## 1 Introduction

## About this lecture:

- Rigidity
- Volumes of ideal tetrahedra
- Dehn surgery and volumes
- The volume spectrum of hyperbolic 3-manifolds


## Some helpful references

- Ratcliffe, Foundations of hyperbolic manifolds, Springer (elementary)
- W. Thurston, Lecture notes, (This is hard to read and incomplete) http:// www.msri.org/communications/books/gt 3m
- J. Weeks, A computation of hyperbolic structures in knot theory, in Handbook of knot theory
- W. Neumann, Zagier, Volumes of hyperbolic three-manifolds, Topology Volume 24, Issue 3, 1985, Pages 307-332
- M. Kapovich, Hyperbolic manifolds and discrete groups. (English summary) Progress in Mathematics, 183. Birkh?user Boston, Inc., Boston, MA, 2001.


## Some helpful references

- Milnor, John, Hyperbolic geometry: the first 150 years. Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 9-24.
- Benedetti, Riccardo; Petronio, Carlo, Lectures on hyperbolic geometry. Universitext. Springer-Verlag, Berlin, 1992. (This contains a lot on Dehn surgery of hyperbolic 3-manifolds)
- Gromov, M, Hyperbolic manifolds (according to Thurston and Jorgensen). Bourbaki Seminar, Vol. 1979/80, pp. 40-53,


## Some computer programs

- http://www.math.uiuc.edu/~nmd/computop/index.html These include many computational tools for finding hyperbolic manifolds. Windows XP, mac, linux, unix(SnapPy, originally Snappea by J. Weeks)
- http://www.geometrygames.org/SnapPea/
- http://www.ms.unimelb.edu.au/~snap/orb.html Snap, Orb (exact alg. computations, computations for orbifolds)
- http://www.math.sci.osaka-u.ac.jp/~wada/OPTi/index.html M. Wada (drawing isometric spheres for figure eight knot complements)


## 2 Rigidity (Mostow-Prasad)

## 2-manifolds

- A complex algebraic set, we means a subset $S$ in $\mathbb{C}^{n}$ that is a vanishing set of a sysetem of $n$-variable complex polynomials in $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
- $I(S)$ the ideal generated by the polynomials in $\mathbb{C}\left[X_{1}, . ., X_{n}\right]$.
- If $I(S) \subset k\left[X_{1}, . ., X_{n}\right]$ for a subfield $k$, then we say that $S$ is defined over $k$.
- $S$ is irreducible if $S$ is not a union of two nontrivial algebraic subsets.
- If $S$ is irreducible, then $S$ is a variety $V$ and $I(V)$ is a prime ideal.
- $\mathbb{C}[X] / I(V)=\mathbb{C}[V]$ is an integral domain and the fields of quotients $\mathbb{C}(V)$ is the function field.
- The dimension of $V$ is the transcendence degree of $\mathbb{C}(V)$.


## Representation space

- $\Gamma$ a group with generators $\gamma_{1}, . ., \gamma_{n}$ and relations $R_{1}\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\cdots=R_{m}\left(\gamma_{1}, . ., \gamma_{n}\right)=$ I, words...
- $\operatorname{Hom}(\Gamma, S L(2, \mathbb{C}))=\{\rho: \rho: \Gamma \rightarrow S L(2, \mathbb{C})\}$.
- $A_{j}=\rho\left(\gamma_{j}\right)$ is a $2 \times 2$-matrix

$$
\left(\begin{array}{cc}
x_{i} & y_{i} \\
z_{i} & w_{i}
\end{array}\right) .
$$

$R_{k}\left(A_{1}, . ., A_{n}\right)$ corresponds to $4 n$-variable polynomial with integer coefficients.

- $R_{1}\left(A_{1}, . ., A_{n}\right)=R_{2}\left(A_{1}, . ., A_{n}\right)=\cdots=R_{m}\left(A_{1}, \ldots, A_{n}\right)=I$ is a defines a subset in $S L(2, \mathbb{C})^{n} \subset \mathbb{C}^{4 n}$ defined by $4 m$-equations and $x_{i} w_{i}-y_{i} z_{i}=1$ for $i=1, \ldots, n$.
- $\Gamma$ finite covolume, torsion free Kleinian group
- $<A_{1}, A_{2}>$ irreducible. Conjugate uniquely so that $A_{1}$ fix $0, \infty$ and $A_{2}$ fix 1 . Equivalently $y_{1}=z_{1}=0$ and $x_{2}+y_{2}=z_{2}+w_{2}$. (To fix conjugations)
- If $\Gamma$ contains a parabolic element, then we add $\operatorname{tr}^{2} U_{i}=4$ and $U_{i} V_{i}=V_{i} U_{i}$ for $U_{i}, V_{i}$ parabolics in $\Gamma$.
- Use these equations and the above to define $V(\Gamma) \subset \mathbb{C}^{4 n}$.
- $V(\Gamma)$ an irreducible component of the algebraic set, and it classifies representations $\Gamma \rightarrow S L(2, \mathbb{C})$ up to conjugacies.



## Weil-Garland, Mostow-Prasad rigidity

Theorem 1. (Weil-Garland) (infinitesimal rigidity) An inclusion $\iota: \Gamma \rightarrow S L(2, \mathbb{C})$ for Kleinian group $\Gamma$. Then for $\rho \in V(\Gamma)$ sufficiently close to $\iota, \rho(\Gamma)$ is finite covolume Kleinian group. Or more precisely, $H^{1}(\Gamma, s l(2, \mathbb{C}))=0$.

Theorem 2. (Mostow-Prasad) (Global uniqueness) if $\Gamma_{1}, \Gamma_{2}$ two finite covolume Kleinian groups and they are isomorphic by $\phi: \Gamma_{1} \rightarrow \Gamma_{2}$. Then there exists $g \in S L(2, \mathbb{C})$ so that $\phi\left(\gamma_{1}\right)=g \gamma_{1} g^{-1}$.

Thus, if $V(\Gamma)$ contains $\Gamma$, then $V(\Gamma)$ is an isolated point. Since conjugation was fixed by the choices above of $A_{1}, A_{2}$. (See Weil-Garland rigidity again)

## 3 Volumes of ideal tetrahedra

## Lobachevski function

- See Section 11.4 Ratcliffe for details. (These are from Chapter 7 of Thurston ("a good reading"). He also presents the volume of $H^{3} / P S L\left(2, O_{d}\right)$ for square free $d \mathrm{~s}$ at the end.)
- For $\theta \neq n \pi$, define $\mathcal{L}(\theta)=-\int_{0}^{\theta} \ln |2 \sin u| d u$ and $\mathcal{L}(n \pi)=0$. Continuous at $n \pi$.
- $\mathcal{L}$ is periodic of period $\pi$ and is odd.
- Complex dilogarithm function $\phi(z)=\sum_{n=1}^{\infty} z^{n} / n^{2}$ for $|z| \leq 1$.
- For $|z|<1, z \phi^{\prime}(z)=-\ln (1-z)$. Thus, $\phi(z)=-\int_{0}^{z} \ln (1-w) / w d w$. Extend to $|z|=1$ and $\phi\left(e^{2 i \theta}\right)-\phi(1)$.
- uniformly convergent Fourier expansion: $\mathcal{L}(\theta)=1 / 2 \sum_{n=1}^{\infty} \sin (2 n \theta) / n^{2}$.


## Lobachevski function

## Volumes of ideal tetrahedra

- $T_{\alpha, \beta, \gamma}$ an ideal tetrahedron with dihedral angles $\alpha, \beta, \gamma$. The opposite edges have the same angles here. We have $\alpha+\beta+\gamma=\pi$ always.
- $\operatorname{Vol}\left(T_{\alpha, \beta, \gamma}\right)=\mathcal{L}(\alpha)+\mathcal{L}(\beta)+\mathcal{L}(\gamma)$.
- Using a complex parameterization of ideal tetrahedra by $z$ for $\operatorname{Im} z>0$, we obtain $\mathcal{L}(\arg (z))+\mathcal{L}(\arg ((z-1) / z))+\mathcal{L}(\arg (1 /(1-z))$.
- The maximal volume ideal tetrahedron occurs for dihedral angles all $\pi / 3$; To maximize $V$ subject to $\alpha+\beta+\gamma=\pi$, we must have $\mathcal{L}^{\prime}(\alpha)=\mathcal{L}^{\prime}(\beta)=\mathcal{L}^{\prime}(\gamma)$. This implies $\alpha=\beta=\gamma=\pi / 3$ since $\mathcal{L}^{\prime}(x)=-\ln |2 \sin x|$.
- Thus, if one knows the ideal triangulations, then we can compute the volumes of any hyperbolic 3 -manifolds.
- The figure 8 knot complement is composed of two regular ideal tetrahedra. The volume is $6 \mathcal{L}(\pi / 3) \approx 2.029 \ldots$.


## 4 Dehn surgery and volumes of hyperbolic 3-manifolds

## Dehn surgery and volumes

- When we are doing Dehn sugery on complete hyperbolic manifolds, mostly the geometry in the cusp regions are changing.
- Concentrate on one-cusped case.
- In the Dehn sugery space $Z \times Z$, the volume is a decreasing function away from $(\infty, \infty)$.
- In fact the volume can be defined in $\mathbb{R}^{2}$ containing $Z \times Z$.
- In face the volume is a real part of a complex analytic function on $\mathbb{C}=\mathbb{R}^{2}$.


## Dehn surgery and volumes

- There is a lower-bound to the volume of hyperbolic 3 -orbifolds (manifolds). (closed or not)
- Proof: The bounds on volumes and curvatures and injectivity radii and give a compactness. If there are no lower bound on injectivity radius, then there is a large thin part...
- There are only finitely many hyperbolic 3-orbifolds (manifolds) of same volume.
- Given an infinite sequence of bounded volume hyperbolic manifolds $M_{j}$, then there exists a finitely many hyperbolic 3 -manifolds $X_{1}, \ldots, X_{k}$ so that $M_{j} \mathrm{~s}$ are results of Dehn surgery on one of the boundary modified $X_{i}$.
- The proof of the above two: the geometric convergence theory of Gromov.


## 5 The volume spectrum of hyperbolic 3-manifolds

## The volume spectrum of hyperbolic 3-manifolds

- See S. Finch "Volumes of hyperbolic 3-manifolds".
- The volume is a topological invariant by Mostow-Prasad rigidity.
- Let us collect all volumes of hyperbolic $n$-manifolds $\operatorname{spc}(n) \subset \mathbb{R}^{+}$.
- $\operatorname{spc}(2)=\{2 \pi k \mid k \geq 1\}, \operatorname{spc}(4)=\left\{4 \pi^{2} / 3 k \mid k \geq 1\right\}$. discrete for $n \geq 4$.
- $\operatorname{spc}(3)$ is discrete well ordered and has ordinal type (countable) $\omega^{\omega}$ (JorgensenThurston):

$$
\begin{gathered}
v_{1}<v_{2}<\ldots<v_{\omega}<v_{\omega+1}<\ldots<v_{2 \omega}<v_{2 \omega+1}<\ldots \\
\ldots<v_{3 \omega}<v_{3 \omega+1}<\ldots<v_{\omega^{2}}<v_{\omega^{2}+1}<\ldots<v_{\omega^{3}}<v_{\omega^{3}+1}<\ldots
\end{gathered}
$$

- hyperbolic 3-orbifolds.. same type...


## Explanations

- The map from the set of hyperbolic 3 -manifolds to $\operatorname{spc}(3)$ is finite-to-one (no global bound).
- $v_{1}$ is the least volume of closed hyperbolic 3-manifolds. $v_{1}=\operatorname{Im}\left[\operatorname{Li} i_{2}\left(z_{0}\right)+\right.$ $\left.\ln \left(\left|z_{0}\right|\right) \ln \left(1-z_{0}\right)\right]=0.9427073 \ldots, L i_{2}$ dilogarithm. $z_{0}$ a root of $z^{3}-z^{2}+1$ with $\operatorname{Im} z_{0}>0$.
- $v_{2}$ is the next smallest volume of closed hyperbolic 3-manifolds
- $v_{\omega}$ the first limit point. $v_{\omega}$ is the smallest volume of one-cusped hyperbolic manifolds.
- $v_{2 \omega}$ is the next smallest volume of one-cusped hyperbolic manifolds.
- $v_{\omega^{2}}$ is the first limit point of limit points and is the smallest volume of two-cusped hyperbolic manifolds.
- The ordinal type $\omega^{\omega}$.


## Recent progress

- Gabai, Meyerhoff, Milley (GMM): Mom-n structures, they showed some finite class of hyperbolic manifolds with cusp generates every one-cusped hyperbolic manifolds of volume $<2.848$
- Mom-n-structure is a handle decomposition with complexity conditions, derived from Matveev-Fomenko's work.
- Matveev, Fomenko, Weeks manifold has the minimum volume $v_{1} .(2,1)$-surgery on $m 003$.
- classification of 1-cusped hyperbolic manifolds of volume $<2.848$
- See GMM "Minimum volume hyperbolic 3-manifolds".
- GMM "Mom technology and hyperbolic 3-manifolds"
- GMM "Mom technology and volumes of hyperbolic 3-manifolds"

