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Projective spaces

Denote

P2(C) = projective plane =

{
[X : Y : Z] : X, Y, Z ∈ C not all zero

}
with the homogeneous coordinates X, Y, Z and affine coordinates

x =
X
Z

and y =
Y
Z
.

Furthermore, let

P1(C) = projective line =

{
[X : Y] : X, Y ∈ C not all zero

}
which can be identified with a Riemann sphere

Ĉ = C ∪ {∞}.
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Loci in P2(C)

Let E be a locus in P2(C) defined by

E : y2 = x(x− 1)(x− λ) for λ 6= 0, 1

with the extra point O = [0 : 1 : 0]. For example,

E : y2 = x(x− 1)(x− 2) in R2
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Elliptic integrals

The differential form

ω =
dx
y

is holomorphic on E. Suppose that we try to define a map

E ?−→ C

P 7→
∫ P

O
ω

where the integral is along some path connecting O and P.

Namely, we are attempting to compute the (complex) line integral∫ x

∞

dt√
t(t − 1)(t − λ)

which is called an elliptic integral.
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Because the square-root is not single valued, the integral is not path-independent.
For example,

Three paths in P1(C)

three integrals
∫
α ω,

∫
β ω,

∫
γ ω are not equal.
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Branch cuts

In order to make the integral well-defined, it is necessary to make branch cuts as follows:

Branch cuts in P1(C)

Then, then integrals will be path-independent on the complement of the branch cuts.
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More generally, ( (1) ∼ (10) )

(1) Take two copies of P1(C).

(2) Make the indicated branch cuts:

(3) Glue them together along the branch cuts to form a Riemann surface (or, a torus) as
follows:
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(4) On this torus, one should study the integral
∫

dt/
√

t(t − 1)(t − λ).

(5) In fact, elliptic curves first arose when people began to study such “elliptic integrals"
which is related to the arc-length of an ellipse.

(6) The indeterminacy comes from integrating around non-contractible loops on the torus.

(7) So we introduce two complex numbers, which are called periods of E,

ω1 =

∫
α
ω and ω2 =

∫
β
ω.

Paths on P1(C) and on the torus
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(8) Now the integral ∫ P

O
ω

is well-defined up to addition of a number of the form n1ω1 + n2ω2 for n1, n2 ∈ Z.

(9) Let

Λ = Zω1 + Zω2.

Thus we have shown that there is a well-defined map

E −→ C/Λ

P 7→
∫ P

O
ω (mod Λ).

(10) If Λ is a lattice in C, then the quotient space C/Λ will be a Riemann surface.
Then by using the translation invariance of ω,
one can verify that the above map is a complex analytic isomorphism.
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Covers of P2(C)

The projective plane

P2(C) = (C3 − {0})/C∗

is a Hausdorff compact space which can be covered by the three open sets

U0 =

{
[X : Y : Z] : X 6= 0

}
U1 =

{
[X : Y : Z] : Y 6= 0

}
U2 =

{
[X : Y : Z] : Z 6= 0

}
.

Each Ui is homeomorphic to C2, for example

U2
≈−→ C2

[X : Y : Z] 7→ (x, y) = (X/Z, Y/Z).
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Projective plane curve V

For a (nonconstant) homogeneous polynomial F(X, Y, Z), consider its locus

V =

{
[X : Y : Z] ∈ P2(C) : F(X, Y, Z) = 0

}
.

The intersection
Vi = V ∩ Ui (i = 0, 1, 2)

is exactly an affine plane curve when transported to C2.

For example, V2 is homeomorphic to the affine plane curve described by the equation

f (x, y) = F(x, y, 1) = 0.
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Nonsingular F defines a compact Riemann surface

F(X, Y, Z) is said to be nonsingular if there are no common solutions (in P2(C))
to the system of equations

F =
∂F
∂X

=
∂F
∂Y

=
∂F
∂Z

= 0.

Then one can obtain

F is nonsingular⇐⇒ each Vi is a smooth affine plane curve (in C2).

If F(X, Y, Z) is a nonsingular (irreducible) polynomial defining the projective plane curve V ,
then

(1) each Vi (i = 0, 1, 2) is a smooth (irreducible) affine plane curve, and hence is a Riemann
surface;

(2) at each point of Vi we take a ratio of the homogeneous coordinates as a local coordinate;

(3) then V becomes a compact Riemann surface as a closed subset of compact P2(C).
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Elliptic functions

Let Λ be a lattice in C, that is,

Λ = Zω1 + Zω2 for some R-basis {ω1, ω2} of C.

We often write Λ = [ω1, ω2].

An elliptic function (relative to Λ) is a meromorphic functions f (z) on C which satisfies

f (z + ω) = f (z) for all ω ∈ Λ, z ∈ C.

(1) We can view elliptic functions as meromorphic functions on the torus C/Λ.

(2) Hence an elliptic function with no poles is constant.

(3) The field of all such functions is denoted C(Λ).
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Weierstrass functions

The Weierstrass ℘-function (relative to Λ) is defined by the series

℘(z; Λ) =
1
z2

+
∑

ω∈Λ−{0}

(
1

(z− ω)2
−

1
ω2

)
(z ∈ C).

Clearly, ℘(z; Λ) = ℘(−z; Λ) (that is, ℘(z; Λ) is an even function).

By termwise differentiation (w.r.t. z) we get

℘′(z; Λ) = −2
∑
ω∈Λ

1
(z− ω)3

,

which is obviously an elliptic function.
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℘(z; Λ) is an elliptic function

(1) Let ω ∈ Λ. Integrating

℘′(z + ω; Λ) = ℘′(z; Λ) (z ∈ C− Λ)

yields

℘(z + ω; Λ) = ℘(z; Λ) + c(ω) for some c(ω) independent of z.

(2) Letting z = −ω/2 we get that

℘(ω/2; Λ) = ℘(−ω/2; Λ) + c(ω)

= ℘(ω/2; Λ) + c(ω) because ℘ is even,

which shows c(ω) = 0.

(3) Hence ℘(z; Λ) is an elliptic function, too.

(4) As is well-known

C(Λ) = C
(
℘(z; Λ), ℘′(z; Λ)

)
.
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Laurent serious for ℘(z; Λ)

(1) For a lattice Λ in C, the Eisenstein series of weight 2k (relative to Λ) is the series

G2k(Λ) =
∑

ω∈Λ−{0}

1
ω2k

.

Then for all integer k > 1, G2k(Λ) is absolutely convergent.

(2) Let z ∈ C and ω ∈ Λ. If |z| < |ω|, then

1
(z− ω)2

−
1
ω2

=
1
ω2

(
1

(1− z/w)2
− 1
)

=
∞∑

n=1

(n + 1)
zn

ωn+2
.

(3) Hence the Laurent series for ℘(z; Λ) about z = 0 is given by

℘(z; Λ) =
1
z2

+
∑

ω∈Λ−{0}

(
1

(z− ω)2
−

1
ω2

)
=

1
z2

+

∞∑
k=1

(2k + 1)G2k+2(Λ)z2k.
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Relation between ℘(z; Λ) and ℘′(z; Λ)

(1) Write out the first few terms in various Laurent expansions:

℘′(z; Λ)2 =
4
z6
− 24G4(Λ)

1
z2
− 80G6(Λ) + · · ·

℘(z; Λ)3 =
1
z6

+ 9G4(Λ)
1
z2

+ 15G6(Λ) + · · ·

℘(z; Λ) =
1
z2

+ 3G4(Λ)z2 + · · · .

(2) Comparing these, we see that the function

f (z) = ℘′(z; Λ)2 − 4℘(z; Λ)3 + 60G4(Λ)℘(z; Λ) + 140G6(Λ)

is holomorphic around z = 0 and vanishes at z = 0.

(3) Since ℘(z; Λ) and ℘′(z; Λ) are holomorphic away from Λ, so does f (z).

(4) Hence f (z) is a holomorphic functions on C/Λ,
from which we conclude that f (z) is identically zero.
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Parametrization of a projective curve E

It is standard to set

g2(Λ) = 60G4(Λ), g3(Λ) = 140G6(Λ)

∆(Λ) = g2(Λ)3 − 27g3(Λ)2, j(Λ) =
g2(Λ)3

∆(Λ)
.

Let E be the (projective) curve defined by the (affine) equation

E : y2 = 4x3 − g2(Λ)x− g3(Λ).

Then the map

ϕ : C/Λ −→ E ⊂ P2(C)

z (mod Λ) 7→
{

[℘(z; Λ) : ℘′(z; Λ) : 1] if z 6∈ Λ

[0 : 1 : 0] if z ∈ Λ

becomes an isomorphism between compact Riemann surfaces.
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Elliptic curve E as a projective plane curve

An elliptic curve E (over C) is a projective plane curve defined by the (affine) equation

E : y2 = 4x3 − g2x− g3

with extra point O = [0 : 1 : 0] where

g2, g3 ∈ C with ∆ = g3
2 − 27g2

2 6= 0.

The above equation is called a Weierstrass equation for E.

The fact ∆ 6= 0 implies that E is smooth.
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Group structure on E

For an elliptic curve E, let P and Q ∈ E.

(1) Let L be the line connecting P and Q, and R be the third point of intersection of L with the
curve E.

(2) Let L′ be the line connecting O and R.

(3) Then P⊕ Q is the point s.t. L′ intersects E at O, R and P⊕ Q.

Then E becomes an abelian group with identity O, and hence it is a complex Lie group.
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Uniformization theorem

The uniformization theorem asserts that for g2, g3 ∈ C with

g3
2 − 27g2

3 6= 0,

there exists a unique lattice Λ in C such that

g2 = g2(Λ) and g3 = g3(Λ).

Hence one can show that the isomorphism

ϕ : C/Λ ∼−→ E : y2 = 4x3 − g2x− g3

z 7→ [℘(z; Λ) : ℘′(z; Λ) : 1]

between compact Riemann surfaces is also a group homomorphism (by using some properties
of divisors on E).
That is, ϕ is a complex analytic isomorphism between complex Lie groups.
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Complex multiplication

Let E be an elliptic curve parametrized by using a lattice Λ = [ω1, ω2] in C.

(1) The complex analytic endomorphisms of E correspond to
the multiplication maps of C/Λ onto itself.

(2) Let α ∈ C. Note that

the multiplication by α : C/Λ→ C/Λ is well-defined⇐⇒ αΛ ⊂ Λ.

(3) Such α’s form a ring, which contains Z.
If the ring is strictly larger than Z, E is said to have complex multiplication.

(4) It is well-known that

E has complex multiplication⇐⇒ ω1/ω2 is imaginary quadratic.
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Action of SL2(Z) on H

Let

H = complex upper half-plane =

{
τ ∈ C : Im(τ) > 0

}
which inherits the Euclidean topology as a subspace of R2. Then

SL2(Z) = modular group =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad − bc = 1

}
acts on H by linear fractional transformation, namely

γ =

(
a b
c d

)
: H −→ H

τ 7→ γ(τ) =
aτ + b
cτ + d

.

Note that

γ1, γ2 ∈ SL2(Z) give rise to the same action on H⇐⇒ γ1 = ±
(

1 0
0 1

)
γ2.
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Orbit space Y(N)

For a positive integer N, let

Γ(N) = (principal) congruence subgroup of level N =

{
γ ∈ SL2(Z) : γ ≡

(
1 0
0 1

)
(mod N)

}
.

For simplicity, write Γ = Γ(N). The natural projection

π : H −→ Y(N) = Γ\H =

{
Γτ : τ ∈ H

}
τ 7→ Γτ

gives Y(N) the quotient topology so that π is an open mapping.

Fundamental domain of Y(3)
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Isotropy subgroup Γz

For each point z ∈ H, we denote

Γz = isotropy subgroup of z = {γ ∈ Γ : γ(z) = z}.

In particular, if | ± Γz/{±12}| > 1, then z is called an elliptic point (for Γ).

Since Γ is discrete, we can take a neighborhood U of z s.t.{
γ ∈ Γ : γ(U) ∩ U 6= ∅

}
= Γz.

Such a neighborhood U has no elliptic points except possibly z.
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Local coordinate ϕ

W define a map

ψ : U −→ C

τ 7→
(
τ − z
τ − z

)|±Γz/{±12}|
.

Its image ψ(U) is an open subset of C by the open mapping theorem, and
there exists a natural bijection ϕ : π(U)→ ψ(U) s.t.
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The map ϕ becomes a local coordinate, that is,

(1) the coordinate neighborhood about π(z) in Y(N) is π(U);

(2) the map ϕ : π(U)→ ψ(U) is a homeomorphism.

Local coordinate at an ellpitic point

Since the transition maps between these coordinate charts are holomorphic,
Y(N) can be viewed as a Riemann surface, which is called the modular curve of level N.
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Extended space H∗

Consider the extended upper half-plane

H∗ = H ∪ Q ∪ {∞}︸ ︷︷ ︸
cusps

.

For any M > 0 let
NM =

{
τ ∈ H : Im(τ) > M

}
.

Adjoin the sets

γ(NM ∪ {∞}) for all M > 0 and γ ∈ SL2(Z)

to the usual open sets of H to serve as a basis of neighborhoods of the cusps, and
take the resulting topology on H∗.

Neighborhoods of cusps
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Compactification of Y(N)

Now consider the extended quotient

X(N) = Γ\H∗ = Y(N) ∪ Γ\(Q ∪ {∞}),

which is Hausdorff, connected and compact.
Give X(N) the quotient topology and extend the natural projection to π : H∗ → X(N).

To make X(N) a compact Riemann surface we have to give it complex charts.

(1) For z ∈ H we just retain the complex chart of Y(N).

(2) For a cusp s ∈ Q ∪ {∞} take a matrix γ ∈ SL2(Z) s.t. γ(s) =∞, and define a map

ψ : U = γ−1(N2 ∪ {∞}) −→ C

τ 7→ e2πiγ(τ)/|SL2(Z)∞/±Γ∞|.
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The image ψ(U) is an open subset of C, and
there exists a homeomorphism ϕ : π(U)→ ψ(U) s.t.

Complex chart at a cusp

It is routine to check that the transition maps between charts of X(N) are holomorphic.
Therefore X(N) is now a compact Riemann surface, also called the modular curve of level N.
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Modular forms of level N and weight k

For γ =
(

a b
c d

)
∈ SL2(Z) and k ∈ Z,

we define the weight-k operator ·|[γ]k on functions f : H→ Ĉ as

f (τ)|[γ]k = (cτ + d)−kf
(
γ(τ)

)
(τ ∈ H).

Then it is easily verified that for γ1, γ2 ∈ SL2(Z)

f |[γ1γ2]k =

(
f |[γ1]k

)
|[γ2]k.

A function f : H→ Ĉ is a modular form of level N(≥ 1) and weight k if

(1) f is meromorphic on H;

(2) f is invariant under ·|[γ]k for all γ ∈ Γ(N);

(3) f |[α]k is meromorphic at∞ for all α ∈ SL2(Z).
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Meromorphicity at ∞

(1) To discuss meromorphicity of f |[α]k at∞ we note that

• Γ(N) is a normal subgroup of SL2(Z);

•
(

1 N
0 1

)
∈ Γ(N).

So we get (
1 N
0 1

)
= α−1γα for some γ ∈ Γ(N).

(2) Observe that (
f |[α]k

)
(τ + N) =

(
f |[α]k

)
|[
(

1 N
0 1

)
]k

=

(
f |[α]k

)
|[α−1γα]k

= f |[αα−1γα]k = f |[α]k,

which shows that f |[α]k has period N.
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(4) Let

q = e2πiτ (τ ∈ H).

Then f |[α]k is a function w.r.t. q
1
N on some punctured disc about q = 0.

If the function has a Laurent series w.r.t. q
1
N , namely

f |[α]k =
∞∑

n≥m

cn
(
q

1
N
)n

(cn ∈ C)

for some integer m, then f |[α]k is said to be meromorphic at∞.

(5) The above series is conventionally called the Fourier expansion of f |[α]k at∞
(or, f at α(∞)) with Fourier coefficients cn.

(6) Modular forms of level N and weight 0 are called modular functions of level N.
They are exactly meromorphic functions defined on the modular curve X(N)
and vice versa.
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Example

(1) Let

Λ = [τ, 1] with τ ∈ H

be a lattice. Recall the constants (relative to Λ)

g2(Λ) = 60
∑

(m, n)∈Z2−{(0, 0)}

1
(mτ + n)4

g3(Λ) = 140
∑

(m, n)∈Z2−{(0, 0)}

1
(mτ + n)6

∆(Λ) = g2(Λ)3 − 27g3(Λ)2

j(Λ) =
g2(Λ)3

∆(Λ)
.
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(2) Regard τ as a variable on H, and let

g2(τ) = g2([τ, 1])

g3(τ) = g3([τ, 1])

∆(τ) = ∆([τ, 1])

j(τ) = j([τ, 1]).

Directly from the definitions, for γ ∈ SL2(Z) we have

g2(τ)|[γ]4 = g2(τ)

g3(τ)|[γ]6 = g3(τ)

∆(τ)|[γ]12 = ∆(τ)

j(τ)|[γ]0 = j(τ).
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(3) We have the product formula

sinπτ = πτ
∞∏

n=1

(
1−

τ

n

)(
1 +

τ

n

)
.

Taking the logarithmic derivative yields

π
cosπτ
sinπτ

=
1
τ

+
∞∑

n=1

(
1

τ − n
+

1
τ + n

)
.

On the other hand, since

cosπτ =
1
2

q−
1
2 (q + 1) and sinπτ =

1
2i

q−
1
2 (q− 1),

we get

π
cosπτ
sinπτ

= πi
q + 1
q− 1

= πi− 2πi
∞∑
ν=0

qν .
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(4) Differentiating two expressions for π cosπτ
sinπτ repeatedly yields

(−1)k−1(k − 1)!
∞∑

n=−∞

1
(τ − n)k

= −
∞∑
ν=1

(2πi)kνk−1qν .

We obtain from the above relation that

g2(τ) = (2π)
4 1

12

(
1 + 240

∞∑
n=1

(
∑
d|n

d3
)qn
)

g3(τ) = (2π)
6 1

216

(
1− 504

∞∑
n=1

(
∑
d|n

d5
)qn
)

∆(τ) = (2π)
12q
(

1 +

∞∑
n=1

cnqn
)

(dn ∈ Z)

j(τ) =
1
q

+ 744 + 196884q + 21493760q2
+ 864299970q3

+ 20245856256q4

+333202640600q5
+ 4252023300096q6

+ 44656994071935q7
+ · · · .
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(5) Hence all the g2(τ), g3(τ), ∆(τ) and j(τ) are meromorphic at the cusp∞
(which is the unique inequivalent cusp for SL2(Z)).
Therefore

g2(τ) = a modular form of level 1 and weight 4

g3(τ) = a modular form of level 1 and weight 6

∆(τ) = a modular form of level 1 and weight 12

j(τ) = a modular function of level 1.

(6) Note that j(τ) is holomorphic on H and has simple pole at∞.
Hence the map

X(1) −→ P1(C)

τ 7→ [j(τ) : 1]

is an isomorphism between two Riemann spheres. Therefore

the field of all meromorphic functions on X(1) = C
(

j(τ)

)
.
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Change of variables

Let Λ be a lattice in C of the form

Λ = [τ, 1] with τ ∈ H.

From the complex analytic isomorphism

C/Λ ∼−→ y2 = 4x3 − g2(τ)x− g3(τ)

z 7→ [℘(z; Λ) : ℘′(z; Λ) : 1],

we have the relation

℘′(z; Λ)2 = 4℘(z; Λ)3 − g2(τ)℘(z; Λ)− g3(τ).

Define

η(τ) =
√

2πζ8q
1

24

∞∏
n=1

(1− qn).



Introduction
Elliptic curves

Modular curves
Elliptic curves and modular forms

Application to number theory

Modular forms
Modular functions from generic elliptic curve

Diving both sides of the above Weierstrass equation by η(τ)12 we get(
℘′(z; Λ)

η(τ)6

)2

=
4η(τ)60

g2(τ)3g3(τ)3

(
g2(τ)g3(τ)℘(z; Λ)

η(τ)24

)3

−
η(τ)12

g3(τ)

(
g2(τ)g3(τ)℘(z; Λ)

η(τ)24

)
−

g3(τ)

η12(τ)
.

Write

z = r1τ + r2 with (r1, r2) ∈ R2 − {(0, 0)},

and set

x(r1, r2)(τ) =
g2(τ)g3(τ)℘(r1τ + r2; Λ)

η(τ)24
and y(r1, r2)(τ) =

℘′(r1τ + r2; Λ)

η(τ)6
.
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Modular function field FN

For each positive integer N, let

FN = the field of modular functions of level N

whose Fourier coefficients at∞ belong to the Nth cyclotomic field Q(e
2πi
N ).

As is well-known,

(1) FN ⊗ C is the field of meromorpic functions on X(N);

(2) FN is a Galois extension of F1;

(3) F1 = Q
(

j(τ)

)
;

(4) FN = Q
(

e
2πi
N , j(τ), x( 1

N , 0)(τ), x(0, 1
N )(τ)

)
for N > 1.

Koo and Shin (2009) showed that

FN = Q
(

j(τ), e
2πi
N y( 1

N , 0)(τ)
4

gcd(4, N) , y(0, 1
N )(τ)

4
gcd(4, N)

)
for N > 1.
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History

(1) Fermat (1640 ∼ 1650s)

For a prime number p

p = x2 + y2 for (x, y) ∈ Z2 ⇐⇒ p = 2 or p ≡ 1 (mod 4)

p = x2 + 2y2 for (x, y) ∈ Z2 ⇐⇒ p = 2 or p ≡ 1, 3 (mod 8)

p = x2 + 3y2 for (x, y) ∈ Z2 ⇐⇒ p = 3 or p ≡ 1 (mod 3).

(2) Euler (1740s)

Euler conjectured for a prime number p

p = x2 + 27y2 for (x, y) ∈ Z2 ⇐⇒
{

p ≡ 1 (mod 3)

x3 ≡ 2 (mod p) has an integer solution.
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(3) Gauss (Disquisitiones Arithmeticae, 1801)

p = x2 + y2 for (x, y) ∈ Z2 ⇐⇒ p = 2 or p splits in Q(
√
−1).

(4) Weber (1880s)

p = x2 + (2`+1y)2 (` ≥ 0) for (x, y) ∈ Z2

⇐⇒ p splits completely in Q(
√
−1)

(
j(2`+1√−1)

)
.



Introduction
Elliptic curves

Modular curves
Elliptic curves and modular forms

Application to number theory

Solving Diophantine equations
Construction of class fields

(5) Hilbert, Deuring, Artin, Cohn, Stark (1970s)

They determined the primes p of the form x2 + ny2.

(6) Cox (Primes of the Form x2 + ny2, 1989)

Let

n : a positive integer

K : the imaginary quadratic field Q(
√
−n)

HO : the ring class field of the orderO = Z[
√
−n]

α : a real algebraic integer for which HO = K(α).

Let p be an odd prime number not dividing n. Then

p = x2 + ny2

⇐⇒ p splits completely in HO

⇐⇒

 (−n
p ) = 1 and

min(α, K) ≡ 0 (mod p) has an integer solution.
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History

(1) Kronecker-Weber (1886, 1887)

Let L be a finite abelian extension of Q. Then

L ⊆ Q
(

f ( 1
N )
)

for some integer N ≥ 1

where
f (τ) = e2πiτ .

(2) Hilbert’s 12th Problem (Paris ICM, 1900) (= Kronecker’s Jugendtraum)

Let

K : a given number field

L : arbitrary finite abelian extension of K.

Is there a transcendental function f such that

L = K
(

f (α)
)

for some α ?



Introduction
Elliptic curves

Modular curves
Elliptic curves and modular forms

Application to number theory

Solving Diophantine equations
Construction of class fields

Let K denote an imaginary quadratic field.

(3) Takagi (1920)

Takagi provided explicit generators for the maximal abelian extension Kab by using
special values of Jacobi functions.

(4) Hasse (1927)

Let

θ (∈ H) : a generator of the ring of integers of K (over Z).

If L is a finite abelian extension of K, then

L ⊆ K
(

j(θ), x(0, 1
N )(θ)

)
for some integer N ≥ 1.

The values x(0, 1
N )(θ) corresponds to the x-coordinate of the N-torsion point

(
x(0, 1

N )(θ), y(0, 1
N )(θ)

)
of an elliptic curve parametrized by C/[θ, 1] with complex multiplication.
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(5) Ramachandra (1964)

Ramachandra showed that arbitrary finite abelian extension of K can be generated by
certain elliptic unit.
But, his invariant involves too complicated products of high powers of special values of
the Klein forms and ∆-function.

(6) Cho-Koo (2008)

They obtained a primitive generator from Hasse’s two special values j(θ) and x(0, 1
N )(θ).

But it is still hard to compute the minimal polynomial of the generator.

(7) Koo-Shin (2009)

If

K = Q(
√
−n) with n square-free 6= 1, 2, 3, 5, 6, 7, 11, 15

N : any integer > 2,

then

K
(

j(θ), x(0, 1
N )(θ)

)
= K

(
y(0, 1

N )(θ)
4m

gcd(4, N)

)
for any m 6= 0

by using the Shimura’s reciprocity law which connects the theory of modular functions
and class field theory.
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Example of a minimal polynomial

Let K = Q(
√
−10) and θ =

√
−10.

The minimal polynomial of the special value y(0, 1
6 )(θ)

12 is given as follows:

X16 − 56227499765918216689444911216X15

+28198738767573877103982180845427211416X14

−61006294392822456973543787353433426528859172752X13

+24191545040559618198685578078066621024919984909895925564X12

−1457219992512158403396945180026448081831307850098282381377715440X11

−1875247086634588418900161009847749757705491090331618598955145878499352X10

−3204258054536691403559566745682638856959186166279206475927474345038453779344X9

+383798110212800409840846851392850879043779134397546083788605170327010622235878X8

−115423974200159134410244151892157361168179592425853550820710288184072396692478416X7

+334107284582565793933974554285013907697215168114012280251572770023994260474295208X6

−2413062017539132381926952150397596657649211631905734942002508919329018160X5

+5947186157319106561144943221021199418610488121986658654341036924X4

−5317595247800083950930014176690955051475061944750295248X3

+797299465586120177639706616225451835994220376X2

−29812156397602328057777202393119664X + 282429536481.
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Thank you.
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