1 Introduction

About this lecture

- $\operatorname{PSL}(2, C)$ and hyperbolic 3 -spaces.
- Subgroups of $P S L(2, C)$
- Hyperbolic manifolds and orbifolds
- Examples
- 3-manifold topology and Dehn surgery
- Rigidity
- Volumes and ideal tetrahedra
- Part 1: 1.1-1.4 Kleinian group theory
- Part 2: 1.5-1.7 Topology

Some helpful references

- Ratcliffe, Foundations of hyperbolic manifolds, Springer (elementary)
- K. Matsuzaki, M. Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford (complete but technical)
- A. Marden, The geometry of finitely generated Kleinian groups, Ann of Math, 99 (1974) 299-323. (nice but more advanced)
- K. Ohshika, Discrete groups, AMS
- A. Adem, j. Leida, ... Orbifolds and stringly topology, Cambridge.
- W. Thurston, Three-dimensional geometry and topology I, Princeton University Press.
- W. Thurston, Lecture notes, (This is hard to read and incomplete) http:// www.msri.org/communications/books/gt 3m
- B. Fine, Algebraic theory of the Bianchi groups, Marcel Dekker 1989
- C. Series, A crash course on Kleinian groups http://www.dmi.units. it/~rimut/volumi/37/series.ps

Some computer programs

- http://www.math.uiuc.edu/~nmd/computop/index.html These include many computational tools for finding hyperbolic manifolds. (SnapPy, originally Snappea by J. Weeks)
- http://www.geom.uiuc.edu/~crobles/hyperbolic/ Interactive Javalets for experiments.
- http://www.geometrygames.org/SnapPea/
- http://www.ms.unimelb.edu.au/~snap/orb.html Snap, Orb (exact alg. computations, computations for orbifolds)
- http://www.math.sci.osaka-u.ac.jp/~wada/OPTi/index.html
M. Wada (drawing isometric spheres for figure eight knot complements)

2 Poincare theorem

2.0.1 Convex polyhedrons

Convex subsets

Convex subsets

A convex subset of H^{3} is a subset such that for any pair of points, there is a unique geodesic segment between them and it is in the subset. For example, a pair of antipodal point in \mathbf{S}^{n} is convex.

Convex subsets

Let us state some facts about convex sets:

- The dimension of a convex set is the least integer m such that C is contained in a unique m-plane \hat{C} in H^{3}.
- The interior C^{o}, the boundary ∂C are defined in \hat{C}.
- The closure of C is in \hat{C}. The interior and closures are convex. They are homeomorphic to an open ball and a contractible domain of dimension equal to that of \hat{C} respectively.
- A side C is a nonempty maximal convex subset of ∂C.
- A convex polyhedron is a nonempty closed convex subset such that the set of sides is locally finite in H^{3}.

2.0.2 Convex polytopes

Convex polytopes

Convex hulls

Using the Beltrami-Klein model, the open unit ball B, i.e., the hyperbolic space, is a subset of an affine patch \mathbb{R}^{n}. In \mathbb{R}^{n}, one can talk about convex hulls.

- A convex polytope in $B=H^{n}$ is a convex polyhedron with finitely many vertices and is the convex hull of its vertices in $B=H^{n}$.
- A polyhedron P in $B=H^{n}$ is a generalized convex polytope if its closure is a polytope in the affine patch. A generalized polytope may have ideal vertices.

Convex polytopes

- A compact simplex which convex hull of $n+1$ points in $B=H^{n}$ is an example of a convex polytope.
- Take an origin in B, and its tangent space $T_{O} B$.
- Start from the origin O in $T_{O} B$ expand the infinitesimal euclidean polytope from an interior point radially. That is a map sending $x \rightarrow s x$ for $s>0$ and x is the coordinate vector of an affine patch using in fact any vector coordinates. Now map the vertices of the convex polytope by an exponential map to B.
- The convex hull of the vertices is a convex polytope.
- Thus for any Euclidean polytope, we obtain a one parameter family of hyperbolic polytopes.

Convex polytopes

2.0.3 Side pairings and Poincare fundamental polyhedron theorem

Side pairings and Poincare fundamental polyhedron theorem

- A tessellation of \mathbb{H}^{3} is a locally-finite collection of polyhedra covering \mathbb{H}^{3} with mutually disjoint interiors.
- A convex fundamental polyhedron with some conditions provides examples of exact tessellations.
- For such a convex fundamental polyhedron P, \mathbb{H}^{3} is a union $\bigcup_{g \in \Gamma} g(P)$.

Figure 1: Regular dodecahedron with all edge angles $\pi / 2$ as seen from inside (Geometry center).

Side pairings and Poincare fundamental polyhedron theorem

- Given a side S of an exact convex fundamental domain P, there is a unique element g_{S} such that $S=P \cap g_{S}(P)$. And $S^{\prime}=g_{S}^{-1}(S)$ is also a side of P.
- $g_{S^{\prime}}=g_{S}^{-1}$ since $S^{\prime}=P \cap g_{S}^{-1}(P)$.
- Γ-side-pairing is the set of g_{S} for sides S of P.
- The equivalence class at P is generated by $x \cong x^{\prime}$ if there is a side-pairing sending x to x^{\prime} for $x, x^{\prime} \in P$.
- $[x]$ is finite and $[x]=P \cap \Gamma$.

Side pairings and Poincare fundamental polyhedron theorem

- Cycle relations:
- Let $S_{1}=S$ for a given side S. Choose the side R of S_{1}. Obtain S_{1}^{\prime}. Let S_{2} be the side adjacent to S_{1}^{\prime} so that $g_{S_{1}}\left(S_{1}^{\prime} \cap S_{2}\right)=R$.
- Let S_{i+1} be the side of P adjacent to S_{i}^{\prime} such that $g_{S_{i}}\left(S_{i}^{\prime} \cap S_{i+1}\right)=S_{i-1}^{\prime} \cap$ S_{i}.
- Then we obtain
- There is an integer l such that $S_{i+l}=S_{i}$ for each i.
- $\sum_{i=1}^{l} \theta\left(S_{i}^{\prime}, S_{i+1}\right)=2 \pi / k$.
- $g_{S_{1}} g_{S_{2}} \ldots g_{S_{l}}$ has order k.
- The period l is the number of sides of codimension one coming into a given side R of codimension two in X / Γ.

Figure 2: Example: the octahedron in the hyperbolic plane giving genus 2-surface. There are the cycle $(a 1, D),\left(a 1^{\prime}, K\right),\left(b 1^{\prime}, K\right),(b 1, B),\left(a 1^{\prime}, B\right),(a 1, C),(b 1, C)$, the cycle $\left(b 1^{\prime}, H\right),(a 2, H),\left(a 2^{\prime}, E\right),\left(b 2^{\prime}, E\right),(b 2, F),\left(a 2^{\prime}, F\right),(a 2, G)$, and the cycle $(b 2, G),\left(b 2^{\prime}, D\right),(a 1, D),\left(a 1^{\prime}, K\right), \ldots$.

Theorem 1. If P is an exact convex fundamental polyhedron of a discrete group Γ of isometries acting on \mathbb{H}^{3}, then Γ is generated by $\Phi=\left\{g_{S} \in \Gamma \mid P \cap g_{S}(P)\right.$ is a side S of $\left.P\right\}$ and is finitely presented by cyclic relations $\left(g_{S_{1}} g_{S_{2}} \ldots . g_{S_{l}}\right)^{k}$

- To see this, let g be an element of Γ, and let us choose a frame at a point of P and consider its image in $g(P)$.
- Then we choose a path of frames from the intial from to the terminal frame.
- We perturb the path so that it meets only the interiors of the sides of the tessellating polyhedrons.
- Each time the path crosses a side S, we take the side-pairing g_{S} obtained as below.
- Then multiplying all such side-pairings in the reverse order to what occured, we obtain an element $g^{\prime} \in \Gamma$ so that $g^{\prime}(P)=g(P)$ as $h g_{S} h^{-1}$ moves $h(P)$ to the image of P adjacent in the side $h(S)$ for every $h \in \Gamma$.
- Since P is a fundamental domain, $g^{-1} g^{\prime}$ is the identity element of Γ.

Poincare fundamental polyhedron theorem

The Poincare fundamental polyhedron theorem is the converse. We claim that the theorem holds for geometries (X, G) with notions of m-planes. (See Kapovich P. 8084):

Theorem 2. Given a convex polyhedron P in \mathbb{H}^{3} with side-pairing isometries satisfying the above relations, then P is the fundamental domain for the discrete subgroup of $\operatorname{PSL}(2, \mathbb{C})$ generated by the side-pairing isometries.

Manifold case

If every k equals 1 , then the result of the face identification is a manifold. Otherwise, we obtain orbifolds. The results are always complete. (See Jeff Weeks http://www. geometrygames.org/CurvedSpaces/index.html for an examples of hyperbolic or spherical manifold as seen from "inside".)

Reflection groups

- We will be particularly interested in reflection groups.
- Suppose that X has notions of angles between m-planes.
- A discrete reflection group is a discrete subgroup in G generated by reflections in X about sides of a convex polyhedron. Then all the dihedral angles are submultiples of π.
- The side pairing is such that each face is glued to itself by a reflection satisfies the Poincare fundamental theorem.
- The reflection group has presentation $\left\{S_{i}:\left(S_{i} S_{j}\right)^{k_{i j}}\right\}$ where $k_{i i}=1$ and $k_{i j}=$ $k_{j i}$. which are examples of Coxeter groups.

Reflection groups

- Andreev gave a combinatorial condition for the existence of acute-angled ($>$ $0, \leq \pi / 2)$ convex polytope in \mathbb{H}^{3}. Such polytope is unique upto isometry. Conditions are long: Basically, the sum of angles around a vertex is less $>\pi$. Prismatic circuits...
- When angles of form π / n, then we obtain a reflection group based on the sides of P.
- By the Poincare theorem, the group is a Coxeter group generated by reflections r_{i} and $\left(r_{i} r_{j}\right)^{e_{i j}}=I$.
- In many cases, these are classified. For example P is a tetrahedron.
- Among these, there are only finitely many maximal arithmetic ones. (Agol)

Figure 3: The dodecahedral reflection group as seen by an insider: One has a regular dodecahedron with all edge angles $\pi / 2$ and hence it is a fundamental domain of a hyperbolic reflection group. From Geometry center

3 1.4. Examples

Bianchi groups

- A discrete subring R of $\mathbb{C}: \operatorname{PSL}(2, R)$ is a discrete subgroup.
- Let $R=O_{d}$ the ring of integers in $\mathbb{Q}(\sqrt{-d}), d \in \mathbb{N}$. Let $\Gamma=\operatorname{PSL}\left(2, O_{d}\right)$.
- $1, \omega$ a basis of O_{d}. $\omega=\sqrt{-d}$ if $d \neq 1 \bmod 4$ and $\omega=(1+\sqrt{-d}) / 2$ for $d=1 \bmod 4$.
- Then translation by 1 and ω fixes ∞ and form $\mathbb{Z}+\mathbb{Z}$ abelian group. They correspond to a cusp point ∞. They form the cusp group Γ_{∞}.
- Then we define a "Ford domain" exterior to all "isometric spheres" for $\gamma \in \Gamma$ and intersect it with the fundamental domain for Γ_{∞}. (See Fig. 1.1)
- The polytope gives us the fundamental domain and Poincare side pairing transformations are as follows
-

$$
X=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), Y=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), Z=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right), W=\left(\begin{array}{cc}
i & -1 \\
0 & -i
\end{array}\right)
$$

Isometric spheres

General Bianchi groups

General Bianchi groups

Also see the paper of Hatcher http://www.math.cornell.edu/~hatcher/ bianchi. html for examples of Bianchi groups. See also B. Fine.

Figure 4: drawn by Opti.

Figure eight knot complement

- A knot complement is a compact manifold with a boundary homeomorphic to a torus.
- $\pi_{1}\left(S^{3}-N_{\epsilon}(K)\right)=<x_{1}, x_{1} \mid w x_{1} w^{-1}=x_{2}, w=x_{1}^{-1} x_{2} x_{1} x_{2}^{-1}>$
- $\tilde{w}:=x_{1} x_{2}^{-1} x_{1}^{-1} x_{2}$.

Figure eight knot complement

- We show that $S^{3}-K$ has a complete hyperbolic structure, i.e., $S^{3}-K$ is diffeomorphic to \mathbb{H}^{3} / Γ for the image $\pi \rightarrow \operatorname{PSL}(2, \mathbb{C})$.
- As a consequence of finding the hyperbolic structure:

$$
\rho\left(x_{1}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \rho\left(x_{2}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\omega & 1
\end{array}\right)
$$

- $\omega=(-1+\sqrt{-3}) / 2$.
- Γ is an index 12 subgroup of $\operatorname{PSL}\left(2, O_{3}\right)$.

The figure 8 knot complement

- We glue two ideal tetrahedra in \mathbb{H}^{3} as indicated in the picture of Ratcliffe.
- The dihedral angles are $\pi / 3$. Six edges glue to one edge. There are two sets of these edges. Hence, they glue to a complete hyperbolic structure.
- We are interested in a complete or compact hyprbolic manifolds only.
- See Benedetti p. 218-219, Ratcliff p.444-447
- In general, many knot complements have a complete hyperbolic structures (nonsatellite ones) as proved by Thurston.
- J. Weeks produced a numerical computer program Snappea: See "Computations of hyperbolic structures in knot theory" in Handbook of Geometric Topology.

Seifert Weber Dodecahedral space

- Take a regular dodecahedron with dihedral angle $2 \pi / 5$ obtained by "expansion".
- Glue opposite faces by $3 / 10$ turn. (misaligned by $1 / 10$ turn)
- See Weeks p.222-223.

4 3-manifolds and Dehn surgery

3-manifolds

- Orientability of objects are assumed.
- Subject: A compact 3-manifold with possibly nonempty boundary.
- The fundamental group is finitely presented.
- Connected sum: Given one or two 3-manifolds, remove a pair of the interiors of closed balls in it and glue the resulting sphere boundary components by a homeomorphism.
- Then $M=M_{1} \# M_{2}$ and is unique up to diffeomorphism regardless of the choices involved.
- Conversely, given an imbeded 2 -sphere (not bounding a 3-ball) in a 3 -manifold $M, M=M_{1} \# M_{2}$.
- In general $M=M_{1} \# \ldots \# M_{n}$ and M_{i} are either irreducible or is a sphere bundle.
- M is irreducible if all spheres bound 3-balls.
- Such decomposition is uniquely determined up to diffeomorphisms.

Haken manifolds

- An imbedded surface $f: S \rightarrow M^{3}$ is incompressible if $\pi_{1}(S) \rightarrow \pi_{1}\left(M^{3}\right)$ is injective or S is a sphere and not bound a three-ball.
- A Haken manifold is a 3-manifold containing an incompressible surface.
- M is atoroidal if any incompressible $f: T^{2} \rightarrow M$ is homotopic to a map into the boundary.
- Mapping torus case: M diffeomorphic to $S \times I / \sim$ where $(x, 0) \sim(\phi(x), 1)$ for $\phi: S \rightarrow S . M$ is then Haken.
- If ϕ is of infinite order and do not preserve any collection of disjoint circles, then ϕ is "pseudo-Anosov". In this case M is atoroidal.

Hyperbolic 3-manifolds

- M compact Haken atoroidal. $\pi_{1}(M)$ contains no abelian subgroup of finite index. Then M is hyperbolizable. (M^{o} admits a complete hyperbolic structure.)
- These include the pseudo-Anosov bundles over circles.
- K a nontrivial prime knot and not a satellite knot and not a torus knot. Then $S^{3}-K$ has a complete hyperbolic structure of finite volume.

Dehn surgery

- M a 3-manifold with a boundary component T^{2}. We distinguish meridian m and longitude l.
- $\mathbf{S}^{1} \times D^{2}$ has also torus boundary.
- We identify $\partial\left(\mathbf{S}^{1} \times D^{2}\right)$ with T^{2} in M.
- $o \times \partial D^{2}$ maps to $m^{p} l^{q}$ for relatively prime integers p, q.
- (p, q) classify the resulting manifold up to diffeomorphism.
- This is called (p, q)-Dehn surgery

Dehn surgery and hyperbolic structure

Theorem 3. M compact, orientable, incompressible torus boundary components T_{1}, \cdots, T_{n}. The interior of M admits a complete hyperbolic structure. Then except for only finitely many Dehn surgeries $\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{n}, q_{n}\right)\right)$, the Dehn surgeries admit hyperbolic structures. (Good bounds like 12)

Figure 8 knot complement

$S^{3}-N_{\epsilon}(K)$ for a figure eight knot K. The only exceptions are $\{(1,0),(0,1), \pm(1,1), \pm(2,1), \pm(3,1), \pm(4,1)\}$.
All other surgeries yield compact hyperbolic manifolds.

Snappea

J. Week's program does Dehn surgeries also and find many informations such as fundamental group presentations, volume, symmetry, and so on.

