1 Introduction

About this lecture:

- Rigidity
- Volumes of ideal tetrahedra
- Dehn surgery and volumes
- The volume spectrum of hyperbolic 3-manifolds

Some helpful references

- Ratcliffe, Foundations of hyperbolic manifolds, Springer (elementary)
- W. Thurston, Lecture notes, (This is hard to read and incomplete) http://www.msri.org/communications/books/gt3m
- J. Weeks, A computation of hyperbolic structures in knot theory, in Handbook of knot theory
- W. Neumann, Zagier, Volumes of hyperbolic three-manifolds, Topology Volume 24, Issue 3, 1985, Pages 307-332
- M. Kapovich, Hyperbolic manifolds and discrete groups. (English summary) Progress in Mathematics, 183. Birkh?user Boston, Inc., Boston, MA, 2001.

Some helpful references

- Milnor, John, Hyperbolic geometry: the first 150 years. Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 9–24.
- Benedetti, Riccardo; Petronio, Carlo, Lectures on hyperbolic geometry. Universitext. Springer-Verlag, Berlin, 1992. (This contains a lot on Dehn surgery of hyperbolic 3-manifolds)
- Gromov, M, Hyperbolic manifolds (according to Thurston and Jorgensen). Bourbaki Seminar, Vol. 1979/80, pp. 40–53,

Some computer programs

- http://www.math.uiuc.edu/~nmd/computop/index.html These include many computational tools for finding hyperbolic manifolds. Windows XP, mac, linux, unix(SnapPy, originally Snappea by J. Weeks)
- http://www.geometrygames.org/SnapPea/
- http://www.ms.unimelb.edu.au/~snap/orb.html Snap, Orb (exact alg. computations, computations for orbifolds)
- http://www.math.sci.osaka-u.ac.jp/~wada/OPTi/index.html M. Wada (drawing isometric spheres for figure eight knot complements)

2 Rigidity (Mostow-Prasad)

2-manifolds

- A *complex algebraic set*, we means a subset S in \mathbb{C}^n that is a vanishing set of a system of n-variable complex polynomials in $\mathbb{C}[X_1, ..., X_n]$.
- I(S) the ideal generated by the polynomials in $\mathbb{C}[X_1, .., X_n]$.
- If $I(S) \subset k[X_1, ..., X_n]$ for a subfield k, then we say that S is defined over k.
- S is *irreducible* if S is not a union of two nontrivial algebraic subsets.
- If S is irreducible, then S is a variety V and I(V) is a prime ideal.
- $\mathbb{C}[X]/I(V) = \mathbb{C}[V]$ is an integral domain and the fields of quotients $\mathbb{C}(V)$ is the *function field*.
- The dimension of V is the transcendence degree of $\mathbb{C}(V)$.

Representation space

- Γ a group with generators $\gamma_1, ..., \gamma_n$ and relations $R_1(\gamma_1, ..., \gamma_n) = \cdots = R_m(\gamma_1, ..., \gamma_n) = I$, words...
- $Hom(\Gamma, SL(2, \mathbb{C})) = \{\rho : \Gamma \to SL(2, \mathbb{C})\}.$
- $A_j = \rho(\gamma_j)$ is a 2 × 2-matrix

$$\left(\begin{array}{cc} x_i & y_i \\ z_i & w_i \end{array}\right).$$

 $R_k(A_1, ..., A_n)$ corresponds to 4*n*-variable polynomial with integer coefficients.

- R₁(A₁,..,A_n) = R₂(A₁,..,A_n) = ··· = R_m(A₁,...,A_n) = I is a defines a subset in SL(2, C)ⁿ ⊂ C⁴ⁿ defined by 4m-equations and x_iw_i y_iz_i = 1 for i = 1,...,n.
- Γ finite covolume, torsion free Kleinian group
- $< A_1, A_2 >$ irreducible. Conjugate uniquely so that A_1 fix $0, \infty$ and A_2 fix 1. Equivalently $y_1 = z_1 = 0$ and $x_2 + y_2 = z_2 + w_2$. (To fix conjugations)
- If Γ contains a parabolic element, then we add $tr^2U_i = 4$ and $U_iV_i = V_iU_i$ for U_i, V_i parabolics in Γ .
- Use these equations and the above to define $V(\Gamma) \subset \mathbb{C}^{4n}$.
- V(Γ) an irreducible component of the algebraic set, and it classifies representations Γ → SL(2, C) up to conjugacies.

Weil-Garland, Mostow-Prasad rigidity

Theorem 1. (Weil-Garland) (infinitesimal rigidity) An inclusion $\iota : \Gamma \to SL(2, \mathbb{C})$ for Kleinian group Γ . Then for $\rho \in V(\Gamma)$ sufficiently close to ι , $\rho(\Gamma)$ is finite covolume Kleinian group. Or more precisely, $H^1(\Gamma, sl(2, \mathbb{C})) = 0$.

Theorem 2. (Mostow-Prasad) (Global uniqueness) if Γ_1, Γ_2 two finite covolume Kleinian groups and they are isomorphic by $\phi : \Gamma_1 \to \Gamma_2$. Then there exists $g \in SL(2, \mathbb{C})$ so that $\phi(\gamma_1) = g\gamma_1 g^{-1}$.

Thus, if $V(\Gamma)$ contains Γ , then $V(\Gamma)$ is an isolated point. Since conjugation was fixed by the choices above of A_1, A_2 . (See Weil-Garland rigidity again)

3 Volumes of ideal tetrahedra

Lobachevski function

- See Section 11.4 Ratcliffe for details. (These are from Chapter 7 of Thurston ("a good reading"). He also presents the volume of $H^3/PSL(2, O_d)$ for square free *ds* at the end.)
- For $\theta \neq n\pi$, define $\mathcal{L}(\theta) = -\int_0^{\theta} ln |2sinu| du$ and $\mathcal{L}(n\pi) = 0$. Continuous at $n\pi$.
- \mathcal{L} is periodic of period π and is odd.
- Complex dilogarithm function $\phi(z) = \sum_{n=1}^{\infty} z^n / n^2$ for $|z| \le 1$.
- For |z| < 1, $z\phi'(z) = -ln(1-z)$. Thus, $\phi(z) = -\int_0^z ln(1-w)/w dw$. Extend to |z| = 1 and $\phi(e^{2i\theta}) \phi(1)$.
- uniformly convergent Fourier expansion: $\mathcal{L}(\theta) = 1/2 \sum_{n=1}^{\infty} \sin(2n\theta)/n^2$.

Lobachevski function

Volumes of ideal tetrahedra

- T_{α,β,γ} an ideal tetrahedron with dihedral angles α, β, γ. The opposite edges have the same angles here. We have α + β + γ = π always.
- $Vol(T_{\alpha,\beta,\gamma}) = \mathcal{L}(\alpha) + \mathcal{L}(\beta) + \mathcal{L}(\gamma).$
- Using a complex parameterization of ideal tetrahedra by z for Imz > 0, we obtain L(arg(z)) + L(arg((z − 1)/z)) + L(arg(1/(1 − z))).
- The maximal volume ideal tetrahedron occurs for dihedral angles all π/3; To maximize V subject to α + β + γ = π, we must have L'(α) = L'(β) = L'(γ). This implies α = β = γ = π/3 since L'(x) = -ln|2sinx|.
- Thus, if one knows the ideal triangulations, then we can compute the volumes of any hyperbolic 3-manifolds.
- The figure 8 knot complement is composed of two regular ideal tetrahedra. The volume is 6L(π/3) ≈ 2.029....

4 Dehn surgery and volumes of hyperbolic 3-manifolds

Dehn surgery and volumes

- When we are doing Dehn sugery on complete hyperbolic manifolds, mostly the geometry in the cusp regions are changing.
- Concentrate on one-cusped case.
- In the Dehn sugery space Z × Z, the volume is a decreasing function away from (∞,∞).
- In fact the volume can be defined in \mathbb{R}^2 containing $Z \times Z$.
- In face the volume is a real part of a complex analytic function on $\mathbb{C} = \mathbb{R}^2$.

Dehn surgery and volumes

- There is a lower-bound to the volume of hyperbolic 3-orbifolds (manifolds). (closed or not)
- Proof: The bounds on volumes and curvatures and injectivity radii and give a compactness. If there are no lower bound on injectivity radius, then there is a large thin part...
- There are only finitely many hyperbolic 3-orbifolds (manifolds) of same volume.
- Given an infinite sequence of bounded volume hyperbolic manifolds M_j , then there exists a finitely many hyperbolic 3-manifolds $X_1, ..., X_k$ so that M_j s are results of Dehn surgery on one of the boundary modified X_i .
- The proof of the above two: the geometric convergence theory of Gromov.

5 The volume spectrum of hyperbolic 3-manifolds

The volume spectrum of hyperbolic 3-manifolds

- See S. Finch "Volumes of hyperbolic 3-manifolds".
- The volume is a topological invariant by Mostow-Prasad rigidity.
- Let us collect all volumes of hyperbolic *n*-manifolds $spc(n) \subset \mathbb{R}^+$.
- $spc(2) = \{2\pi k | k \ge 1\}, spc(4) = \{4\pi^2/3k | k \ge 1\}$. discrete for $n \ge 4$.
- spc(3) is discrete well ordered and has ordinal type (countable) ω^{ω} (Jorgensen-Thurston):

 $v_1 < v_2 < \dots < v_{\omega} < v_{\omega+1} < \dots < v_{2\omega} < v_{2\omega+1} < \dots$

 $\ldots < v_{3\omega} < v_{3\omega+1} < \ldots < v_{\omega^2} < v_{\omega^2+1} < \ldots < v_{\omega^3} < v_{\omega^3+1} < \ldots$

• hyperbolic 3-orbifolds.. same type...

Explanations

- The map from the set of hyperbolic 3-manifolds to spc(3) is finite-to-one (no global bound).
- v_1 is the least volume of closed hyperbolic 3-manifolds. $v_1 = Im[Li_2(z_0) + ln(|z_0|)ln(1-z_0)] = 0.9427073..., Li_2$ dilogarithm. z_0 a root of $z^3 z^2 + 1$ with $Imz_0 > 0$.
- v_2 is the next smallest volume of closed hyperbolic 3-manifolds
- v_{ω} the first limit point. v_{ω} is the smallest volume of one-cusped hyperbolic manifolds.
- $v_{2\omega}$ is the next smallest volume of one-cusped hyperbolic manifolds.
- v_{ω^2} is the first limit point of limit points and is the smallest volume of two-cusped hyperbolic manifolds.
- The ordinal type ω^{ω} .

Recent progress

- Gabai, Meyerhoff, Milley (GMM): Mom-n structures, they showed some finite class of hyperbolic manifolds with cusp generates every one-cusped hyperbolic manifolds of volume < 2.848
- *Mom-n*-structure is a handle decomposition with complexity conditions, derived from Matveev-Fomenko's work.

- Matveev, Fomenko, Weeks manifold has the minimum volume v_1 . (2, 1)-surgery on m003.
- classification of 1-cusped hyperbolic manifolds of volume < 2.848
- See GMM "Minimum volume hyperbolic 3-manifolds".
- GMM "Mom technology and hyperbolic 3-manifolds"
- GMM "Mom technology and volumes of hyperbolic 3-manifolds"