y-coordinates of elliptic curves

Dong Hwa Shin

Department of Mathematical Sciences KAIST

January 11, 2010

Outline

(1) Introduction

- Elliptic integrals
- What does E look like?

Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curvesModular curves
- Modular curve of level N
- CompactificationElliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curveApplication to number theory
- Solving Diophantine equations
- Construction of class fields

Outline

(1) Introduction

- Elliptic integrals
- What does E look like?Elliptic curves
- Projective plane curves
- Elliptic functions
- Elliptic curvesModular curves
- Modular curve of level N
- CompactificationElliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curveApplication to number theory
- Solving Diophantine equations
- Construction of class fields

Projective spaces

Denote

$$
\mathbb{P}^{2}(\mathbb{C})=\text { projective plane }=\{[X: Y: Z]: X, Y, Z \in \mathbb{C} \text { not all zero }\}
$$

with the homogeneous coordinates X, Y, Z and affine coordinates

$$
x=\frac{X}{Z} \quad \text { and } \quad y=\frac{Y}{Z}
$$

Furthermore, let

$$
\mathbb{P}^{1}(\mathbb{C})=\text { projective line }=\{[X: Y]: X, Y \in \mathbb{C} \text { not all zero }\}
$$

which can be identified with a Riemann sphere

$$
\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}
$$

Loci in $\mathbb{P}^{2}(\mathbb{C})$

Let E be a locus in $\mathbb{P}^{2}(\mathbb{C})$ defined by

$$
E: y^{2}=x(x-1)(x-\lambda) \quad \text { for } \lambda \neq 0,1
$$

with the extra point $O=[0: 1: 0]$. For example,

Elliptic integrals

The differential form

$$
\omega=\frac{d x}{y}
$$

is holomorphic on E. Suppose that we try to define a map

$$
\begin{array}{lll}
E & \xrightarrow{?} & \mathbb{C} \\
P & \mapsto & \int_{O}^{P} \omega
\end{array}
$$

where the integral is along some path connecting O and P.
Namely, we are attempting to compute the (complex) line integral

$$
\int_{\infty}^{x} \frac{d t}{\sqrt{t(t-1)(t-\lambda)}}
$$

which is called an elliptic integral.

Because the square-root is not single valued, the integral is not path-independent. For example,

Three paths in $\mathbb{P}^{1}(\mathbb{C})$
three integrals $\int_{\alpha} \omega, \int_{\beta} \omega, \int_{\gamma} \omega$ are not equal.

Branch cuts

In order to make the integral well-defined, it is necessary to make branch cuts as follows:

$$
\text { Branch cuts in } \mathbb{P}^{1}(\mathbb{C})
$$

Then, then integrals will be path-independent on the complement of the branch cuts.

Outline

(1) Introduction

- Elliptic integrals
- What does E look like?Elliptic curves
- Projective plane curves
- Elliptic functions
- Elliptic curvesModular curves
- Modular curve of level N
- CompactificationElliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curveApplication to number theory
- Solving Diophantine equations
- Construction of class fields

More generally, ((1) ~ (10))
(1) Take two copies of $\mathbb{P}^{1}(\mathbb{C})$.
(2) Make the indicated branch cuts:

(3) Glue them together along the branch cuts to form a Riemann surface (or, a torus) as follows:

(4) On this torus, one should study the integral $\int d t / \sqrt{t(t-1)(t-\lambda)}$.
(5) In fact, elliptic curves first arose when people began to study such "elliptic integrals" which is related to the arc-length of an ellipse.
(6) The indeterminacy comes from integrating around non-contractible loops on the torus.
(7) So we introduce two complex numbers, which are called periods of E,

$$
\omega_{1}=\int_{\alpha} \omega \quad \text { and } \quad \omega_{2}=\int_{\beta} \omega
$$

Paths on $\mathbb{P}^{1}(\mathbb{C})$ and on the torus
(8) Now the integral

$$
\int_{O}^{P} \omega
$$

is well-defined up to addition of a number of the form $n_{1} \omega_{1}+n_{2} \omega_{2}$ for $n_{1}, n_{2} \in \mathbb{Z}$.
(9) Let

$$
\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}
$$

Thus we have shown that there is a well-defined map

$$
\begin{array}{rll}
E & \longrightarrow & \mathbb{C} / \Lambda \\
P & \mapsto & \int_{O}^{P} \omega(\bmod \Lambda) .
\end{array}
$$

(10) If Λ is a lattice in \mathbb{C}, then the quotient space \mathbb{C} / Λ will be a Riemann surface. Then by using the translation invariance of ω, one can verify that the above map is a complex analytic isomorphism.

Outline

Introduction- Elliptic integrals
- What does E look like?

2 Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curvesModular curves
- Modular curve of level N
- CompactificationElliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curveApplication to number theory
- Solving Diophantine equations
- Construction of class fields

Outline

Introduction- Elliptic integrals
- What does E look like?

2) Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curvesModular curves
- Modular curve of level N
- CompactificationElliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curveApplication to number theory
- Solving Diophantine equations
- Construction of class fields

Covers of $\mathbb{P}^{2}(\mathbb{C})$

The projective plane

$$
\mathbb{P}^{2}(\mathbb{C})=\left(\mathbb{C}^{3}-\{0\}\right) / \mathbb{C}^{*}
$$

is a Hausdorff compact space which can be covered by the three open sets

$$
\begin{aligned}
U_{0} & =\{[X: Y: Z]: X \neq 0\} \\
U_{1} & =\{[X: Y: Z]: Y \neq 0\} \\
U_{2} & =\{[X: Y: Z]: Z \neq 0\} .
\end{aligned}
$$

Each U_{i} is homeomorphic to \mathbb{C}^{2}, for example

$$
\begin{array}{rll}
U_{2} & \xrightarrow{\longrightarrow} & \mathbb{C}^{2} \\
{[X: Y: Z]} & \mapsto & (x, y)=(X / Z, Y / Z) .
\end{array}
$$

Projective plane curve V

For a (nonconstant) homogeneous polynomial $F(X, Y, Z)$, consider its locus

$$
V=\left\{[X: Y: Z] \in \mathbb{P}^{2}(\mathbb{C}): F(X, Y, Z)=0\right\}
$$

The intersection

$$
V_{i}=V \cap U_{i} \quad(i=0,1,2)
$$

is exactly an affine plane curve when transported to \mathbb{C}^{2}.
For example, V_{2} is homeomorphic to the affine plane curve described by the equation

$$
f(x, y)=F(x, y, 1)=0 .
$$

Nonsingular F defines a compact Riemann surface

$F(X, Y, Z)$ is said to be nonsingular if there are no common solutions (in $\mathbb{P}^{2}(\mathbb{C})$) to the system of equations

$$
F=\frac{\partial F}{\partial X}=\frac{\partial F}{\partial Y}=\frac{\partial F}{\partial Z}=0 .
$$

Then one can obtain

$$
F \text { is nonsingular } \Longleftrightarrow \text { each } V_{i} \text { is a smooth affine plane curve (in } \mathbb{C}^{2} \text {). }
$$

If $F(X, Y, Z)$ is a nonsingular (irreducible) polynomial defining the projective plane curve V, then
(1) each $V_{i}(i=0,1,2)$ is a smooth (irreducible) affine plane curve, and hence is a Riemann surface;
(2) at each point of V_{i} we take a ratio of the homogeneous coordinates as a local coordinate;
(3) then V becomes a compact Riemann surface as a closed subset of compact $\mathbb{P}^{2}(\mathbb{C})$.

Outline

Introduction- Elliptic integrals
- What does E look like?Elliptic curves
- Projective plane curves
- Elliptic functionsModular curves
- Modular curve of level N
- CompactificationElliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curveApplication to number theory
- Solving Diophantine equations
- Construction of class fields

Elliptic functions

Let Λ be a lattice in \mathbb{C}, that is,

$$
\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \quad \text { for some } \mathbb{R} \text {-basis }\left\{\omega_{1}, \omega_{2}\right\} \text { of } \mathbb{C} .
$$

We often write $\Lambda=\left[\omega_{1}, \omega_{2}\right]$.

An elliptic function (relative to Λ) is a meromorphic functions $f(z)$ on \mathbb{C} which satisfies

$$
f(z+\omega)=f(z) \quad \text { for all } \omega \in \Lambda, z \in \mathbb{C}
$$

(1) We can view elliptic functions as meromorphic functions on the torus \mathbb{C} / Λ.
(2) Hence an elliptic function with no poles is constant.
(3) The field of all such functions is denoted $\mathbb{C}(\Lambda)$.

Weierstrass functions

The Weierstrass \wp-function (relative to Λ) is defined by the series

$$
\wp(z ; \Lambda)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda-\{0\}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) \quad(z \in \mathbb{C})
$$

Clearly, $\wp(z ; \Lambda)=\wp(-z ; \Lambda)$ (that is, $\wp(z ; \Lambda)$ is an even function).
By termwise differentiation (w.r.t. z) we get

$$
\wp^{\prime}(z ; \Lambda)=-2 \sum_{\omega \in \Lambda} \frac{1}{(z-\omega)^{3}}
$$

which is obviously an elliptic function.

$\wp(z ; \Lambda)$ is an elliptic function

(1) Let $\omega \in \Lambda$. Integrating

$$
\wp^{\prime}(z+\omega ; \Lambda)=\wp^{\prime}(z ; \Lambda) \quad(z \in \mathbb{C}-\Lambda)
$$

yields

$$
\wp(z+\omega ; \Lambda)=\wp(z ; \Lambda)+c(\omega) \quad \text { for some } c(\omega) \text { independent of } z .
$$

(2) Letting $z=-\omega / 2$ we get that

$$
\begin{aligned}
\wp(\omega / 2 ; \Lambda) & =\wp(-\omega / 2 ; \Lambda)+c(\omega) \\
& =\wp(\omega / 2 ; \Lambda)+c(\omega) \text { because } \wp \text { is even, }
\end{aligned}
$$

which shows $c(\omega)=0$.
(3) Hence $\wp(z ; \Lambda)$ is an elliptic function, too.
(4) As is well-known

$$
\mathbb{C}(\Lambda)=\mathbb{C}\left(\wp(z ; \Lambda), \wp^{\prime}(z ; \Lambda)\right) .
$$

Laurent serious for $\wp(z ; \Lambda)$

(1) For a lattice Λ in \mathbb{C}, the Eisenstein series of weight $2 k$ (relative to Λ) is the series

$$
G_{2 k}(\Lambda)=\sum_{\omega \in \Lambda-\{0\}} \frac{1}{\omega^{2 k}}
$$

Then for all integer $k>1, G_{2 k}(\Lambda)$ is absolutely convergent.
(2) Let $z \in \mathbb{C}$ and $\omega \in \Lambda$. If $|z|<|\omega|$, then

$$
\begin{aligned}
\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}} & =\frac{1}{\omega^{2}}\left(\frac{1}{(1-z / w)^{2}}-1\right) \\
& =\sum_{n=1}^{\infty}(n+1) \frac{z^{n}}{\omega^{n+2}}
\end{aligned}
$$

(3) Hence the Laurent series for $\wp(z ; \Lambda)$ about $z=0$ is given by

$$
\wp(z ; \Lambda)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda-\{0\}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)=\frac{1}{z^{2}}+\sum_{k=1}^{\infty}(2 k+1) G_{2 k+2}(\Lambda) z^{2 k}
$$

Relation between $\wp(z ; \Lambda)$ and $\wp^{\prime}(z ; \Lambda)$

(1) Write out the first few terms in various Laurent expansions:

$$
\begin{aligned}
\wp^{\prime}(z ; \Lambda)^{2} & =\frac{4}{z^{6}}-24 G_{4}(\Lambda) \frac{1}{z^{2}}-80 G_{6}(\Lambda)+\cdots \\
\wp(z ; \Lambda)^{3} & =\frac{1}{z^{6}}+9 G_{4}(\Lambda) \frac{1}{z^{2}}+15 G_{6}(\Lambda)+\cdots \\
\wp(z ; \Lambda) & =\frac{1}{z^{2}}+3 G_{4}(\Lambda) z^{2}+\cdots
\end{aligned}
$$

(2) Comparing these, we see that the function

$$
f(z)=\wp^{\prime}(z ; \Lambda)^{2}-4 \wp(z ; \Lambda)^{3}+60 G_{4}(\Lambda) \wp(z ; \Lambda)+140 G_{6}(\Lambda)
$$

is holomorphic around $z=0$ and vanishes at $z=0$.
(3) Since $\wp(z ; \Lambda)$ and $\wp^{\prime}(z ; \Lambda)$ are holomorphic away from Λ, so does $f(z)$.
(4) Hence $f(z)$ is a holomorphic functions on \mathbb{C} / Λ, from which we conclude that $f(z)$ is identically zero.

Parametrization of a projective curve E

It is standard to set

$$
\begin{aligned}
& g_{2}(\Lambda)=60 G_{4}(\Lambda), \quad g_{3}(\Lambda)=140 G_{6}(\Lambda) \\
& \Delta(\Lambda)=g_{2}(\Lambda)^{3}-27 g_{3}(\Lambda)^{2}, \quad j(\Lambda)=\frac{g_{2}(\Lambda)^{3}}{\Delta(\Lambda)} .
\end{aligned}
$$

Let E be the (projective) curve defined by the (affine) equation

$$
E: y^{2}=4 x^{3}-g_{2}(\Lambda) x-g_{3}(\Lambda)
$$

Then the map

$$
\begin{aligned}
\varphi: \mathbb{C} / \Lambda & \longrightarrow E \subset \mathbb{P}^{2}(\mathbb{C}) \\
z(\bmod \Lambda) & \mapsto \begin{cases}{\left[\wp(z ; \Lambda): \wp^{\prime}(z ; \Lambda): 1\right]} & \text { if } z \notin \Lambda \\
{[0: 1: 0]} & \text { if } z \in \Lambda\end{cases}
\end{aligned}
$$

becomes an isomorphism between compact Riemann surfaces.

Outline

Introduction- Elliptic integrals
- What does E look like?
(2) Elliptic curves
- Projective plane curves
- Elliptic functions
- Elliptic curvesModular curves
- Modular curve of level N
- CompactificationElliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curveApplication to number theory
- Solving Diophantine equations
- Construction of class fields

Elliptic curve E as a projective plane curve

An elliptic curve $E($ over $\mathbb{C})$ is a projective plane curve defined by the (affine) equation

$$
E: y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

with extra point $O=[0: 1: 0]$ where

$$
g_{2}, g_{3} \in \mathbb{C} \quad \text { with } \Delta=g_{2}^{3}-27 g_{2}^{2} \neq 0
$$

The above equation is called a Weierstrass equation for E.
The fact $\Delta \neq 0$ implies that E is smooth.

Group structure on E

For an elliptic curve E, let P and $Q \in E$.
(1) Let L be the line connecting P and Q, and R be the third point of intersection of L with the curve E.
(2) Let L^{\prime} be the line connecting O and R.
(3) Then $P \oplus Q$ is the point s.t. L^{\prime} intersects E at O, R and $P \oplus Q$.

Addition of distinct points

Adding a point to itself

Then E becomes an abelian group with identity O, and hence it is a complex Lie group.

Uniformization theorem

The uniformization theorem asserts that for $g_{2}, g_{3} \in \mathbb{C}$ with

$$
g_{2}^{3}-27 g_{3}^{2} \neq 0
$$

there exists a unique lattice Λ in \mathbb{C} such that

$$
g_{2}=g_{2}(\Lambda) \text { and } g_{3}=g_{3}(\Lambda) .
$$

Hence one can show that the isomorphism

$$
\begin{aligned}
& \varphi: \mathbb{C} / \Lambda \xrightarrow{\sim} E: y^{2}=4 x^{3}-g_{2} x-g_{3} \\
& z \mapsto \\
& {\left[\wp(z ; \Lambda): \wp^{\prime}(z ; \Lambda): 1\right] }
\end{aligned}
$$

between compact Riemann surfaces is also a group homomorphism (by using some properties of divisors on E).
That is, φ is a complex analytic isomorphism between complex Lie groups.

Complex multiplication

Let E be an elliptic curve parametrized by using a lattice $\Lambda=\left[\omega_{1}, \omega_{2}\right]$ in \mathbb{C}.
(1) The complex analytic endomorphisms of E correspond to the multiplication maps of \mathbb{C} / Λ onto itself.
(2) Let $\alpha \in \mathbb{C}$. Note that
the multiplication by $\alpha: \mathbb{C} / \Lambda \rightarrow \mathbb{C} / \Lambda$ is well-defined $\Longleftrightarrow \alpha \Lambda \subset \Lambda$.
(3) Such α 's form a ring, which contains \mathbb{Z}.

If the ring is strictly larger than \mathbb{Z}, E is said to have complex multiplication.
(4) It is well-known that
E has complex multiplication $\Longleftrightarrow \omega_{1} / \omega_{2}$ is imaginary quadratic.Introduction

- Elliptic integrals
- What does E look like?Elliptic curves
- Projective plane curves
- Elliptic functions
- Elliptic curves

Modular curves

- Modular curve of level N
- CompactificationElliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curveApplication to number theory
- Solving Diophantine equations
- Construction of class fields

Outline

Introduction- Elliptic integrals
- What does E look like?

Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curves
(3) Modular curves
- Modular curve of level N
- CompactificationElliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curveApplication to number theory
- Solving Diophantine equations
- Construction of class fields

Action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathfrak{H}

Let

$$
\mathfrak{H}=\text { complex upper half-plane }=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}
$$

which inherits the Euclidean topology as a subspace of \mathbb{R}^{2}. Then

$$
\mathrm{SL}_{2}(\mathbb{Z})=\text { modular group }=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

acts on \mathfrak{H} by linear fractional transformation, namely

$$
\left.\begin{array}{rl}
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): & \mathfrak{H}
\end{array} \begin{array}{ll}
& \longrightarrow \\
\tau & \mapsto
\end{array}\right) \gamma(\tau)=\frac{a \tau+b}{c \tau+d} .
$$

Note that
$\gamma_{1}, \gamma_{2} \in \operatorname{SL}_{2}(\mathbb{Z})$ give rise to the same action on $\mathfrak{H} \Longleftrightarrow \gamma_{1}= \pm\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right) \gamma_{2}$.

Orbit space $Y(N)$

For a positive integer N, let
$\Gamma(N)=($ principal $)$ congruence subgroup of level $N=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)(\bmod N)\right\}$.
For simplicity, write $\Gamma=\Gamma(N)$. The natural projection

$$
\begin{aligned}
\pi: \mathfrak{H} & \longrightarrow \quad Y(N)=\Gamma \backslash \mathfrak{H}=\{\Gamma \tau: \tau \in \mathfrak{H}\} \\
\tau & \mapsto
\end{aligned}
$$

gives $Y(N)$ the quotient topology so that π is an open mapping.

Fundamental domain of $Y(3)$

Isotropy subgroup Γ_{z}

For each point $z \in \mathfrak{H}$, we denote

$$
\Gamma_{z}=\text { isotropy subgroup of } z=\{\gamma \in \Gamma: \gamma(z)=z\} .
$$

In particular, if $\left| \pm \Gamma_{z} /\left\{ \pm 1_{2}\right\}\right|>1$, then z is called an elliptic point (for Γ).

Since Γ is discrete, we can take a neighborhood U of z s.t.

$$
\{\gamma \in \Gamma: \gamma(U) \cap U \neq \emptyset\}=\Gamma_{z} .
$$

Such a neighborhood U has no elliptic points except possibly z.

Local coordinate φ

W define a map

$$
\begin{aligned}
\psi: U & \longrightarrow \mathbb{C} \\
\tau & \mapsto\left(\frac{\tau-z}{\tau-\bar{z}}\right)^{\left| \pm \Gamma_{z} /\left\{ \pm 1_{2}\right\}\right|}
\end{aligned}
$$

Its image $\psi(U)$ is an open subset of \mathbb{C} by the open mapping theorem, and there exists a natural bijection $\varphi: \pi(U) \rightarrow \psi(U)$ s.t.

The map φ becomes a local coordinate, that is,
(1) the coordinate neighborhood about $\pi(z)$ in $Y(N)$ is $\pi(U)$;
(2) the map $\varphi: \pi(U) \rightarrow \psi(U)$ is a homeomorphism.

Local coordinate at an ellpitic point
Since the transition maps between these coordinate charts are holomorphic, $Y(N)$ can be viewed as a Riemann surface, which is called the modular curve of level N.

Outline

Introduction- Elliptic integrals
- What does E look like?Elliptic curves
- Projective plane curves
- Elliptic functions
- Elliptic curves
(3) Modular curves
- Modular curve of level N
- CompactificationElliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curveApplication to number theory
- Solving Diophantine equations
- Construction of class fields

Extended space \mathfrak{H}^{*}

Consider the extended upper half-plane

$$
\mathfrak{H}^{*}=\mathfrak{H} \cup \underbrace{\mathbb{Q} \cup\{\infty\}}_{\text {cusps }} .
$$

For any $M>0$ let

$$
\mathcal{N}_{M}=\{\tau \in \mathfrak{H}: \operatorname{Im}(\tau)>M\} .
$$

Adjoin the sets

$$
\gamma\left(\mathcal{N}_{M} \cup\{\infty\}\right) \text { for all } M>0 \text { and } \gamma \in \mathrm{SL}_{2}(\mathbb{Z})
$$

to the usual open sets of \mathfrak{H} to serve as a basis of neighborhoods of the cusps, and take the resulting topology on \mathfrak{H}^{*}.

Compactification of $Y(N)$

Now consider the extended quotient

$$
X(N)=\Gamma \backslash \mathfrak{H}^{*}=Y(N) \cup \Gamma \backslash(\mathbb{Q} \cup\{\infty\})
$$

which is Hausdorff, connected and compact.
Give $X(N)$ the quotient topology and extend the natural projection to $\pi: \mathfrak{H}^{*} \rightarrow X(N)$.

To make $X(N)$ a compact Riemann surface we have to give it complex charts.
(1) For $z \in \mathfrak{H}$ we just retain the complex chart of $Y(N)$.
(2) For a cusp $s \in \mathbb{Q} \cup\{\infty\}$ take a matrix $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ s.t. $\gamma(s)=\infty$, and define a map

$$
\begin{aligned}
\psi: U=\gamma^{-1}\left(\mathcal{N}_{2} \cup\{\infty\}\right) & \longrightarrow \mathbb{C} \\
\tau & \mapsto e^{2 \pi i \gamma(\tau) /\left|\mathrm{SL}_{2}(\mathbb{Z})_{\infty} / \pm \Gamma_{\infty}\right|}
\end{aligned}
$$

The image $\psi(U)$ is an open subset of \mathbb{C}, and there exists a homeomorphism $\varphi: \pi(U) \rightarrow \psi(U)$ s.t.

Complex chart at a cusp
It is routine to check that the transition maps between charts of $X(N)$ are holomorphic. Therefore $X(N)$ is now a compact Riemann surface, also called the modular curve of level N.

Outline

Introduction- Elliptic integrals
- What does E look like?

Elliptic curves

- Projective plane curves
- Elliptic functions
- Elliptic curvesModular curves
- Modular curve of level N
- Compactification
(4) Elliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curveApplication to number theory
- Solving Diophantine equations
- Construction of class fields

Outline

Introduction- Elliptic integrals
- What does E look like?Elliptic curves
- Projective plane curves
- Elliptic functions
- Elliptic curvesModular curves
- Modular curve of level N
- Compactification
(4) Elliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curveApplication to number theory
- Solving Diophantine equations
- Construction of class fields

Modular forms of level N and weight k

For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ and $k \in \mathbb{Z}$,
we define the weight- k operator $\cdot \mid[\gamma]_{k}$ on functions $f: \mathfrak{H} \rightarrow \widehat{\mathbb{C}}$ as

$$
f(\tau) \mid[\gamma]_{k}=(c \tau+d)^{-k} f(\gamma(\tau)) \quad(\tau \in \mathfrak{H}) .
$$

Then it is easily verified that for $\gamma_{1}, \gamma_{2} \in \operatorname{SL}_{2}(\mathbb{Z})$

$$
f\left|\left[\gamma_{1} \gamma_{2}\right]_{k}=\left(f \mid\left[\gamma_{1}\right]_{k}\right)\right|\left[\gamma_{2}\right]_{k} .
$$

A function $f: \mathfrak{H} \rightarrow \widehat{\mathbb{C}}$ is a modular form of level $N(\geq 1)$ and weight k if
(1) f is meromorphic on \mathfrak{H};
(2) f is invariant under $\cdot \|[\gamma]_{k}$ for all $\gamma \in \Gamma(N)$;
(3) $f \mid[\alpha]_{k}$ is meromorphic at ∞ for all $\alpha \in \mathrm{SL}_{2}(\mathbb{Z})$.

Meromorphicity at ∞

(1) To discuss meromorphicity of $f \mid[\alpha]_{k}$ at ∞ we note that

- $\Gamma(N)$ is a normal subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$;
- $\left(\begin{array}{ll}1 & N \\ 0 & 1\end{array}\right) \in \Gamma(N)$.

So we get

$$
\left(\begin{array}{cc}
1 & N \\
0 & 1
\end{array}\right)=\alpha^{-1} \gamma \alpha \quad \text { for some } \gamma \in \Gamma(N) .
$$

(2) Observe that

$$
\begin{aligned}
\left(f \mid[\alpha]_{k}\right)(\tau+N) & =\left(f \mid[\alpha]_{k}\right) \left\lvert\,\left[\left(\begin{array}{cc}
1 & N \\
0 & 1
\end{array}\right)\right]_{k}\right. \\
& =\left(f \mid[\alpha]_{k}\right) \mid\left[\alpha^{-1} \gamma \alpha\right]_{k} \\
& =f\left|\left[\alpha \alpha^{-1} \gamma \alpha\right]_{k}=f\right|[\alpha]_{k}
\end{aligned}
$$

which shows that $f \mid[\alpha]_{k}$ has period N.
(4) Let

$$
q=e^{2 \pi i \tau} \quad(\tau \in \mathfrak{H})
$$

Then $f \mid[\alpha]_{k}$ is a function w.r.t. $q^{\frac{1}{N}}$ on some punctured disc about $q=0$.
If the function has a Laurent series w.r.t. $q^{\frac{1}{N}}$, namely

$$
f \left\lvert\,[\alpha]_{k}=\sum_{n \geq m}^{\infty} c_{n}\left(q^{\frac{1}{N}}\right)^{n} \quad\left(c_{n} \in \mathbb{C}\right)\right.
$$

for some integer m, then $f \mid[\alpha]_{k}$ is said to be meromorphic at ∞.
(5) The above series is conventionally called the Fourier expansion of $f \mid[\alpha]_{k}$ at ∞ (or, f at $\alpha(\infty)$) with Fourier coefficients c_{n}.
(6) Modular forms of level N and weight 0 are called modular functions of level N. They are exactly meromorphic functions defined on the modular curve $X(N)$ and vice versa.

Example

(1) Let

$$
\Lambda=[\tau, 1] \quad \text { with } \tau \in \mathfrak{H}
$$

be a lattice. Recall the constants (relative to Λ)

$$
\begin{aligned}
g_{2}(\Lambda) & =60 \sum_{(m, n) \in \mathbb{Z}^{2}-\{(0,0)\}} \frac{1}{(m \tau+n)^{4}} \\
g_{3}(\Lambda) & =140 \sum_{(m, n) \in \mathbb{Z}^{2}-\{(0,0)\}} \frac{1}{(m \tau+n)^{6}} \\
\Delta(\Lambda) & =g_{2}(\Lambda)^{3}-27 g_{3}(\Lambda)^{2} \\
j(\Lambda) & =\frac{g_{2}(\Lambda)^{3}}{\Delta(\Lambda)}
\end{aligned}
$$

(2) Regard τ as a variable on \mathfrak{H}, and let

$$
\begin{aligned}
g_{2}(\tau) & =g_{2}([\tau, 1]) \\
g_{3}(\tau) & =g_{3}([\tau, 1]) \\
\Delta(\tau) & =\Delta([\tau, 1]) \\
j(\tau) & =j([\tau, 1])
\end{aligned}
$$

Directly from the definitions, for $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ we have

$$
\begin{aligned}
g_{2}(\tau) \mid[\gamma]_{4} & =g_{2}(\tau) \\
g_{3}(\tau) \mid[\gamma]_{6} & =g_{3}(\tau) \\
\Delta(\tau) \mid[\gamma]_{12} & =\Delta(\tau) \\
j(\tau) \mid[\gamma]_{0} & =j(\tau)
\end{aligned}
$$

(3) We have the product formula

$$
\sin \pi \tau=\pi \tau \prod_{n=1}^{\infty}\left(1-\frac{\tau}{n}\right)\left(1+\frac{\tau}{n}\right)
$$

Taking the logarithmic derivative yields

$$
\pi \frac{\cos \pi \tau}{\sin \pi \tau}=\frac{1}{\tau}+\sum_{n=1}^{\infty}\left(\frac{1}{\tau-n}+\frac{1}{\tau+n}\right)
$$

On the other hand, since

$$
\cos \pi \tau=\frac{1}{2} q^{-\frac{1}{2}}(q+1) \quad \text { and } \quad \sin \pi \tau=\frac{1}{2 i} q^{-\frac{1}{2}}(q-1)
$$

we get

$$
\pi \frac{\cos \pi \tau}{\sin \pi \tau}=\pi i \frac{q+1}{q-1}=\pi i-2 \pi i \sum_{\nu=0}^{\infty} q^{\nu}
$$

(4) Differentiating two expressions for $\pi \frac{\cos \pi \tau}{\sin \pi \tau}$ repeatedly yields

$$
(-1)^{k-1}(k-1)!\sum_{n=-\infty}^{\infty} \frac{1}{(\tau-n)^{k}}=-\sum_{\nu=1}^{\infty}(2 \pi i)^{k} \nu^{k-1} q^{\nu}
$$

We obtain from the above relation that

$$
\begin{aligned}
g_{2}(\tau)= & (2 \pi)^{4} \frac{1}{12}\left(1+240 \sum_{n=1}^{\infty}\left(\sum_{d \mid n} d^{3}\right) q^{n}\right) \\
g_{3}(\tau)= & (2 \pi)^{6} \frac{1}{216}\left(1-504 \sum_{n=1}^{\infty}\left(\sum_{d \mid n} d^{5}\right) q^{n}\right) \\
\Delta(\tau)= & (2 \pi)^{12} q\left(1+\sum_{n=1}^{\infty} c_{n} q^{n}\right) \quad\left(d_{n} \in \mathbb{Z}\right) \\
j(\tau)= & \frac{1}{q}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4} \\
& +333202640600 q^{5}+4252023300096 q^{6}+44656994071935 q^{7}+\cdots
\end{aligned}
$$

(5) Hence all the $g_{2}(\tau), g_{3}(\tau), \Delta(\tau)$ and $j(\tau)$ are meromorphic at the cusp ∞ (which is the unique inequivalent cusp for $\mathrm{SL}_{2}(\mathbb{Z})$).
Therefore

$$
\begin{aligned}
g_{2}(\tau) & =\text { a modular form of level } 1 \text { and weight } 4 \\
g_{3}(\tau) & =\text { a modular form of level } 1 \text { and weight } 6 \\
\Delta(\tau) & =\text { a modular form of level } 1 \text { and weight } 12 \\
j(\tau) & =\text { a modular function of level } 1
\end{aligned}
$$

(6) Note that $j(\tau)$ is holomorphic on \mathfrak{H} and has simple pole at ∞.

Hence the map

$$
\begin{array}{rll}
X(1) & \longrightarrow & \mathbb{P}^{1}(\mathbb{C}) \\
\tau & \mapsto & {[j(\tau): 1]}
\end{array}
$$

is an isomorphism between two Riemann spheres. Therefore

$$
\text { the field of all meromorphic functions on } X(1)=\mathbb{C}(j(\tau))
$$

Outline

Introduction- Elliptic integrals
- What does E look like?Elliptic curves
- Projective plane curves
- Elliptic functions
- Elliptic curvesModular curves
- Modular curve of level N
- Compactification
(4) Elliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curve
(3) Application to number theory
- Solving Diophantine equations
- Construction of class fields

Change of variables

Let Λ be a lattice in \mathbb{C} of the form

$$
\Lambda=[\tau, 1] \quad \text { with } \tau \in \mathfrak{H} .
$$

From the complex analytic isomorphism

$$
\begin{aligned}
\mathbb{C} / \Lambda & \xrightarrow{\sim} y^{2}=4 x^{3}-g_{2}(\tau) x-g_{3}(\tau) \\
z & \mapsto \quad\left[\wp(z ; \Lambda): \wp^{\prime}(z ; \Lambda): 1\right],
\end{aligned}
$$

we have the relation

$$
\wp^{\prime}(z ; \Lambda)^{2}=4 \wp(z ; \Lambda)^{3}-g_{2}(\tau) \wp(z ; \Lambda)-g_{3}(\tau) .
$$

Define

$$
\eta(\tau)=\sqrt{2 \pi} \zeta_{8} q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

Diving both sides of the above Weierstrass equation by $\eta(\tau)^{12}$ we get

$$
\begin{aligned}
& \left(\frac{\wp^{\prime}(z ; \Lambda)}{\eta(\tau)^{6}}\right)^{2} \\
= & \frac{4 \eta(\tau)^{60}}{g_{2}(\tau)^{3} g_{3}(\tau)^{3}}\left(\frac{g_{2}(\tau) g_{3}(\tau) \wp(z ; \Lambda)}{\eta(\tau)^{24}}\right)^{3}-\frac{\eta(\tau)^{12}}{g_{3}(\tau)}\left(\frac{g_{2}(\tau) g_{3}(\tau) \wp(z ; \Lambda)}{\eta(\tau)^{24}}\right)-\frac{g_{3}(\tau)}{\eta^{12}(\tau)}
\end{aligned}
$$

Write

$$
z=r_{1} \tau+r_{2} \quad \text { with }\left(r_{1}, r_{2}\right) \in \mathbb{R}^{2}-\{(0,0)\}
$$

and set

$$
x_{\left(r_{1}, r_{2}\right)}(\tau)=\frac{g_{2}(\tau) g_{3}(\tau) \wp\left(r_{1} \tau+r_{2} ; \Lambda\right)}{\eta(\tau)^{24}} \quad \text { and } \quad y_{\left(r_{1}, r_{2}\right)}(\tau)=\frac{\wp^{\prime}\left(r_{1} \tau+r_{2} ; \Lambda\right)}{\eta(\tau)^{6}}
$$

Modular function field \mathcal{F}_{N}

For each positive integer N, let

$$
\mathcal{F}_{N}=\text { the field of modular functions of level } N
$$

whose Fourier coefficients at ∞ belong to the $N^{\text {th }}$ cyclotomic field $\mathbb{Q}\left(e^{\frac{2 \pi i}{N}}\right)$.
As is well-known,
(1) $\mathcal{F}_{N} \otimes \mathbb{C}$ is the field of meromorpic functions on $X(N)$;
(2) \mathcal{F}_{N} is a Galois extension of \mathcal{F}_{1};
(3) $\mathcal{F}_{1}=\mathbb{Q}(j(\tau))$;
(4) $\mathcal{F}_{N}=\mathbb{Q}\left(e^{\frac{2 \pi i}{N}}, j(\tau), x_{\left(\frac{1}{N}, 0\right)}(\tau), x_{\left(0, \frac{1}{N}\right)}(\tau)\right) \quad$ for $N>1$.

Koo and Shin (2009) showed that

$$
\mathcal{F}_{N}=\mathbb{Q}\left(j(\tau), e^{\frac{2 \pi i}{N}} y_{\left(\frac{1}{N}, 0\right)}(\tau)^{\frac{4}{\operatorname{gcd}(4, N)}}, y_{\left(0, \frac{1}{N}\right)}(\tau)^{\frac{4}{\operatorname{gcd}(4, N)}}\right) \quad \text { for } N>1
$$Introduction

- Elliptic integrals
- What does E look like?Elliptic curves
- Projective plane curves
- Elliptic functions
- Elliptic curvesModular curves
- Modular curve of level N
- CompactificationElliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curve
(5) Application to number theory
- Solving Diophantine equations
- Construction of class fieldsIntroduction
－Elliptic integrals
－What does E look like？Elliptic curves
－Projective plane curves
－Elliptic functions
－Elliptic curvesModular curves
－Modular curve of level N
－CompactificationElliptic curves and modular forms
－Modular forms
－Modular functions from generic elliptic curve
（5）Application to number theory
－Solving Diophantine equations
－Construction of class fields

History

(1) Fermat ($1640 \sim 1650$ s)

For a prime number p

$$
\begin{aligned}
& p=x^{2}+y^{2} \text { for }(x, y) \in \mathbb{Z}^{2} \quad \Longleftrightarrow \quad p=2 \text { or } p \equiv 1(\bmod 4) \\
& p=x^{2}+2 y^{2} \text { for }(x, y) \in \mathbb{Z}^{2} \quad \Longleftrightarrow \quad p=2 \text { or } p \equiv 1,3(\bmod 8) \\
& p=x^{2}+3 y^{2} \text { for }(x, y) \in \mathbb{Z}^{2} \quad \Longleftrightarrow \quad p=3 \text { or } p \equiv 1(\bmod 3)
\end{aligned}
$$

(2) Euler (1740s)

Euler conjectured for a prime number p

$$
p=x^{2}+27 y^{2} \text { for }(x, y) \in \mathbb{Z}^{2} \Longleftrightarrow\left\{\begin{array}{l}
p \equiv 1(\bmod 3) \\
x^{3} \equiv 2(\bmod p) \text { has an integer solution. }
\end{array}\right.
$$

(3) Gauss (Disquisitiones Arithmeticae, 1801)

$$
p=x^{2}+y^{2} \text { for }(x, y) \in \mathbb{Z}^{2} \Longleftrightarrow p=2 \text { or } p \text { splits in } \mathbb{Q}(\sqrt{-1}) .
$$

(4) Weber (1880s)

$$
p=x^{2}+\left(2^{\ell+1} y\right)^{2}(\ell \geq 0) \text { for }(x, y) \in \mathbb{Z}^{2}
$$

$\Longleftrightarrow \quad p$ splits completely in $\mathbb{Q}(\sqrt{-1})\left(j\left(2^{\ell+1} \sqrt{-1}\right)\right)$.
(5) Hilbert, Deuring, Artin, Cohn, Stark (1970s)

They determined the primes p of the form $x^{2}+n y^{2}$.
(6) $\operatorname{Cox}\left(\right.$ Primes of the Form $\left.x^{2}+n y^{2}, 1989\right)$

Let
n : a positive integer
K : the imaginary quadratic field $\mathbb{Q}(\sqrt{-n})$
$H_{\mathcal{O}} \quad$: the ring class field of the order $\mathcal{O}=\mathbb{Z}[\sqrt{-n}]$
$\alpha \quad: \quad$ a real algebraic integer for which $H_{\mathcal{O}}=K(\alpha)$.
Let p be an odd prime number not dividing n. Then

$$
\begin{aligned}
& p=x^{2}+n y^{2} \\
\Longleftrightarrow & p \text { splits completely in } H_{\mathcal{O}} \\
\Longleftrightarrow & \left\{\begin{array}{l}
\left(\frac{-n}{p}\right)=1 \text { and } \\
\min (\alpha, K) \equiv 0(\bmod p) \text { has an integer solution. }
\end{array}\right.
\end{aligned}
$$

Outline

Introduction- Elliptic integrals
- What does E look like?Elliptic curves
- Projective plane curves
- Elliptic functions
- Elliptic curvesModular curves
- Modular curve of level N
- CompactificationElliptic curves and modular forms
- Modular forms
- Modular functions from generic elliptic curve
(5) Application to number theory
- Solving Diophantine equations
- Construction of class fields

History

(1) Kronecker-Weber $(1886,1887)$

Let L be a finite abelian extension of \mathbb{Q}. Then

$$
L \subseteq \mathbb{Q}\left(f\left(\frac{1}{N}\right)\right) \text { for some integer } N \geq 1
$$

where

$$
f(\tau)=e^{2 \pi i \tau}
$$

(2) Hilbert's $12^{\text {th }}$ Problem (Paris ICM, 1900) (= Kronecker's Jugendtraum)

Let
K : a given number field
$L \quad: \quad$ arbitrary finite abelian extension of K.
Is there a transcendental function f such that

$$
L=K(f(\alpha)) \text { for some } \alpha ?
$$

Let K denote an imaginary quadratic field.
(3) Takagi (1920)

Takagi provided explicit generators for the maximal abelian extension $K^{\text {ab }}$ by using special values of Jacobi functions.
(4) Hasse (1927)

Let

$$
\theta(\in \mathfrak{H}): \text { a generator of the ring of integers of } K(\text { over } \mathbb{Z})
$$

If L is a finite abelian extension of K, then

$$
L \subseteq K\left(j(\theta), x_{\left(0, \frac{1}{N}\right)}(\theta)\right) \text { for some integer } N \geq 1
$$

The values $x_{\left(0, \frac{1}{N}\right)}(\theta)$ corresponds to the x-coordinate of the N-torsion point

$$
\left(x_{\left(0, \frac{1}{N}\right)}(\theta), y_{\left(0, \frac{1}{N}\right)}(\theta)\right)
$$

of an elliptic curve parametrized by $\mathbb{C} /[\theta, 1]$ with complex multiplication.
(5) Ramachandra (1964)

Ramachandra showed that arbitrary finite abelian extension of K can be generated by certain elliptic unit.
But, his invariant involves too complicated products of high powers of special values of the Klein forms and Δ-function.
(6) Cho-Koo (2008)

They obtained a primitive generator from Hasse's two special values $j(\theta)$ and $x_{\left(0, \frac{1}{N}\right)}(\theta)$.
But it is still hard to compute the minimal polynomial of the generator.
(7) Koo-Shin (2009)

If

$$
\begin{aligned}
& K=\mathbb{Q}(\sqrt{-n}) \quad \text { with } n \text { square-free } \neq 1,2,3,5,6,7,11,15 \\
& N \quad: \quad \text { any integer }>2
\end{aligned}
$$

then

$$
K\left(j(\theta), x_{\left(0, \frac{1}{N}\right)}(\theta)\right)=K\left(y_{\left(0, \frac{1}{N}\right)}(\theta)^{\frac{4 m}{\operatorname{gcd}(4, N)}}\right) \quad \text { for any } m \neq 0
$$

by using the Shimura's reciprocity law which connects the theory of modular functions and class field theory.

Example of a minimal polynomial

Let $K=\mathbb{Q}(\sqrt{-10})$ and $\theta=\sqrt{-10}$.
The minimal polynomial of the special value $y_{\left(0, \frac{1}{6}\right)}(\theta)^{12}$ is given as follows:

$$
\begin{aligned}
& X^{16}-56227499765918216689444911216 X^{15} \\
& +28198738767573877103982180845427211416 X^{14} \\
& -61006294392822456973543787353433426528859172752 X^{13} \\
& +24191545040559618198685578078066621024919984909895925564 X^{12} \\
& -1457219992512158403396945180026448081831307850098282381377715440 X^{11} \\
& -1875247086634588418900161009847749757705491090331618598955145878499352 X^{10} \\
& -3204258054536691403559566745682638856959186166279206475927474345038453779344 X^{9} \\
& +383798110212800409840846851392850879043779134397546083788605170327010622235878 X^{8} \\
& -115423974200159134410244151892157361168179592425853550820710288184072396692478416 X^{7} \\
& +334107284582565793933974554285013907697215168114012280251572770023994260474295208 X^{6} \\
& -2413062017539132381926952150397596657649211631905734942002508919329018160 X^{5} \\
& +5947186157319106561144943221021199418610488121986658654341036924 X^{4} \\
& -5317595247800083950930014176690955051475061944750295248 X^{3} \\
& +797299465586120177639706616225451835994220376 X^{2} \\
& -29812156397602328057777202393119664 X+282429536481 .
\end{aligned}
$$

