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Introduction

What doe

Projective spaces

Denote
P?(C) = projective plane = {[X :Y:Z] : X,Y,Z¢&Cnotall zero}

with the homogeneous coordinates X, Y, Z and affine coordinates

X Y
x=— and y= —.
z z

Furthermore, let
P!'(C) = projective line = {[X :Y] : X, Y € Cnotall zero}
which can be identified with a Riemann sphere

C =CuU{oo}.
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Loci in P?(C)

Let E be a locus in P?(C) defined by
E:y=x(x—1)(x—X) forA#0, 1

with the extra point O = [0 : 1 : 0]. For example,

E : y?2 =x(x—1)(x —2) inR?
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Elliptic integrals

The differential form

is holomorphic on E. Suppose that we try to define a map

o

E — C
P

P»—)/w
0

where the integral is along some path connecting O and P.

Namely, we are attempting to compute the (complex) line integral

* dt
/oo Vit —=1)(t—X)

which is called an elliptic integral.
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Because the square-root is not single valued, the integral is not path-independent.

For example,

Three paths in P!(C)

three integrals fa w, fB w, fv w are not equal.
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Branch cuts

In order to make the integral well-defined, it is necessary to make branch cuts as follows:
o0 IF’] ( C)

/'

0| 1

A

Branch cuts in P! (C)

Then, then integrals will be path-independent on the complement of the branch cuts.
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More generally, ( (1) ~ (10) )
(1) Take two copies of P!(C).

(2) Make the indicated branch cuts:

(3) Glue them together along the branch cuts to form a Riemann surface (or, a torus) as
follows:
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(4) On this torus, one should study the integral [ dr/\/t(t — 1)(t — A).

(5) In fact, elliptic curves first arose when people began to study such “elliptic integrals"
which is related to the arc-length of an ellipse.

(6) The indeterminacy comes from integrating around non-contractible loops on the torus.

(7) So we introduce two complex numbers, which are called periods of E,

w1:/w and wzz/w.
o B

Paths on P!(C) and on the torus
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(8) Now the integral

P
/ w
0

is well-defined up to addition of a number of the form njw; + now; for ny, ny € Z.

(9) Let
A= Zw] + sz.
Thus we have shown that there is a well-defined map
E — C/A

P
P / w (mod A).
0

(10) If A is a lattice in C, then the quotient space C/A will be a Riemann surface.
Then by using the translation invariance of w,
one can verify that the above map is a complex analytic isomorphism.
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Covers of P?(C)

The projective plane
P*(C) = (C* — {o})/C*

is a Hausdorff compact space which can be covered by the three open sets

Uy = {[X:Y:Z}:X;éo}
U = {[X:Y:Z}:Y;éo}
U, = {[X:Y:z}:z;éo}.

Each U; is homeomorphic to C2, for example

v, = ¢?
X:Y:Z) — (x,y)=(X/Z Y/Z).
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Projective plane curve V

For a (nonconstant) homogeneous polynomial F(X, Y, Z), consider its locus
V= {[X: Y:Z] € P*(C) : F(X,Y,Z) :0}.

The intersection
Vi=vnUu; (1:07 1’2)
is exactly an affine plane curve when transported to C2.

For example, V; is homeomorphic to the affine plane curve described by the equation

flx,y) =F(x,y, 1) =0.
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Nonsingular F defines a compact Riemann surface

F(X,Y,Z) is said to be nonsingular if there are no common solutions (in P2(C))
to the system of equations

_OF _OF _OF
T 8X a9y 8z

Then one can obtain
F is nonsingular <= each V; is a smooth affine plane curve (in (Cz).

If F(X,Y,Z) is a nonsingular (irreducible) polynomial defining the projective plane curve V,
then

(1) each V; (i =0, 1, 2)is a smooth (irreducible) affine plane curve, and hence is a Riemann
surface;

(2) at each point of V; we take a ratio of the homogeneous coordinates as a local coordinate;

(3) then V becomes a compact Riemann surface as a closed subset of compact P?(C).
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Elliptic functions

Let A be a lattice in C, that is,
A = Zw) + Zw, for some R-basis {w;, wy} of C.

We often write A = [wy, wy].

An elliptic function (relative to A) is a meromorphic functions f(z) on C which satisfies

flz+w)=f(z) forallwe A, z€C.

(1) We can view elliptic functions as meromorphic functions on the torus C/A.
(2) Hence an elliptic function with no poles is constant.

(3) The field of all such functions is denoted C(A).
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Weierstrass functions

The Weierstrass g-function (relative to A) is defined by the series
1 1 1
A -5+ — € C).
oan=5+ ¥ (fop-3) €O
weA—{0}
Clearly, p(z; A) = p(—z; A) (thatis, p(z; A) is an even function).

By termwise differentiation (w.r.t. z) we get

(5 A) =2 Z

weA Z - w)S

which is obviously an elliptic function.
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; A) is an elliptic function

(1) Letw € A. Integrating
O (z+w; A)=9'(z A)  (zeC—A7A)
yields
p(z+w; A) = p(z; A) + c(w) for some ¢(w) independent of z.
(2) Letting z = —w/2 we get that

pw/2 A) = p(-w/2 A) +c(w)
= p(w/2; A) + c(w) because p is even,

which shows ¢(w) = 0.
(3) Hence p(z; A) is an elliptic function, too.

(4) As is well-known

C(A) = C(p(z; A), ¢ (z A))



Elliptic curves

Laurent serious for g

(1) For a lattice A in C, the Eisenstein series of weight 2k (relative to A) is the series
1
G (A) = Z k-
weA—{0}
Then for all integer k > 1, G (A) is absolutely convergent.
(2) Letz € Candw € A. If |z| < |w], then

1 1 _ 1 ( 1 1)
(z—w)? w? W\ (1—-z/w)?
(oo} Z”
= Z(n+l)wn+2'
n=1
(3) Hence the Laurent series for p(z; A) about z = 0 is given by

oo

1 1 1 1 ’
p(z; A) = 2t > ((7 - 7) =5t kZ(Zk-F 1D)Garga (M)

ol w2
weh_{oy V¢ w? W -
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Relation between p(z; A) and ©/(z; A)

(1) Write out the first few terms in various Laurent expansions:

4 1
© (5 A)? = - —24Gi(A)= —80Gs(A) + -+
Zz Z
1 1
p(z A)? = = +9G4(A)5 + 15Gs(A) + -+

Zz Z
1
P A) = S +3GMT -

(2) Comparing these, we see that the function
1) = ¢'(z A)? = 4p(z; A +60G4(M)p(z; A) + 140Gs(A)
is holomorphic around z = 0 and vanishes at z = 0.
(3) Since p(z; A) and p’(z; A) are holomorphic away from A, so does f(z).

(4) Hence f(z) is a holomorphic functions on C/A,
from which we conclude that f(z) is identically zero.
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Parametrization of a projective curve E

It is standard to set

§2(A) =60G4(A),  g3(A) = 140Ge(A)

_ &(A)?
AN

A(A) = g2(A) = 27g3(A), ()

Let E be the (projective) curve defined by the (affine) equation
E:y =40 — g(A)x—g3(A).
Then the map

¢: C/A — ECP}C)
{ oGz A): @' (z; A): 1] ifz A

z (mod A) .
0:1:0] ifze€ A

becomes an isomorphism between compact Riemann surfaces.
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Elliptic curve E as a projective plane curve

An elliptic curve E (over C) is a projective plane curve defined by the (affine) equation
E:y =40 —gx—g
with extra point O = [0 : 1 : 0] where
2, g3 €C with A = g5 —27g3 #0.

The above equation is called a Weierstrass equation for E.

The fact A # 0 implies that E is smooth.
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Group structure on E

For an elliptic curve E, let Pand Q € E.

(1) Let L be the line connecting P and Q, and R be the third point of intersection of L with the
curve E.

(2) Let L’ be the line connecting O and R.
(3) Then P @ Q is the point s.t. L’ intersects E at O, R and P @ Q.

Addition of distinct points Adding a point to itself

Then E becomes an abelian group with identity O, and hence it is a complex Lie group.
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Uniformization theorem

The uniformization theorem asserts that for g, g3 € C with
& — 276 #0,
there exists a unique lattice A in C such that
82 = g2(A) and g3 = g3(A).
Hence one can show that the isomorphism

@ :C/A = E:y =48 —gx—g;
o= fels A (5 A) ]
between compact Riemann surfaces is also a group homomorphism (by using some properties

of divisors on E).
That is, ¢ is a complex analytic isomorphism between complex Lie groups.
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Complex multiplication

Let E be an elliptic curve parametrized by using a lattice A = [w;, wy] in C.

(1) The complex analytic endomorphisms of E correspond to
the multiplication maps of C/A onto itself.

(2) Let a € C. Note that
the multiplication by . : C/A — C/A is well-defined <= aA C A.

(3) Such a’s form a ring, which contains Z.
If the ring is strictly larger than Z, E is said to have complex multiplication.

(4) It is well-known that

E has complex multiplication <= w) /w; is imaginary quadratic.
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Action of SL,(7Z) on $

Let
$) = complex upper half-plane = {T € C:Im(1) > 0}

which inherits the Euclidean topology as a subspace of R2. Then

SL,(Z) = modular group = { (i Z) ta, b, c,d€Z, ad —bc= 1}

acts on $) by linear fractional transformation, namely

a b
7:(0 d):yj - 9

at +b
T = )=

ct+d

Note that

1, 72 € SLa(Z) give rise to the same action on §) <= v, = £ ((') (1)) Y2-
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Modular curves
Compact

Orbit space Y(N)

For a positive integer N, let

I'(N) = (principal) congruence subgroup of level N = {'y €SLy(Z) : v = (é (1)) (mod N)}

For simplicity, write I' = I'(N). The natural projection
TH — Y(N):F\.ﬁ’):{FT:TGYJ}
T = It

gives Y(N) the quotient topology so that 7 is an open mapping.

28 0 1

Fundamental domain of Y (3)
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Isotropy subgroup I,

For each point z € $), we denote
. = isotropy subgroup of z ={y € I" : v(z) = z}.

In particular, if | + I';/{212}| > 1, then z is called an elliptic point (for I).

Since I is discrete, we can take a neighborhood U of z s.t.

{'yEF:'y(U)ﬁU;é(Z)}zFZ.

Such a neighborhood U has no elliptic points except possibly z.
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Local coordinate ¢

W define a map
YU — C

(T,Z)&rz/{ilm
T — .

T—2Z

Its image v (U) is an open subset of C by the open mapping theorem, and
there exists a natural bijection ¢ : 7(U) — (U) s.t.

/\

( —)L, U)
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Modular curves

The map ¢ becomes a local coordinate, that is,
(1) the coordinate neighborhood about 7(z) in Y(N) is w(U);
(2) the map ¢ : w(U) — 9(U) is a homeomorphism.

o

| Y(U)

Local coordinate at an ellpitic point

Since the transition maps between these coordinate charts are holomorphic,
Y(N) can be viewed as a Riemann surface, which is called the modular curve of level N.
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Modular curves

Extended space $*

Consider the extended upper half-plane
N =HUQU {c0}.
——

cusps
For any M > 0 let
Y NM:{TGS’J :Im(T)>M}.

Adjoin the sets
~Y(Ny U {oo}) forall M > 0 and v € SL,(Z)

to the usual open sets of ) to serve as a basis of neighborhoods of the cusps, and
take the resulting topology on $*.

Neighborhoods of cusps



Modular curves

Compactification of Y(N)

Now consider the extended quotient
X(N) =T\H" =Y(N) UT\(QU {oc}),
which is Hausdorff, connected and compact.

Give X(N) the quotient topology and extend the natural projection to 7 : §* — X(N).

To make X(N) a compact Riemann surface we have to give it complex charts.
(1) Forz € $ we just retain the complex chart of Y(N).
(2) Foracusps € QU {oo} take a matrix v € SLy(Z) s.t. y(s) = oo, and define a map

Y U=7"'"NuU{x}) — C
s AT()/ISa(Z)eo /AT e |
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The image (U) is an open subset of C, and
there exists a homeomorphism ¢ : w(U) — ¢ (U) s.t.

Complex chart at a cusp

It is routine to check that the transition maps between charts of X(N) are holomorphic.
Therefore X(N) is now a compact Riemann surface, also called the modular curve of level N.
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Modular forms of level N and weight &

Fory = (¢4) € SLy(Z) and k € Z,
we define the weight-k operator -|[y]; on functions f : § — C as
F@OIPk = (er + ) (v(r) (7 € 9).

Then it is easily verified that for v, v € SL2(Z)

fllmyalk = (f\hl]k) [[v2]k-

A functionf : $ — C is a modular form of level N(> 1) and weight & if
(1) f is meromorphic on £3;
(2) f is invariant under -|[y], for all v € T'(N);

(3) f|[ex is meromorphic at oo for all & € SLy(Z).
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Meromorphicity at co

(1) To discuss meromorphicity of f|[a]x at co we note that
e I'(N) is a normal subgroup of SL»(Z);
o (pV) eT@).
So we get

((1) 7):071"/04 for some v € T(N).
(2) Observe that

()48 = (sl )IHCE )k
(F1fa ™

fllea™ vl = flladk,

which shows that f|[a]; has period N.
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4) Let
g=emi (r €9).

1
Then f|[a]y is a function w.r.t. g¥ on some punctured disc about g = 0.

1
If the function has a Laurent series w.r.t. ¢~ , namely

oo

1
fllede =Y en(@¥)"  (ecw€C)
n>m
for some integer m, then f|[c] is said to be meromorphic at co.
(5) The above series is conventionally called the Fourier expansion of f|[a]y at co

(or, f at a(00)) with Fourier coefficients c,.

(6) Modular forms of level N and weight O are called modular functions of level N.
They are exactly meromorphic functions defined on the modular curve X (N)
and vice versa.
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Example

(1) Let
A=[r, 1] withT €9

be a lattice. Recall the constants (relative to A)

1

&@A) = 60 > (mr 4 )

(m, n)€Z2—{(0, 0)}

1
g(A) = 140 Z — ¢
(s )PP {0, 0)} (mT + n)®
A(A) = g(A) —27g3(A)?
. _ @)’
iw) = AN
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(2) Regard 7 as a variable on $), and let

alr) = & 1)
a(r) = & 1)
Alr) = A(lr 1)
) = Jrn 1.

Directly from the definitions, for v € SL,(Z) we have

eMlhs = ()
a(Ms = g(7)
A = A7)

iOIe = 7).
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(3) We have the product formula
b T T
sintr = FT’E (1 — ;) (] —+ ;)
Taking the logarithmic derivative yields

R 1 1
ﬂcosm—:7+z( n )

sin T T s \T—n T+n

On the other hand, since
1 _1 . I 1
coOsTT = g 2(q+1) and sinwr = —q 2(q—1),
i

we get

CcoS T + 1 >
T— :WiL:Wi—ZWiZqV.
sin T q—1 fywrd
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(4) Differentiating two expressions for 7 7" repeatedly yields
(oo} 1 (oo}
G (TN T > @mi) v
n=-—o0 T n v=1

We obtain from the above relation that

an = en'p 1+ a0 )

n=1 d|n
] oo
6 S\ on
an) = g (1o )
n=1 din
A() = (27r>‘2q(1 + Zc,,q"> (dr € 2)
n=1

1
J(T) = = 4744 + 196884q + 214937604 + 8642999704 + 202458562564"

q

+3332026406004° + 4252023300096¢° + 44656994071935¢ + - - - .



Modular forms
Modular functions from generic elliptic curve

Elliptic curves and modular forms

(5) Hence all the g>(7), g3(7), A(7) and j(7) are meromorphic at the cusp oo
(which is the unique inequivalent cusp for SL,(Z)).

Therefore
g(7) = amodular form of level 1 and weight 4
g3(7) = amodular form of level 1 and weight 6
A(r) = amodular form of level 1 and weight 12
j() = amodular function of level 1.

(6) Note that j(7) is holomorphic on $ and has simple pole at co.
Hence the map

X(1) — PYQ)
T = [i(r):1]

is an isomorphism between two Riemann spheres. Therefore

the field of all meromorphic functions on X(1) = C (J(T)) .
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Change of variables

Let A be a lattice in C of the form
A=[r, 1] withT € §.
From the complex analytic isomorphism
C/A = Y =4 —g(r)x—g(7)
z = [els A) e (n A) 1],
we have the relation
o' (5 A =4p(z; A — ga()p(z A) — g3(7).
Define
1 o0
n(r) = Varsqs [[(1 - ¢").
n=1



Modular forms
Modular functions from generic elliptic curve

Elliptic curves and modular forms

Diving both sides of the above Weierstrass equation by 7(7)'2 we get

oz M)
( n(7)® )
__4n(n)® (gz(f)gz(f)@(z; A))3 ()" (gz(f)gs(f)@(z; A)) I EIC)
82(1)3g3(7)> n(r)* (1) n(r)* n'2(r)’
Write
z=rT+r with(r, rn) € R? — {(0, 0)},
and set
Koy, (1) = g2(m)g3(T)p(nT +ra; A) and yg,. (1) = o (n7+ry; A).

n(r)* n(r)°
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Modular function field Fy

For each positive integer N, let

Fn = the field of modular functions of level N

27i
whose Fourier coefficients at oo belong to the N cyclotomic field Q(e N ).

As is well-known,
(1) Fn ® Cis the field of meromorpic functions on X(N);

(2) Fy is a Galois extension of Fi;
® 7 =0(i);

27i
4 Fn @(6 N, (), x(ﬁ,o)(T)v X, %)(T)) orN >
Koo and Shin (2009) showed that

i 4 __4
Fv o = Q). eFyu o (0)FET y o (D)EET ) forN > 1.
(50 0, %)

N
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Solving Diophantine equations
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History

(1) Fermat (1640 ~ 1650s)
For a prime number p
p=x*+ yYfor(x,y) €2 <= p=2orp=1 (mod4)
p=x*+2yfor(x,y) €7 <= p=2orp=1,3 (mod8)
p=x>+3y’for(x,y) €7 <= p=3orp=1 (mod3).

(2) Euler (1740s)
Euler conjectured for a prime number p
p =1 (mod 3)

p=x>+21y for (x, y) € Z? <
x3 =2 (mod p) has an integer solution.



Solving Diophantine equations

il
Construction of class fields

Application to number theory

(3) Gauss (Disquisitiones Arithmeticae, 1801)
p=x>4y?for (x, y) € Z* <= p =2 or p splits in Q(v/—1).
(4) Weber (1880s)

p=x>+ (22 (£ >0) for (x, y) € Z?

<= psplits completely in Q(v/—1) (j(2*F1V/=1)).
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(5) Hilbert, Deuring, Artin, Cohn, Stark (1970s)

They determined the primes p of the form x? + ny?.

(6) Cox (Primes of the Form x* + ny?, 1989)

Let
n : apositive integer
:  the imaginary quadratic field Q(v/—n)
Ho : thering class field of the order O = Z[v/—n]
a : areal algebraic integer for which Hp = K (o).

Let p be an odd prime number not dividing n. Then

p =22+ ny?
<= p splits completely in Hp
(_7") = land

min(a, K) =0 (mod p) has an integer solution.
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Application to number theory

History

(1) Kronecker-Weber (1886, 1887)
Let L be a finite abelian extension of Q. Then
LC Q(f(%) ) for some integer N > 1
where

f(’?') — eZWiT.

(2) Hilbert’s 12t Problem (Paris ICM, 1900) (= Kronecker’s Jugendtraum)
Let

K : agiven number field

L : arbitrary finite abelian extension of K.
Is there a transcendental function f such that

L =K(f(c)) for some cx ?



Application to number theory

Let K denote an imaginary quadratic field.

(3) Takagi (1920)

Takagi provided explicit generators for the maximal abelian extension K2 by using
special values of Jacobi functions.

(4

=

Hasse (1927)
Let

0 (€ $) : agenerator of the ring of integers of K (over Z).

If L is a finite abelian extension of K, then
LC K(j(e), 0 l)(e)) for some integer N > 1.
’ N
The values X0, 1y (6) corresponds to the x-coordinate of the N-torsion point
>N
0 0
(’“(o, 0O Yo, 1 ))

of an elliptic curve parametrized by C/[6, 1] with complex multiplication.
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(5) Ramachandra (1964)

Ramachandra showed that arbitrary finite abelian extension of K can be generated by
certain elliptic unit.

But, his invariant involves too complicated products of high powers of special values of
the Klein forms and A-function.

(6) Cho-Koo (2008)
They obtained a primitive generator from Hasse’s two special values j(6) and X0, 1) 6).
But it is still hard to compute the minimal polynomial of the generator.
(7) Koo-Shin (2009)
If
K = Q(v—n) withnsquare-free # 1,2,3,5,6,7,11,15
N : any integer > 2,
then

K(j(9)7 X L)(e)) = K(y<0 1 )(9)3“1<44”vx N) ) for any m # 0
- ,

N
by using the Shimura’s reciprocity law which connects the theory of modular functions
and class field theory.
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Example of a minimal polynomial

Let K = Q(+/—10) and 6 = /—10.

The minimal polynomial of the special value Y0, 1) (6)2 is given as follows:
6

X'0 — 56227499765918216689444911216X

+28198738767573877103982180845427211416X '
—61006294392822456973543787353433426528859172752X 2
+24191545040559618198685578078066621024919984909895925564X 2
—1457219992512158403396945 18002644808 1831307850098282381377715440X !

— 1875247086634588418900161009847749757705491090331618598955145878499352X '
—3204258054536691403559566745682638856959186166279206475927474345038453779344X°
+383798110212800409840846351392850879043779134397546083788605170327010622235878X°
—115423974200159134410244151892157361168179592425853550820710288 184072396692478416X”
+334107284582565793933974554285013907697215168114012280251572770023994260474295208X°
—2413062017539132381926952150397596657649211631905734942002508919329018160X°
+5947186157319106561144943221021199418610488121986658654341036924X
—5317595247800083950930014176690955051475061944750295248X>
+797299465586120177639706616225451835994220376 X
—29812156397602328057777202393119664X + 282429536481.
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