y-coordinates of elliptic curves

Dong Hwa Shin

Department of Mathematical Sciences KAIST

January 11, 2010

< ロ > < 回 > < 回 > < 回 > < 回 >

э

Introduction

Elliptic curves Modular curves Elliptic curves and modular forms Application to number theory

Elliptic integrals What does E look like?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

2 Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

3 Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

- Solving Diophantine equations
- Construction of class fields

Introduction

Elliptic curves Modular curves Elliptic curves and modular forms Application to number theory

Elliptic integrals What does E look like

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

2 Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

- Solving Diophantine equations
- Construction of class fields

Introduction Elliptic curves Modular curves

Elliptic integrals What does E look

Projective spaces

Denote

$$\mathbb{P}^{2}(\mathbb{C}) = \text{projective plane} = \left\{ [X : Y : Z] : X, Y, Z \in \mathbb{C} \text{ not all zero} \right\}$$

with the homogeneous coordinates X, Y, Z and affine coordinates

$$x = \frac{X}{Z}$$
 and $y = \frac{Y}{Z}$

Furthermore, let

$$\mathbb{P}^{1}(\mathbb{C}) = \text{projective line} = \left\{ [X : Y] : X, Y \in \mathbb{C} \text{ not all zero} \right\}$$

which can be identified with a Riemann sphere

 $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}.$

◆ロ▶★園▶★国▶★国▶ 国 のQの

Elliptic integrals What does E look like

Loci in $\mathbb{P}^2(\mathbb{C})$

Let *E* be a locus in $\mathbb{P}^2(\mathbb{C})$ defined by

$$E: y^2 = x(x-1)(x-\lambda)$$
 for $\lambda \neq 0, 1$

with the extra point O = [0:1:0]. For example,

Introduction

Elliptic curves Modular curves Elliptic curves and modular forms Application to number theory

Elliptic integrals What does E look like

Elliptic integrals

The differential form

$$\omega = \frac{dx}{y}$$

is holomorphic on E. Suppose that we try to define a map

$$\begin{array}{cccc} E & \stackrel{?}{\longrightarrow} & \mathbb{C} \\ P & \mapsto & \int_{O}^{P} \omega \end{array}$$

where the integral is along some path connecting O and P.

Namely, we are attempting to compute the (complex) line integral

$$\int_{\infty}^{x} \frac{dt}{\sqrt{t(t-1)(t-\lambda)}}$$

which is called an elliptic integral.

<ロ><部</p>

Elliptic integrals What does E look like?

Because the square-root is not single valued, the integral is not path-independent. For example,

Three paths in $\mathbb{P}^1(\mathbb{C})$

э

three integrals $\int_{\alpha} \omega$, $\int_{\beta} \omega$, $\int_{\gamma} \omega$ are not equal.

Introduction

Elliptic curves Modular curves and modular forms

Elliptic integrals What does E look lil

Branch cuts

In order to make the integral well-defined, it is necessary to make branch cuts as follows:

(日)

э

Then, then integrals will be path-independent on the complement of the branch cuts.

Introduction

Elliptic curves Modular curves Elliptic curves and modular forms Application to number theory

Elliptic integrals What does *E* look like?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does E look like?

2 Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

3 Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

- Solving Diophantine equations
- Construction of class fields

Elliptic integrals What does E look like?

More generally, $((1) \sim (10))$

- (1) Take two copies of $\mathbb{P}^1(\mathbb{C})$.
- (2) Make the indicated branch cuts:

(3) Glue them together along the branch cuts to form a Riemann surface (or, a torus) as follows:

- (4) On this torus, one should study the integral $\int dt/\sqrt{t(t-1)(t-\lambda)}$.
- (5) In fact, elliptic curves first arose when people began to study such "elliptic integrals" which is related to the arc-length of an ellipse.
- (6) The indeterminacy comes from integrating around non-contractible loops on the torus.
- (7) So we introduce two complex numbers, which are called periods of E,

$$\omega_1 = \int_{\alpha} \omega \quad \text{and} \quad \omega_2 = \int_{\beta} \omega.$$

Paths on $\mathbb{P}^1(\mathbb{C})$ and on the torus

э.

Elliptic integrals What does *E* look like?

(8) Now the integral

 $\int_{0}^{P} \omega$

is well-defined up to addition of a number of the form $n_1\omega_1 + n_2\omega_2$ for $n_1, n_2 \in \mathbb{Z}$. (9) Let

$$\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2.$$

Thus we have shown that there is a well-defined map

$$\begin{array}{rcl} E & \longrightarrow & \mathbb{C}/\Lambda \\ P & \mapsto & \int_O^P \omega \pmod{\Lambda}. \end{array}$$

(10) If Λ is a lattice in C, then the quotient space C/Λ will be a Riemann surface. Then by using the translation invariance of ω, one can verify that the above map is a complex analytic isomorphism.

Projective plane curves Elliptic functions Elliptic curves

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

2 Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

- Solving Diophantine equations
- Construction of class fields

Projective plane curves Elliptic functions Elliptic curves

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

2 Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

3 Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

- Solving Diophantine equations
- Construction of class fields

Projective plane curves Elliptic functions Elliptic curves

The projective plane

Covers of $\mathbb{P}^2(\mathbb{C})$

 $\mathbb{P}^2(\mathbb{C}) = (\mathbb{C}^3 - \{0\})/\mathbb{C}^*$

is a Hausdorff compact space which can be covered by the three open sets

$$U_{0} = \left\{ [X:Y:Z] : X \neq 0 \right\}$$
$$U_{1} = \left\{ [X:Y:Z] : Y \neq 0 \right\}$$
$$U_{2} = \left\{ [X:Y:Z] : Z \neq 0 \right\}.$$

Each U_i is homeomorphic to \mathbb{C}^2 , for example

$$\begin{array}{rcl} U_2 & \stackrel{\approx}{\longrightarrow} & \mathbb{C}^2 \\ [X:Y:Z] & \mapsto & (x, \ y) = (X/Z, \ Y/Z). \end{array}$$

Projective plane curves Elliptic functions Elliptic curves

Projective plane curve V

For a (nonconstant) homogeneous polynomial F(X, Y, Z), consider its locus

$$V = \left\{ [X:Y:Z] \in \mathbb{P}^2(\mathbb{C}) : F(X,Y,Z) = 0 \right\}.$$

The intersection

$$V_i = V \cap U_i \qquad (i = 0, 1, 2)$$

is exactly an affine plane curve when transported to \mathbb{C}^2 .

For example, V_2 is homeomorphic to the affine plane curve described by the equation

$$f(x, y) = F(x, y, 1) = 0.$$

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Projective plane curves Elliptic functions Elliptic curves

Nonsingular F defines a compact Riemann surface

F(X, Y, Z) is said to be nonsingular if there are no common solutions (in $\mathbb{P}^2(\mathbb{C})$) to the system of equations

$$F = \frac{\partial F}{\partial X} = \frac{\partial F}{\partial Y} = \frac{\partial F}{\partial Z} = 0.$$

Then one can obtain

F is nonsingular \iff each V_i is a smooth affine plane curve (in \mathbb{C}^2).

If F(X, Y, Z) is a nonsingular (irreducible) polynomial defining the projective plane curve V, then

- (1) each V_i (i = 0, 1, 2) is a smooth (irreducible) affine plane curve, and hence is a Riemann surface;
- (2) at each point of V_i we take a ratio of the homogeneous coordinates as a local coordinate;
- (3) then V becomes a compact Riemann surface as a closed subset of compact $\mathbb{P}^2(\mathbb{C})$.

Projective plane curves Elliptic functions Elliptic curves

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

2 Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

3 Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

- Solving Diophantine equations
- Construction of class fields

Projective plane curves Elliptic functions Elliptic curves

イロト (語) (語) (語)

= 900

Elliptic functions

Let Λ be a lattice in \mathbb{C} , that is,

 $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \quad \text{for some } \mathbb{R}\text{-basis } \{\omega_1, \ \omega_2\} \text{ of } \mathbb{C}.$

We often write $\Lambda = [\omega_1, \omega_2]$.

An elliptic function (relative to Λ) is a meromorphic functions f(z) on \mathbb{C} which satisfies

$$f(z + \omega) = f(z)$$
 for all $\omega \in \Lambda$, $z \in \mathbb{C}$.

(1) We can view elliptic functions as meromorphic functions on the torus \mathbb{C}/Λ .

- (2) Hence an elliptic function with no poles is constant.
- (3) The field of all such functions is denoted $\mathbb{C}(\Lambda)$.

Projective plane curves Elliptic functions Elliptic curves

(日)

э

Weierstrass functions

The Weierstrass \wp -function (relative to Λ) is defined by the series

$$\wp(z; \Lambda) = \frac{1}{z^2} + \sum_{\omega \in \Lambda - \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right) \qquad (z \in \mathbb{C}).$$

Clearly, $\wp(z; \Lambda) = \wp(-z; \Lambda)$ (that is, $\wp(z; \Lambda)$ is an even function).

By termwise differentiation (w.r.t. z) we get

$$\wp'(z; \Lambda) = -2 \sum_{\omega \in \Lambda} \frac{1}{(z-\omega)^3},$$

which is obviously an elliptic function.

Projective plane curves Elliptic functions Elliptic curves

$\wp(z; \Lambda)$ is an elliptic function

(1) Let $\omega \in \Lambda$. Integrating

$$\wp'(z+\omega;\Lambda) = \wp'(z;\Lambda) \qquad (z \in \mathbb{C} - \Lambda)$$

yields

$$\wp(z + \omega; \Lambda) = \wp(z; \Lambda) + c(\omega)$$
 for some $c(\omega)$ independent of z.

(2) Letting $z = -\omega/2$ we get that

$$\wp(\omega/2; \Lambda) = \wp(-\omega/2; \Lambda) + c(\omega)$$

= $\wp(\omega/2; \Lambda) + c(\omega)$ because \wp is even,

which shows $c(\omega) = 0$.

- (3) Hence $\wp(z; \Lambda)$ is an elliptic function, too.
- (4) As is well-known

$$\mathbb{C}(\Lambda) = \mathbb{C}\bigg(\wp(z; \Lambda), \wp'(z; \Lambda)\bigg).$$

ヘロア 人間 アメヨア 人間アー

= nar

Projective plane curves Elliptic functions Elliptic curves

Laurent serious for $\wp(z; \Lambda)$

(1) For a lattice Λ in \mathbb{C} , the Eisenstein series of weight 2k (relative to Λ) is the series

$$G_{2k}(\Lambda) = \sum_{\omega \in \Lambda - \{0\}} \frac{1}{\omega^{2k}}.$$

Then for all integer k > 1, $G_{2k}(\Lambda)$ is absolutely convergent.

(2) Let $z \in \mathbb{C}$ and $\omega \in \Lambda$. If $|z| < |\omega|$, then

$$\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} = \frac{1}{\omega^2} \left(\frac{1}{(1-z/w)^2} - 1 \right)$$
$$= \sum_{n=1}^{\infty} (n+1) \frac{z^n}{\omega^{n+2}}.$$

(3) Hence the Laurent series for $\wp(z; \Lambda)$ about z = 0 is given by

$$\wp(z; \Lambda) = \frac{1}{z^2} + \sum_{\omega \in \Lambda - \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right) = \frac{1}{z^2} + \sum_{k=1}^{\infty} (2k+1)G_{2k+2}(\Lambda)z^{2k}$$

Projective plane curve Elliptic functions Elliptic curves

Relation between $\wp(z; \Lambda)$ and $\wp'(z; \Lambda)$

(1) Write out the first few terms in various Laurent expansions:

$$\varphi'(z; \Lambda)^2 = \frac{4}{z^6} - 24G_4(\Lambda)\frac{1}{z^2} - 80G_6(\Lambda) + \cdots$$
$$\varphi(z; \Lambda)^3 = \frac{1}{z^6} + 9G_4(\Lambda)\frac{1}{z^2} + 15G_6(\Lambda) + \cdots$$
$$\varphi(z; \Lambda) = \frac{1}{z^2} + 3G_4(\Lambda)z^2 + \cdots$$

(2) Comparing these, we see that the function

$$f(z) = \wp'(z; \Lambda)^2 - 4\wp(z; \Lambda)^3 + 60G_4(\Lambda)\wp(z; \Lambda) + 140G_6(\Lambda)$$

is holomorphic around z = 0 and vanishes at z = 0.

- (3) Since $\wp(z; \Lambda)$ and $\wp'(z; \Lambda)$ are holomorphic away from Λ , so does f(z).
- (4) Hence f(z) is a holomorphic functions on \mathbb{C}/Λ , from which we conclude that f(z) is identically zero.

Projective plane curve Elliptic functions Elliptic curves

Parametrization of a projective curve E

It is standard to set

$$g_2(\Lambda) = 60G_4(\Lambda), \qquad g_3(\Lambda) = 140G_6(\Lambda)$$
$$\Delta(\Lambda) = g_2(\Lambda)^3 - 27g_3(\Lambda)^2, \qquad j(\Lambda) = \frac{g_2(\Lambda)^3}{\Delta(\Lambda)}.$$

Let *E* be the (projective) curve defined by the (affine) equation

$$E : y^2 = 4x^3 - g_2(\Lambda)x - g_3(\Lambda).$$

Then the map

$$\begin{split} \varphi \, : \, \mathbb{C}/\Lambda & \longrightarrow & E \subset \mathbb{P}^2(\mathbb{C}) \\ z \; (\text{mod } \Lambda) & \mapsto & \begin{cases} & [\wp(z; \; \Lambda) : \wp'(z; \; \Lambda) : 1] & \text{if } z \notin \Lambda \\ & & [0:1:0] & \text{if } z \in \Lambda \end{cases} \end{split}$$

becomes an isomorphism between compact Riemann surfaces.

Projective plane curves Elliptic functions Elliptic curves

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

2 Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

3 Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

- Solving Diophantine equations
- Construction of class fields

Projective plane curve Elliptic functions Elliptic curves

イロト イポト イヨト イヨト

э.

Elliptic curve *E* as a projective plane curve

An elliptic curve E (over \mathbb{C}) is a projective plane curve defined by the (affine) equation

$$E : y^2 = 4x^3 - g_2x - g_3$$

with extra point O = [0:1:0] where

$$g_2, g_3 \in \mathbb{C}$$
 with $\Delta = g_2^3 - 27g_2^2 \neq 0$.

The above equation is called a Weierstrass equation for E.

The fact $\Delta \neq 0$ implies that *E* is smooth.

Projective plane curve Elliptic functions Elliptic curves

Group structure on E

For an elliptic curve *E*, let *P* and $Q \in E$.

- (1) Let *L* be the line connecting *P* and *Q*, and *R* be the third point of intersection of *L* with the curve *E*.
- (2) Let L' be the line connecting O and R.
- (3) Then $P \oplus Q$ is the point s.t. L' intersects E at O, R and $P \oplus Q$.

Then E becomes an abelian group with identity O, and hence it is a complex Lie group.

Projective plane curve Elliptic functions Elliptic curves

Uniformization theorem

The uniformization theorem asserts that for $g_2, g_3 \in \mathbb{C}$ with

$$g_2^3 - 27g_3^2 \neq 0,$$

there exists a unique lattice Λ in \mathbb{C} such that

$$g_2 = g_2(\Lambda)$$
 and $g_3 = g_3(\Lambda)$.

Hence one can show that the isomorphism

$$\begin{array}{rcl} \varphi \,:\, \mathbb{C}/\Lambda & \stackrel{\sim}{\longrightarrow} & E \,:\, y^2 = 4x^3 - g_2 x - g_3 \\ z & \mapsto & [\wp(z;\,\Lambda):\wp'(z;\,\Lambda):1] \end{array}$$

between compact Riemann surfaces is also a group homomorphism (by using some properties of divisors on E).

That is, φ is a complex analytic isomorphism between complex Lie groups.

Projective plane curve Elliptic functions Elliptic curves

Complex multiplication

Let *E* be an elliptic curve parametrized by using a lattice $\Lambda = [\omega_1, \omega_2]$ in \mathbb{C} .

- (1) The complex analytic endomorphisms of *E* correspond to the multiplication maps of \mathbb{C}/Λ onto itself.
- (2) Let $\alpha \in \mathbb{C}$. Note that

the multiplication by $\alpha : \mathbb{C}/\Lambda \to \mathbb{C}/\Lambda$ is well-defined $\iff \alpha \Lambda \subset \Lambda$.

- (3) Such α's form a ring, which contains Z. If the ring is strictly larger than Z, E is said to have complex multiplication.
- (4) It is well-known that

E has complex multiplication $\iff \omega_1/\omega_2$ is imaginary quadratic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Elliptic curves Modular curves

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

- Elliptic integrals
- What does E look like?

- Projective plane curves
- Elliptic functions
- Elliptic curves

Modular curves

- Modular curve of level N
- Compactification

- Modular forms
- Modular functions from generic elliptic curve

- Solving Diophantine equations
- Construction of class fields

Modular curve of level N Compactification

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

2 Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

Modular curves

- Modular curve of level N
- Compactification

4 Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

- Solving Diophantine equations
- Construction of class fields

Modular curve of level N Compactification

Action of $SL_2(\mathbb{Z})$ on \mathfrak{H}

Let

$$\mathfrak{H} = \operatorname{complex} \operatorname{upper} \operatorname{half-plane} = \left\{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \right\}$$

which inherits the Euclidean topology as a subspace of \mathbb{R}^2 . Then

$$SL_2(\mathbb{Z}) = modular group = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

acts on \mathfrak{H} by linear fractional transformation, namely

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \mathfrak{H} \longrightarrow \mathfrak{H}$$
$$\tau \quad \mapsto \quad \gamma(\tau) = \frac{a\tau + b}{c\tau + d}.$$

Note that

$$\gamma_1, \ \gamma_2 \in SL_2(\mathbb{Z})$$
 give rise to the same action on $\mathfrak{H} \iff \gamma_1 = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \gamma_2$.

Modular curve of level N Compactification

Orbit space Y(N)

For a positive integer N, let

$$\Gamma(N) = (\text{principal}) \text{ congruence subgroup of level } N = \left\{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}.$$

For simplicity, write $\Gamma = \Gamma(N)$. The natural projection

$$\begin{aligned} \pi \ : \ \mathfrak{H} & \longrightarrow & Y(N) = \Gamma \backslash \mathfrak{H} = \left\{ \Gamma \tau \ : \ \tau \in \mathfrak{H} \right\} \\ \tau & \mapsto & \Gamma \tau \end{aligned}$$

gives Y(N) the quotient topology so that π is an open mapping.

э.

Modular curve of level N Compactification

イロト (語) (語) (語)

= 900

Isotropy subgroup Γ_z

For each point $z \in \mathfrak{H}$, we denote

$$\Gamma_z$$
 = isotropy subgroup of $z = \{\gamma \in \Gamma : \gamma(z) = z\}.$

In particular, if $|\pm \Gamma_z/\{\pm 1_2\}| > 1$, then z is called an elliptic point (for Γ).

Since Γ is discrete, we can take a neighborhood U of z s.t.

$$\left\{\gamma\in\Gamma:\gamma(U)\cap U\neq\emptyset\right\}=\Gamma_{z}.$$

Such a neighborhood U has no elliptic points except possibly z.

Modular curve of level N Compactification

Local coordinate φ

W define a map

$$\psi : U \longrightarrow \mathbb{C}$$

 $\tau \mapsto \left(\frac{\tau - z}{\tau - \overline{z}}\right)^{|\pm \Gamma_z / \{\pm 1_2\}|}$

Its image $\psi(U)$ is an open subset of \mathbb{C} by the open mapping theorem, and there exists a natural bijection $\varphi : \pi(U) \to \psi(U)$ s.t.

イロト イポト イヨト イヨト

э

The map φ becomes a local coordinate, that is,

- (1) the coordinate neighborhood about $\pi(z)$ in Y(N) is $\pi(U)$;
- (2) the map $\varphi : \pi(U) \to \psi(U)$ is a homeomorphism.

Local coordinate at an ellpitic point

Since the transition maps between these coordinate charts are holomorphic, Y(N) can be viewed as a Riemann surface, which is called the modular curve of level N.

Modular curve of level N Compactification

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

3 Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

Application to number theory

- Solving Diophantine equations
- Construction of class fields

Modular curve of level N Compactification

Extended space \mathfrak{H}^*

Consider the extended upper half-plane

$$\mathfrak{H}^* = \mathfrak{H} \cup \underbrace{\mathbb{Q} \cup \{\infty\}}_{\text{CUSPS}}.$$

For any M > 0 let

$$\mathcal{N}_{M} = \bigg\{ \tau \in \mathfrak{H} \ : \ \operatorname{Im}(\tau) > M \bigg\}.$$

Adjoin the sets

$$\gamma(\mathcal{N}_M \cup \{\infty\})$$
 for all $M > 0$ and $\gamma \in SL_2(\mathbb{Z})$

to the usual open sets of \mathfrak{H} to serve as a basis of neighborhoods of the cusps, and take the resulting topology on \mathfrak{H}^* .

Modular curve of level N Compactification

Compactification of Y(N)

Now consider the extended quotient

$$X(N) = \Gamma \setminus \mathfrak{H}^* = Y(N) \cup \Gamma \setminus (\mathbb{Q} \cup \{\infty\}),$$

which is Hausdorff, connected and compact.

Give X(N) the quotient topology and extend the natural projection to $\pi : \mathfrak{H}^* \to X(N)$.

To make X(N) a compact Riemann surface we have to give it complex charts.

- (1) For $z \in \mathfrak{H}$ we just retain the complex chart of Y(N).
- (2) For a cusp $s \in \mathbb{Q} \cup \{\infty\}$ take a matrix $\gamma \in SL_2(\mathbb{Z})$ s.t. $\gamma(s) = \infty$, and define a map

$$\begin{split} \psi \ : \ U &= \gamma^{-1}(\mathcal{N}_2 \cup \{\infty\}) \quad \longrightarrow \quad \mathbb{C} \\ \tau \quad \mapsto \quad e^{2\pi i \gamma(\tau)/|\mathrm{SL}_2(\mathbb{Z})_\infty/\pm\Gamma_\infty|} \end{split}$$

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Modular curve of level N Compactification

The image $\psi(U)$ is an open subset of \mathbb{C} , and there exists a homeomorphism $\varphi : \pi(U) \to \psi(U)$ s.t.

Complex chart at a cusp

イロト イポト イヨト イヨト

It is routine to check that the transition maps between charts of X(N) are holomorphic. Therefore X(N) is now a compact Riemann surface, also called the modular curve of level N.

Modular forms Modular functions from generic elliptic curve

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

2 Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

3 Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

Application to number theory

- Solving Diophantine equations
- Construction of class fields

Modular forms Modular functions from generic elliptic curve

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

3 Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

Application to number theory

- Solving Diophantine equations
- Construction of class fields

Modular forms Modular functions from generic elliptic curve

Modular forms of level N and weight k

For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ and $k \in \mathbb{Z}$,

we define the weight-*k* operator $\cdot |[\gamma]_k$ on functions $f : \mathfrak{H} \to \widehat{\mathbb{C}}$ as

$$f(\tau)|[\gamma]_k = (c\tau + d)^{-k} f(\gamma(\tau)) \qquad (\tau \in \mathfrak{H}).$$

Then it is easily verified that for $\gamma_1, \gamma_2 \in SL_2(\mathbb{Z})$

$$f|[\gamma_1\gamma_2]_k = \left(f|[\gamma_1]_k\right)|[\gamma_2]_k.$$

A function $f : \mathfrak{H} \to \widehat{\mathbb{C}}$ is a modular form of level $N \geq 1$ and weight *k* if

- (1) f is meromorphic on \mathfrak{H} ;
- (2) *f* is invariant under $\cdot |[\gamma]_k$ for all $\gamma \in \Gamma(N)$;
- (3) $f|[\alpha]_k$ is meromorphic at ∞ for all $\alpha \in SL_2(\mathbb{Z})$.

Modular forms Modular functions from generic elliptic curve

Meromorphicity at ∞

- (1) To discuss meromorphicity of $f|[\alpha]_k$ at ∞ we note that
 - Γ(N) is a normal subgroup of SL₂(Z);

•
$$\begin{pmatrix} 1 & N \\ 0 & 1 \end{pmatrix} \in \Gamma(N).$$

So we get

$$\begin{pmatrix} 1 & N \\ 0 & 1 \end{pmatrix} = \alpha^{-1} \gamma \alpha \quad \text{for some } \gamma \in \Gamma(N).$$

(2) Observe that

$$\begin{pmatrix} f|[\alpha]_k \end{pmatrix} (\tau + N) &= \left(f|[\alpha]_k \right) |[\left(\begin{smallmatrix} 1 & N \\ 0 & 1 \end{smallmatrix} \right)]_k \\ &= \left(f|[\alpha]_k \right) |[\alpha^{-1} \gamma \alpha]_k \\ &= f|[\alpha \alpha^{-1} \gamma \alpha]_k = f|[\alpha]_k,$$

which shows that $f|[\alpha]_k$ has period N.

(4) Let

$$\mathbf{q} = e^{2\pi i \tau} \qquad (\tau \in \mathfrak{H}).$$

Then $f|[\alpha]_k$ is a function w.r.t. $q^{\frac{1}{N}}$ on some punctured disc about q = 0. If the function has a Laurent series w.r.t. $q^{\frac{1}{N}}$, namely

$$f|[\alpha]_k = \sum_{n \ge m}^{\infty} c_n \left(q^{\frac{1}{N}}\right)^n \qquad (c_n \in \mathbb{C})$$

for some integer *m*, then $f|[\alpha]_k$ is said to be meromorphic at ∞ .

- (5) The above series is conventionally called the Fourier expansion of *f* |[α]_k at ∞ (or, *f* at α(∞)) with Fourier coefficients *c_n*.
- (6) Modular forms of level N and weight 0 are called modular functions of level N. They are exactly meromorphic functions defined on the modular curve X(N) and vice versa.

Modular forms Modular functions from generic elliptic curve

Example

(1) Let

$$\Lambda = [\tau, 1] \quad \text{with } \tau \in \mathfrak{H}$$

be a lattice. Recall the constants (relative to Λ)

$$g_{2}(\Lambda) = 60 \sum_{(m, n) \in \mathbb{Z}^{2} - \{(0, 0)\}} \frac{1}{(m\tau + n)^{4}}$$

$$g_{3}(\Lambda) = 140 \sum_{(m, n) \in \mathbb{Z}^{2} - \{(0, 0)\}} \frac{1}{(m\tau + n)^{6}}$$

$$\Delta(\Lambda) = g_{2}(\Lambda)^{3} - 27g_{3}(\Lambda)^{2}$$

$$j(\Lambda) = \frac{g_{2}(\Lambda)^{3}}{\Delta(\Lambda)}.$$

▲ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ④ Q @

Modular forms Modular functions from generic elliptic curve

ヘロンス 留とる 開とる

э

(2) Regard τ as a variable on \mathfrak{H} , and let

$$g_{2}(\tau) = g_{2}([\tau, 1])$$

$$g_{3}(\tau) = g_{3}([\tau, 1])$$

$$\Delta(\tau) = \Delta([\tau, 1])$$

$$j(\tau) = j([\tau, 1]).$$

Directly from the definitions, for $\gamma \in SL_2(\mathbb{Z})$ we have

$$g_{2}(\tau) |[\gamma]_{4} = g_{2}(\tau)$$

$$g_{3}(\tau) |[\gamma]_{6} = g_{3}(\tau)$$

$$\Delta(\tau) |[\gamma]_{12} = \Delta(\tau)$$

$$j(\tau) |[\gamma]_{0} = j(\tau).$$

Modular forms Modular functions from generic elliptic curve

(3) We have the product formula

$$\sin \pi \tau = \pi \tau \prod_{n=1}^{\infty} \left(1 - \frac{\tau}{n} \right) \left(1 + \frac{\tau}{n} \right).$$

Taking the logarithmic derivative yields

$$\pi \frac{\cos \pi \tau}{\sin \pi \tau} = \frac{1}{\tau} + \sum_{n=1}^{\infty} \left(\frac{1}{\tau - n} + \frac{1}{\tau + n} \right)$$

On the other hand, since

$$\cos \pi \tau = \frac{1}{2}q^{-\frac{1}{2}}(q+1)$$
 and $\sin \pi \tau = \frac{1}{2i}q^{-\frac{1}{2}}(q-1),$

we get

$$\pi \frac{\cos \pi \tau}{\sin \pi \tau} = \pi i \frac{q+1}{q-1} = \pi i - 2\pi i \sum_{\nu=0}^{\infty} q^{\nu}.$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

(4) Differentiating two expressions for $\pi \frac{\cos \pi \tau}{\sin \pi \tau}$ repeatedly yields

$$(-1)^{k-1}(k-1)!\sum_{n=-\infty}^{\infty}\frac{1}{(\tau-n)^k}=-\sum_{\nu=1}^{\infty}(2\pi i)^k\nu^{k-1}q^{\nu}.$$

We obtain from the above relation that

$$g_{2}(\tau) = (2\pi)^{4} \frac{1}{12} \left(1 + 240 \sum_{n=1}^{\infty} (\sum_{d|n} d^{3}) q^{n} \right)$$

$$g_{3}(\tau) = (2\pi)^{6} \frac{1}{216} \left(1 - 504 \sum_{n=1}^{\infty} (\sum_{d|n} d^{5}) q^{n} \right)$$

$$\Delta(\tau) = (2\pi)^{12} q \left(1 + \sum_{n=1}^{\infty} c_{n} q^{n} \right) \qquad (d_{n} \in \mathbb{Z})$$

$$j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^{2} + 864299970q^{3} + 20245856256q^{4} + 333202640600q^{5} + 4252023300096q^{6} + 44656994071935q^{7} + \cdots$$

- (5) Hence all the g₂(τ), g₃(τ), Δ(τ) and j(τ) are meromorphic at the cusp ∞ (which is the unique inequivalent cusp for SL₂(ℤ)). Therefore
 - $g_2(\tau) =$ a modular form of level 1 and weight 4 $g_3(\tau) =$ a modular form of level 1 and weight 6 $\Delta(\tau) =$ a modular form of level 1 and weight 12 $j(\tau) =$ a modular function of level 1.
- (6) Note that j(τ) is holomorphic on
 β and has simple pole at ∞. Hence the map

$$\begin{array}{rccc} X(1) & \longrightarrow & \mathbb{P}^1(\mathbb{C}) \\ \tau & \mapsto & [j(\tau):1] \end{array}$$

is an isomorphism between two Riemann spheres. Therefore

the field of all meromorphic functions on $X(1) = \mathbb{C}(j(\tau))$.

Modular forms Modular functions from generic elliptic curve

イロト イポト イヨト イヨト

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

3 Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

Application to number theory

- Solving Diophantine equations
- Construction of class fields

Modular forms Modular functions from generic elliptic curve

Change of variables

Let Λ be a lattice in $\mathbb C$ of the form

$$\Lambda = [\tau, 1] \quad \text{with } \tau \in \mathfrak{H}.$$

From the complex analytic isomorphism

$$\begin{array}{rcl} \mathbb{C}/\Lambda & \stackrel{\sim}{\longrightarrow} & y^2 = 4x^3 - g_2(\tau)x - g_3(\tau) \\ z & \mapsto & [\wp(z; \ \Lambda) : \wp'(z; \ \Lambda) : 1], \end{array}$$

we have the relation

$$\wp'(z; \Lambda)^2 = 4\wp(z; \Lambda)^3 - g_2(\tau)\wp(z; \Lambda) - g_3(\tau).$$

Define

$$\eta(\tau) = \sqrt{2\pi}\zeta_8 q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1-q^n).$$

▲□▶▲□▶▲□▶▲□▶ = のへで

Modular forms Modular functions from generic elliptic curve

・ロト ・部ト ・ヨト ・ヨト

э

Diving both sides of the above Weierstrass equation by $\eta(\tau)^{12}$ we get

$$\begin{pmatrix} \frac{\wp'(z;\Lambda)}{\eta(\tau)^6} \end{pmatrix}^2 \\ = \frac{4\eta(\tau)^{60}}{g_2(\tau)^3 g_3(\tau)^3} \left(\frac{g_2(\tau)g_3(\tau)\wp(z;\Lambda)}{\eta(\tau)^{24}} \right)^3 - \frac{\eta(\tau)^{12}}{g_3(\tau)} \left(\frac{g_2(\tau)g_3(\tau)\wp(z;\Lambda)}{\eta(\tau)^{24}} \right) - \frac{g_3(\tau)}{\eta^{12}(\tau)}.$$

Write

$$z = r_1 \tau + r_2$$
 with $(r_1, r_2) \in \mathbb{R}^2 - \{(0, 0)\},\$

and set

$$x_{(r_1, r_2)}(\tau) = \frac{g_2(\tau)g_3(\tau)\wp(r_1\tau + r_2; \Lambda)}{\eta(\tau)^{24}} \quad \text{and} \quad y_{(r_1, r_2)}(\tau) = \frac{\wp'(r_1\tau + r_2; \Lambda)}{\eta(\tau)^6}$$

Modular function field \mathcal{F}_N

For each positive integer N, let

 \mathcal{F}_N = the field of modular functions of level N

whose Fourier coefficients at ∞ belong to the N^{th} cyclotomic field $\mathbb{Q}(e^{\frac{2\pi i}{N}})$.

As is well-known,

- (1) $\mathcal{F}_N \otimes \mathbb{C}$ is the field of meromorpic functions on X(N);
- (2) \mathcal{F}_N is a Galois extension of \mathcal{F}_1 ;

(3)
$$\mathcal{F}_{1} = \mathbb{Q}\left(j(\tau)\right);$$

(4) $\mathcal{F}_{N} = \mathbb{Q}\left(e^{\frac{2\pi i}{N}}, j(\tau), x_{(\frac{1}{N}, 0)}(\tau), x_{(0, \frac{1}{N})}(\tau)\right) \text{ for } N > 1.$

Koo and Shin (2009) showed that

$$\mathcal{F}_{N} = \mathbb{Q}\left(j(\tau), \ e^{\frac{2\pi i}{N}} y_{(\frac{1}{N}, \ 0)}(\tau)^{\frac{4}{\gcd(4, \ N)}}, \ y_{(0, \ \frac{1}{N})}(\tau)^{\frac{4}{\gcd(4, \ N)}}\right) \quad \text{for } N > 1.$$

▲□▶▲□▶▲□▶▲□▶ = のへで

Solving Diophantine equations Construction of class fields

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

S Application to number theory

- Solving Diophantine equations
- Construction of class fields

Solving Diophantine equations Construction of class fields

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

S Application to number theory

- Solving Diophantine equations
- Construction of class fields

Solving Diophantine equations Construction of class fields

History

(1) Fermat (1640 \sim 1650s)

For a prime number p

$$p = x^{2} + y^{2} \text{ for } (x, y) \in \mathbb{Z}^{2} \iff p = 2 \text{ or } p \equiv 1 \pmod{4}$$

$$p = x^{2} + 2y^{2} \text{ for } (x, y) \in \mathbb{Z}^{2} \iff p = 2 \text{ or } p \equiv 1, 3 \pmod{8}$$

$$p = x^{2} + 3y^{2} \text{ for } (x, y) \in \mathbb{Z}^{2} \iff p = 3 \text{ or } p \equiv 1 \pmod{3}.$$

(2) Euler (1740s)

Euler conjectured for a prime number p

$$p = x^{2} + 27y^{2} \text{ for } (x, y) \in \mathbb{Z}^{2} \iff \begin{cases} p \equiv 1 \pmod{3} \\ x^{3} \equiv 2 \pmod{p} \text{ has an integer solution.} \end{cases}$$

・ロト ・ 同 ト ・ 臣 ト ・ 臣 ト

æ

Solving Diophantine equations Construction of class fields

(3) Gauss (Disquisitiones Arithmeticae, 1801)

$$p = x^2 + y^2$$
 for $(x, y) \in \mathbb{Z}^2 \iff p = 2$ or p splits in $\mathbb{Q}(\sqrt{-1})$.

(4) Weber (1880s)

$$p = x^2 + (2^{\ell+1}y)^2 \ (\ell \ge 0) \text{ for } (x, y) \in \mathbb{Z}^2$$
$$\iff p \text{ splits completely in } \mathbb{Q}(\sqrt{-1}) \left(j(2^{\ell+1}\sqrt{-1}) \right).$$

・ロト ・部ト ・ヨト ・ヨト

æ

(5) Hilbert, Deuring, Artin, Cohn, Stark (1970s)

They determined the primes p of the form $x^2 + ny^2$.

(6) Cox (Primes of the Form $x^2 + ny^2$, 1989)

Let

n	:	a positive integer
K	:	the imaginary quadratic field $\mathbb{Q}(\sqrt{-n})$
$H_{\mathcal{O}}$:	the ring class field of the order $\mathcal{O} = \mathbb{Z}[\sqrt{-n}]$
α	:	a real algebraic integer for which $H_{\mathcal{O}} = K(\alpha)$.

Let p be an odd prime number not dividing n. Then

$$p = x^{2} + ny^{2}$$

$$\iff p \text{ splits completely in } H_{\mathcal{O}}$$

$$\iff \begin{cases} \left(\frac{-n}{p}\right) = 1 \text{ and} \\ \min(\alpha, K) \equiv 0 \pmod{p} \text{ has an integer solution} \end{cases}$$

э

Solving Diophantine equations Construction of class fields

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Elliptic integrals
- What does *E* look like?

Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves

3 Modular curves

- Modular curve of level N
- Compactification

Elliptic curves and modular forms

- Modular forms
- Modular functions from generic elliptic curve

S Application to number theory

- Solving Diophantine equations
- Construction of class fields

History

(1) Kronecker-Weber (1886, 1887)

Let *L* be a finite abelian extension of \mathbb{Q} . Then

$$L \subseteq \mathbb{Q}(f(\frac{1}{N}))$$
 for some integer $N \ge 1$

where

$$f(\tau) = e^{2\pi i\tau}$$

- (2) Hilbert's 12th Problem (Paris ICM, 1900) (= Kronecker's Jugendtraum) Let
 - *K* : a given number field
 - L : arbitrary finite abelian extension of K.

Is there a transcendental function f such that

$$L = K(f(\alpha))$$
 for some α ?

イロト イポト イヨト イヨト

= 900

Let K denote an imaginary quadratic field.

(3) Takagi (1920)

Takagi provided explicit generators for the maximal abelian extension K^{ab} by using special values of Jacobi functions.

(4) Hasse (1927)

Let

 $\theta \ (\in \mathfrak{H})$: a generator of the ring of integers of *K* (over \mathbb{Z}).

If L is a finite abelian extension of K, then

$$L \subseteq K\left(j(\theta), x_{(0, \frac{1}{N})}(\theta)\right)$$
 for some integer $N \ge 1$.

The values $x_{(0, \frac{1}{N})}(\theta)$ corresponds to the *x*-coordinate of the *N*-torsion point

$$\left(x_{(0,\frac{1}{N})}(\theta), y_{(0,\frac{1}{N})}(\theta)\right)$$

of an elliptic curve parametrized by $\mathbb{C}/[\theta, 1]$ with complex multiplication.

(5) Ramachandra (1964)

Ramachandra showed that arbitrary finite abelian extension of K can be generated by certain elliptic unit.

But, his invariant involves too complicated products of high powers of special values of the Klein forms and Δ -function.

(6) Cho-Koo (2008)

They obtained a primitive generator from Hasse's two special values $j(\theta)$ and $x_{(0, \frac{1}{N})}(\theta)$. But it is still hard to compute the minimal polynomial of the generator.

(7) Koo-Shin (2009)

If

$$K = \mathbb{Q}(\sqrt{-n}) \text{ with } n \text{ square-free } \neq 1, 2, 3, 5, 6, 7, 11, 15$$

$$N : \text{ any integer } > 2,$$

then

$$K\left(j(\theta), x_{(0, \frac{1}{N})}(\theta)\right) = K\left(y_{(0, \frac{1}{N})}(\theta)^{\frac{4m}{\gcd(4, N)}}\right) \quad \text{for any } m \neq 0$$

by using the Shimura's reciprocity law which connects the theory of modular functions and class field theory.

3

Example of a minimal polynomial

Let $K = \mathbb{Q}(\sqrt{-10})$ and $\theta = \sqrt{-10}$. The minimal polynomial of the special value $y_{(0, \frac{1}{4})}(\theta)^{12}$ is given as follows:

 $X^{16} - 56227499765918216689444911216X^{15}$

 $+28198738767573877103982180845427211416X^{14}$

 $-61006294392822456973543787353433426528859172752X^{13}$

 $+ 24191545040559618198685578078066621024919984909895925564 X^{12}$

 $-1457219992512158403396945180026448081831307850098282381377715440X^{11}$

 $-1875247086634588418900161009847749757705491090331618598955145878499352 X^{10}$

 $-3204258054536691403559566745682638856959186166279206475927474345038453779344X^9$

 $-115423974200159134410244151892157361168179592425853550820710288184072396692478416X^7$

 $+ 334107284582565793933974554285013907697215168114012280251572770023994260474295208 X^{6}$

 $-2413062017539132381926952150397596657649211631905734942002508919329018160 X^5$

 $+ 5947186157319106561144943221021199418610488121986658654341036924 X^4$

 $-5317595247800083950930014176690955051475061944750295248 X^3\\$

 $+797299465586120177639706616225451835994220376X^{2}$

-29812156397602328057777202393119664X + 282429536481.

Solving Diophantine equations Construction of class fields

ヘロト 人間 とくほとくほとう

э

Thank you.