
1 Introduction
About this lecture

• PSL(2, C) and hyperbolic 3-spaces.

• Subgroups of PSL(2, C)

• Hyperbolic manifolds and orbifolds

• Examples

• 3-manifold topology and Dehn surgery

• Rigidity

• Volumes and ideal tetrahedra

• Part 1: 1.1-1.4 Kleinian group theory

• Part 2: 1.5-1.7 Topology

Some helpful references

• Ratcliffe, Foundations of hyperbolic manifolds, Springer (elementary)

• K. Matsuzaki, M. Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford
(complete but technical)

• A. Marden, The geometry of finitely generated Kleinian groups, Ann of Math,
99 (1974) 299-323. (nice but more advanced)

• K. Ohshika, Discrete groups, AMS

• A. Adem, j. Leida, ... Orbifolds and stringly topology, Cambridge.

• W. Thurston, Three-dimensional geometry and topology I, Princeton University
Press.

• W. Thurston, Lecture notes, (This is hard to read and incomplete) http://
www.msri.org/communications/books/gt3m

• B. Fine, Algebraic theory of the Bianchi groups, Marcel Dekker 1989

• C. Series, A crash course on Kleinian groups http://www.dmi.units.
it/~rimut/volumi/37/series.ps



Some computer programs

• http://www.math.uiuc.edu/~nmd/computop/index.html These
include many computational tools for finding hyperbolic manifolds. (SnapPy,
originally Snappea by J. Weeks)

• http://www.geom.uiuc.edu/~crobles/hyperbolic/ Interactive Javalets
for experiments.

• http://www.geometrygames.org/SnapPea/

• http://www.ms.unimelb.edu.au/~snap/orb.html Snap, Orb (ex-
act alg. computations, computations for orbifolds)

• http://www.math.sci.osaka-u.ac.jp/~wada/OPTi/index.html
M. Wada (drawing isometric spheres for figure eight knot complements)

2 Poincare theorem
2.0.1 Convex polyhedrons

Convex subsets

Convex subsets

A convex subset of H3 is a subset such that for any pair of points, there is a unique
geodesic segment between them and it is in the subset. For example, a pair of antipodal
point in Sn is convex.

Convex subsets
Let us state some facts about convex sets:

• The dimension of a convex set is the least integer m such that C is contained in
a unique m-plane Ĉ in H3.

• The interior Co, the boundary ∂C are defined in Ĉ.

• The closure of C is in Ĉ. The interior and closures are convex. They are homeo-
morphic to an open ball and a contractible domain of dimension equal to that of
Ĉ respectively.

• A side C is a nonempty maximal convex subset of ∂C.

• A convex polyhedron is a nonempty closed convex subset such that the set of
sides is locally finite in H3.
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2.0.2 Convex polytopes

Convex polytopes

Convex hulls
Using the Beltrami-Klein model, the open unit ball B, i.e., the hyperbolic space, is a
subset of an affine patch Rn. In Rn, one can talk about convex hulls.

• A convex polytope inB = Hn is a convex polyhedron with finitely many vertices
and is the convex hull of its vertices in B = Hn.

• A polyhedron P in B = Hn is a generalized convex polytope if its closure is a
polytope in the affine patch. A generalized polytope may have ideal vertices.

Convex polytopes

• A compact simplex which convex hull of n+ 1 points in B = Hn is an example
of a convex polytope.

– Take an origin in B, and its tangent space TOB.

– Start from the originO in TOB expand the infinitesimal euclidean polytope
from an interior point radially. That is a map sending x → sx for s > 0
and x is the coordinate vector of an affine patch using in fact any vector co-
ordinates. Now map the vertices of the convex polytope by an exponential
map to B.

– The convex hull of the vertices is a convex polytope.

– Thus for any Euclidean polytope, we obtain a one parameter family of hy-
perbolic polytopes.

Convex polytopes

2.0.3 Side pairings and Poincare fundamental polyhedron theorem

Side pairings and Poincare fundamental polyhedron theorem

• A tessellation of H3 is a locally-finite collection of polyhedra covering H3 with
mutually disjoint interiors.

• A convex fundamental polyhedron with some conditions provides examples of
exact tessellations.

• For such a convex fundamental polyhedron P , H3 is a union
⋃
g∈Γ g(P ).
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Figure 1: Regular dodecahedron with all edge angles π/2 as seen from inside (Geom-
etry center).

Side pairings and Poincare fundamental polyhedron theorem

• Given a side S of an exact convex fundamental domain P , there is a unique
element gS such that S = P ∩ gS(P ). And S′ = g−1

S (S) is also a side of P .

• gS′ = g−1
S since S′ = P ∩ g−1

S (P ).

• Γ-side-pairing is the set of gS for sides S of P .

• The equivalence class at P is generated by x ∼= x′ if there is a side-pairing
sending x to x′ for x, x′ ∈ P .

• [x] is finite and [x] = P ∩ Γ.

Side pairings and Poincare fundamental polyhedron theorem

• Cycle relations:

– Let S1 = S for a given side S. Choose the side R of S1. Obtain S′1. Let
S2 be the side adjacent to S′1 so that gS1

(S′1 ∩ S2) = R.

– Let Si+1 be the side of P adjacent to S′i such that gSi(S
′
i∩Si+1) = S′i−1∩

Si.

• Then we obtain

– There is an integer l such that Si+l = Si for each i.

–
∑l
i=1 θ(S

′
i, Si+1) = 2π/k.

– gS1
gS2

....gSl
has order k.

• The period l is the number of sides of codimension one coming into a given side
R of codimension two in X/Γ.
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Figure 2: Example: the octahedron in the hyperbolic plane giving genus 2-surface.
There are the cycle (a1, D), (a1′,K), (b1′,K), (b1, B), (a1′, B), (a1, C), (b1, C), the
cycle (b1′, H), (a2, H), (a2′, E), (b2′, E), (b2, F ), (a2′, F ), (a2, G), and the cycle
(b2, G), (b2′, D), (a1, D), (a1′,K), ....

Theorem 1. If P is an exact convex fundamental polyhedron of a discrete group Γ of
isometries acting on H3, then Γ is generated by Φ = {gS ∈ Γ|P∩gS(P ) is a side S of P}
and is finitely presented by cyclic relations (gS1gS2 ....gSl

)k

• To see this, let g be an element of Γ, and let us choose a frame at a point of P
and consider its image in g(P ).

• Then we choose a path of frames from the intial from to the terminal frame.

• We perturb the path so that it meets only the interiors of the sides of the tessel-
lating polyhedrons.

• Each time the path crosses a side S, we take the side-pairing gS obtained as
below.

• Then multiplying all such side-pairings in the reverse order to what occured, we
obtain an element g′ ∈ Γ so that g′(P ) = g(P ) as hgSh−1 moves h(P ) to the
image of P adjacent in the side h(S) for every h ∈ Γ.

• Since P is a fundamental domain, g−1g′ is the identity element of Γ.

Poincare fundamental polyhedron theorem
The Poincare fundamental polyhedron theorem is the converse. We claim that the
theorem holds for geometries (X,G) with notions of m-planes. (See Kapovich P. 80–
84):
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Theorem 2. Given a convex polyhedron P in H3 with side-pairing isometries satisfy-
ing the above relations, then P is the fundamental domain for the discrete subgroup of
PSL(2,C) generated by the side-pairing isometries.

Manifold case
If every k equals 1, then the result of the face identification is a manifold. Other-
wise, we obtain orbifolds. The results are always complete. (See Jeff Weeks http://www.

geometrygames.org/CurvedSpaces/index.html for an examples of hyperbolic or spherical manifold as seen

from “inside".)

Reflection groups

• We will be particularly interested in reflection groups.

• Suppose that X has notions of angles between m-planes.

• A discrete reflection group is a discrete subgroup in G generated by reflections
in X about sides of a convex polyhedron. Then all the dihedral angles are sub-
multiples of π.

• The side pairing is such that each face is glued to itself by a reflection satisfies
the Poincare fundamental theorem.

• The reflection group has presentation {Si : (SiSj)
kij} where kii = 1 and kij =

kji. which are examples of Coxeter groups.

Reflection groups

• Andreev gave a combinatorial condition for the existence of acute-angled (>
0,≤ π/2) convex polytope in H3. Such polytope is unique upto isometry. Con-
ditions are long: Basically, the sum of angles around a vertex is less > π. Pris-
matic circuits...

• When angles of form π/n, then we obtain a reflection group based on the sides
of P .

• By the Poincare theorem, the group is a Coxeter group generated by reflections
ri and (rirj)

eij = I .

• In many cases, these are classified. For example P is a tetrahedron.

• Among these, there are only finitely many maximal arithmetic ones. (Agol)
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Figure 3: The dodecahedral reflection group as seen by an insider: One has a regular
dodecahedron with all edge angles π/2 and hence it is a fundamental domain of a
hyperbolic reflection group. From Geometry center

3 1.4. Examples
Bianchi groups

• A discrete subring R of C: PSL(2, R) is a discrete subgroup.

• Let R = Od the ring of integers in Q(
√
−d), d ∈ N. Let Γ = PSL(2, Od).

• 1, ω a basis of Od. ω =
√
−d if d 6= 1mod4 and ω = (1 +

√
−d)/2 for

d = 1mod4.

• Then translation by 1 and ω fixes∞ and form Z + Z abelian group. They corre-
spond to a cusp point∞. They form the cusp group Γ∞.

• Then we define a “Ford domain" exterior to all “isometric spheres" for γ ∈ Γ
and intersect it with the fundamental domain for Γ∞. (See Fig. 1.1)

• The polytope gives us the fundamental domain and Poincare side pairing trans-
formations are as follows

•
X =

(
0 −1
1 0

)
, Y =

(
i 0
0 −i

)
, Z =

(
1 1
0 1

)
,W =

(
i −1
0 −i

)
Isometric spheres

General Bianchi groups

General Bianchi groups
Also see the paper of Hatcher http://www.math.cornell.edu/~hatcher/
bianchi.html for examples of Bianchi groups. See also B. Fine.
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Figure 4: drawn by Opti.

Figure eight knot complement

• A knot complement is a compact manifold with a boundary homeomorphic to a
torus.

• π1(S3 −Nε(K)) =< x1, x1|wx1w
−1 = x2, w = x−1

1 x2x1x
−1
2 >

• w̃ := x1x
−1
2 x−1

1 x2.

Figure eight knot complement

• We show that S3 −K has a complete hyperbolic structure, i.e., S3 −K is dif-
feomorphic to H3/Γ for the image π → PSL(2,C).

• As a consequence of finding the hyperbolic structure:

ρ(x1) =

(
1 1
0 1

)
, ρ(x2) =

(
1 0
−ω 1

)

• ω = (−1 +
√
−3)/2.

• Γ is an index 12 subgroup of PSL(2, O3).
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The figure 8 knot complement

• We glue two ideal tetrahedra in H3 as indicated in the picture of Ratcliffe.

• The dihedral angles are π/3. Six edges glue to one edge. There are two sets of
these edges. Hence, they glue to a complete hyperbolic structure.

• We are interested in a complete or compact hyprbolic manifolds only.

• See Benedetti p. 218-219, Ratcliff p.444-447

• In general, many knot complements have a complete hyperbolic structures (non-
satellite ones) as proved by Thurston.

• J. Weeks produced a numerical computer program Snappea: See “Computations
of hyperbolic structures in knot theory" in Handbook of Geometric Topology.

Seifert Weber Dodecahedral space

• Take a regular dodecahedron with dihedral angle 2π/5 obtained by “expansion".

• Glue opposite faces by 3/10 turn. (misaligned by 1/10 turn)

• See Weeks p.222-223.

4 3-manifolds and Dehn surgery
3-manifolds

• Orientability of objects are assumed.

• Subject: A compact 3-manifold with possibly nonempty boundary.

• The fundamental group is finitely presented.

• Connected sum: Given one or two 3-manifolds, remove a pair of the interiors
of closed balls in it and glue the resulting sphere boundary components by a
homeomorphism.

• Then M = M1#M2 and is unique up to diffeomorphism regardless of the
choices involved.

• Conversely, given an imbeded 2-sphere (not bounding a 3-ball) in a 3-manifold
M , M = M1#M2.

• In generalM = M1# . . . #Mn andMi are either irreducible or is a sphere bundle.

• M is irreducible if all spheres bound 3-balls.

• Such decomposition is uniquely determined up to diffeomorphisms.
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Haken manifolds

• An imbedded surface f : S → M3 is incompressible if π1(S) → π1(M3) is
injective or S is a sphere and not bound a three-ball.

• A Haken manifold is a 3-manifold containing an incompressible surface.

• M is atoroidal if any incompressible f : T 2 → M is homotopic to a map into
the boundary.

• Mapping torus case: M diffeomorphic to S× I/ ∼ where (x, 0) ∼ (φ(x), 1) for
φ : S → S. M is then Haken.

• If φ is of infinite order and do not preserve any collection of disjoint circles, then
φ is “pseudo-Anosov”. In this case M is atoroidal.

Hyperbolic 3-manifolds

• M compact Haken atoroidal. π1(M) contains no abelian subgroup of finite in-
dex. Then M is hyperbolizable. (Mo admits a complete hyperbolic structure.)

• These include the pseudo-Anosov bundles over circles.

• K a nontrivial prime knot and not a satellite knot and not a torus knot. Then
S3 −K has a complete hyperbolic structure of finite volume.

Dehn surgery

• M a 3-manifold with a boundary component T 2. We distinguish meridian m
and longitude l.

• S1 ×D2 has also torus boundary.

• We identify ∂(S1 ×D2) with T 2 in M .

• o× ∂D2 maps to mplq for relatively prime integers p, q.

• (p, q) classify the resulting manifold up to diffeomorphism.

• This is called (p, q)-Dehn surgery

Dehn surgery and hyperbolic structure

Theorem 3. M compact, orientable, incompressible torus boundary components T1, · · · , Tn.
The interior of M admits a complete hyperbolic structure. Then except for only finitely
many Dehn surgeries ((p1, q1), (p2, q2), ..., (pn, qn)), the Dehn surgeries admit hyper-
bolic structures. (Good bounds like 12)
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Figure 8 knot complement
S3−Nε(K) for a figure eight knotK. The only exceptions are {(1, 0), (0, 1),±(1, 1),±(2, 1),±(3, 1),±(4, 1)}.
All other surgeries yield compact hyperbolic manifolds.

Snappea
J. Week’s program does Dehn surgeries also and find many informations such as fun-
damental group presentations, volume, symmetry, and so on.
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