far been missing. We believe that such analysis will be helpful in understanding the
organization of computations in complex biological neural systems.

In addition such analysis appears to be helpful for evaluating the potential ca-
pabilities of various designs of “artificial networks of spiking neurons”, in particular
of silicon implementations of integrated circuits that compute with pulses ([13], [14],
[24],[25], [26], [48],[50], [51], [52], [53] [55], [73], [74]). For example the results of this
article and those in [43] show that there exist drastic differences between the com-
putational capabilities of networks of spiking neurons that operate with rectangular
pulses (i.e. type A) and those that operate with triangular pulses (i.e. type B).

Acknowledgements: I would like to thank Eduardo Sontag and an anonymous
referee for their helpful comments.
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