1 Introduction

About this lecture

PSL(2,C) and hyperbolic 3-spaces.
Subgroups of PSL(2,C)

Hyperbolic manifolds and orbifolds
Examples

3-manifold topology and Dehn surgery
Rigidity

Volumes and ideal tetrahedra

Part 1: 1.1-1.4 Kleinian group theory
Part 2: 1.5-1.7 Topology

Some helpful references

Ratcliffe, Foundations of hyperbolic manifolds, Springer (elementary)

K. Matsuzaki, M. Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford
(complete but technical)

A. Marden, The geometry of finitely generated Kleinian groups, Ann of Math,
99 (1974) 299-323. (nice but more advanced)

K. Ohshika, Discrete groups, AMS
A. Adem, j. Leida, ... Orbifolds and stringly topology, Cambridge.

W. Thurston, Three-dimensional geometry and topology I, Princeton University
Press.

W. Thurston, Lecture notes, (This is hard to read and incomplete) http://
WWw.msri.org/communications/books/gt3m

B. Fine, Algebraic theory of the Bianchi groups, Marcel Dekker 1989

C. Series, A crash course on Kleinian groups http://www.dmi.units.
it/~rimut/volumi/37/series.ps



Some computer programs

http://www.math.uiuc.edu/~nmd/computop/index.html These
include many computational tools for finding hyperbolic manifolds. (SnapPy,
originally Snappea by J. Weeks)

http://www.geom.uiuc.edu/~crobles/hyperbolic/ Interactive Javalets
for experiments.

http://www.geometrygames.org/SnapPea/

http://www.ms.unimelb.edu.au/~snap/orb.html Snap, Orb (ex-
act alg. computations, computations for orbifolds)

http://www.math.sci.osaka-u.ac.jp/~wada/OPTi/index.html
M. Wada (drawing isometric spheres for figure eight knot complements)

2 Poincare theorem

2.0.1

Convex polyhedrons

Convex subsets

Convex subsets

A convex subset of H? is a subset such that for any pair of points, there is a unique
geodesic segment between them and it is in the subset. For example, a pair of antipodal
point in S™ is convex.

Convex subsets
Let us state some facts about convex sets:

The dimension of a convex set is the least integer m such that C' is contained in
a unique m-plane C in H?.

The interior C°, the boundary OC' are defined in C.

The closure of C'is in C. The interior and closures are convex. They are homeo-
morphic to an open ball and a contractible domain of dimension equal to that of
C respectively.

A side C' is a nonempty maximal convex subset of 9C..

A convex polyhedron is a nonempty closed convex subset such that the set of
sides is locally finite in H3.



2.0.2 Convex polytopes
Convex polytopes

Convex hulls
Using the Beltrami-Klein model, the open unit ball B, i.e., the hyperbolic space, is a
subset of an affine patch R™. In R", one can talk about convex hulls.

o A convex polytopein B = H™ is a convex polyhedron with finitely many vertices
and is the convex hull of its vertices in B = H™.

e A polyhedron P in B = H" is a generalized convex polytope if its closure is a
polytope in the affine patch. A generalized polytope may have ideal vertices.

Convex polytopes

e A compact simplex which convex hull of n 4 1 points in B = H" is an example
of a convex polytope.
— Take an origin in B, and its tangent space Tp B.

— Start from the origin O in T B expand the infinitesimal euclidean polytope
from an interior point radially. That is a map sending * — sz for s > 0
and z is the coordinate vector of an affine patch using in fact any vector co-
ordinates. Now map the vertices of the convex polytope by an exponential
map to B.

— The convex hull of the vertices is a convex polytope.

— Thus for any Euclidean polytope, we obtain a one parameter family of hy-
perbolic polytopes.

Convex polytopes

2.0.3 Side pairings and Poincare fundamental polyhedron theorem

Side pairings and Poincare fundamental polyhedron theorem

e A tessellation of H? is a locally-finite collection of polyhedra covering H? with
mutually disjoint interiors.

e A convex fundamental polyhedron with some conditions provides examples of
exact tessellations.

e For such a convex fundamental polyhedron P, H? is a union | ger g(P).



Figure 1: Regular dodecahedron with all edge angles 7/2 as seen from inside (Geom-
etry center).

Side pairings and Poincare fundamental polyhedron theorem

e Given a side S of an exact convex fundamental domain P, there is a unique
element gs such that S = P N gg(P). And S" = g5 ' (9) is also a side of P.

e g5 = gg'since S’ = PNgg'(P).
e ['-side-pairing is the set of gg for sides S of P.

e The equivalence class at P is generated by x = z’ if there is a side-pairing
sending z to x’ for z, 2’ € P.

e [z]is finite and [z] = PNT.

Side pairings and Poincare fundamental polyhedron theorem

e Cycle relations:

— Let S = S for a given side S. Choose the side R of S;. Obtain S]. Let
S5 be the side adjacent to S} so that gg, (S] N S2) = R.

— Let S;41 be the side of P adjacent to S} such that gg, (S/N.S;11) = S._1 N
Si.

e Then we obtain

— There is an integer [ such that S;;; = .S; for each i.

- Zi=1 0(S}, Sit1) = 2 /k.
- §5,9S,--.-gs, has order k.

e The period [ is the number of sides of codimension one coming into a given side
R of codimension two in X /T".



Figure 2: Example: the octahedron in the hyperbolic plane giving genus 2-surface.
There are the cycle (al, D), (al’, K), (b1, K), (b1, B), (a1, B), (al,C), (b1, C), the
cycle (b1, H), (a2,H), (a2, E), (b2', E), (b2, F), (a2, F),(a2,G), and the cycle
(v2,@),(b2', D), (al, D), (al’, K),....

Theorem 1. If P is an exact convex fundamental polyhedron of a discrete group I of
isometries acting on H?, then T is generated by ® = {gg € T'|PNgs(P) is a side S of P}
and is finitely presented by cyclic relations (gs, gs,----gs, )k

e To see this, let g be an element of I, and let us choose a frame at a point of P
and consider its image in g(P).

e Then we choose a path of frames from the intial from to the terminal frame.

e We perturb the path so that it meets only the interiors of the sides of the tessel-
lating polyhedrons.

e Each time the path crosses a side S, we take the side-pairing gg obtained as
below.

e Then multiplying all such side-pairings in the reverse order to what occured, we
obtain an element ¢’ € T so that ¢'(P) = g(P) as hgsh™! moves h(P) to the
image of P adjacent in the side h(S) for every h € T

e Since P is a fundamental domain, g !¢’ is the identity element of I'.

Poincare fundamental polyhedron theorem

The Poincare fundamental polyhedron theorem is the converse. We claim that the
theorem holds for geometries (X, G) with notions of m-planes. (See Kapovich P. 80—
84):



Theorem 2. Given a convex polyhedron P in H? with side-pairing isometries satisfy-
ing the above relations, then P is the fundamental domain for the discrete subgroup of
PSL(2, C) generated by the side-pairing isometries.

Manifold case
If every k equals 1, then the result of the face identification is a manifold. Other-
wise, we obtain orbifolds. The results are always complete. (See Jeff Weeks http://www.

geometrygames.org/CurvedSpaces/index.html for an examples of hyperbolic or spherical manifold as seen

from “inside".)

Reflection groups

We will be particularly interested in reflection groups.
Suppose that X has notions of angles between m-planes.

A discrete reflection group is a discrete subgroup in G generated by reflections
in X about sides of a convex polyhedron. Then all the dihedral angles are sub-
multiples of 7.

The side pairing is such that each face is glued to itself by a reflection satisfies
the Poincare fundamental theorem.

The reflection group has presentation {S; : (SiSj)k”} where k;; = 1 and k;; =
kj;. which are examples of Coxeter groups.

Reflection groups

Andreev gave a combinatorial condition for the existence of acute-angled (>
0, < m/2) convex polytope in H2. Such polytope is unique upto isometry. Con-
ditions are long: Basically, the sum of angles around a vertex is less > 7. Pris-
matic circuits...

When angles of form 7/n, then we obtain a reflection group based on the sides
of P.

By the Poincare theorem, the group is a Coxeter group generated by reflections
r; and (T‘ﬂ‘j)e” =1

In many cases, these are classified. For example P is a tetrahedron.

Among these, there are only finitely many maximal arithmetic ones. (Agol)



Figure 3: The dodecahedral reflection group as seen by an insider: One has a regular
dodecahedron with all edge angles 7/2 and hence it is a fundamental domain of a
hyperbolic reflection group. From Geometry center

3 1.4. Examples

Bianchi groups

A discrete subring R of C: PSL(2, R) is a discrete subgroup.
Let R = Oy the ring of integers in Q(v/—d), d € N. Let ' = PSL(2, Oy).

1,w a basis of Oy. w = vV—dif d # 1mod4 and w = (1 + /—d)/2 for
d = 1mod4.

Then translation by 1 and w fixes oo and form Z + Z abelian group. They corre-
spond to a cusp point co. They form the cusp group I' .

Then we define a “Ford domain" exterior to all “isometric spheres" for v € T’
and intersect it with the fundamental domain for I' . (See Fig. 1.1)

The polytope gives us the fundamental domain and Poincare side pairing trans-
formations are as follows

x=(0 )= 5)z=( )= o)

Isometric spheres

General Bianchi groups

General Bianchi groups
Also see the paper of Hatcher http://www.math.cornell.edu/~hatcher/
bianchi.html for examples of Bianchi groups. See also B. Fine.



o

Figure 4: drawn by Opti.

Figure eight knot complement

e A knot complement is a compact manifold with a boundary homeomorphic to a
torus.

o (8% — N(K)) =< z1, 21 |wriw™ = z9,w = 2] *womyy * >

1 1

o Wi=1T1T, T Ta.

Figure eight knot complement

e We show that S® — K has a complete hyperbolic structure, i.e., S — K is dif-
feomorphic to H? /T for the image m — PSL(2, C).

e As a consequence of finding the hyperbolic structure:

o= (g 1) orten = (2, 9)

o w=(—-14++-3)/2
e I'is an index 12 subgroup of PSL(2, Os).



The figure 8 knot complement

We glue two ideal tetrahedra in H? as indicated in the picture of Ratcliffe.

The dihedral angles are /3. Six edges glue to one edge. There are two sets of
these edges. Hence, they glue to a complete hyperbolic structure.

We are interested in a complete or compact hyprbolic manifolds only.
See Benedetti p. 218-219, Ratcliff p.444-447

In general, many knot complements have a complete hyperbolic structures (non-
satellite ones) as proved by Thurston.

J. Weeks produced a numerical computer program Snappea: See “Computations
of hyperbolic structures in knot theory" in Handbook of Geometric Topology.

Seifert Weber Dodecahedral space
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Take a regular dodecahedron with dihedral angle 27 /5 obtained by “expansion”.
Glue opposite faces by 3/10 turn. (misaligned by 1/10 turn)
See Weeks p.222-223.

3-manifolds and Dehn surgery

3-manifolds

Orientability of objects are assumed.
Subject: A compact 3-manifold with possibly nonempty boundary.
The fundamental group is finitely presented.

Connected sum: Given one or two 3-manifolds, remove a pair of the interiors
of closed balls in it and glue the resulting sphere boundary components by a
homeomorphism.

Then M = M #M, and is unique up to diffeomorphism regardless of the
choices involved.

Conversely, given an imbeded 2-sphere (not bounding a 3-ball) in a 3-manifold
M, M = M#M,.

In general M = M #...#M, and M; are either irreducible or is a sphere bundle.
M is irreducible if all spheres bound 3-balls.

Such decomposition is uniquely determined up to diffeomorphisms.



Haken manifolds

e An imbedded surface f : S — M?3 is incompressible if 71 (S) — 1 (M?3) is
injective or S is a sphere and not bound a three-ball.

e A Haken manifold is a 3-manifold containing an incompressible surface.

e M is atoroidal if any incompressible f : T2 — M is homotopic to a map into
the boundary.

e Mapping torus case: M diffeomorphic to S x I/ ~ where (x,0) ~ (¢(x),1) for
¢ : S — S. M is then Haken.

e If ¢ is of infinite order and do not preserve any collection of disjoint circles, then
¢ is “pseudo-Anosov”. In this case M is atoroidal.

Hyperbolic 3-manifolds

e M compact Haken atoroidal. 71 (M) contains no abelian subgroup of finite in-
dex. Then M is hyperbolizable. (M ° admits a complete hyperbolic structure.)

e These include the pseudo-Anosov bundles over circles.

e K a nontrivial prime knot and not a satellite knot and not a torus knot. Then
S$3 — K has a complete hyperbolic structure of finite volume.

Dehn surgery

e M a 3-manifold with a boundary component 72. We distinguish meridian m
and longitude [.

e S! x D? has also torus boundary.

We identify O(S! x D?) with T2 in M.

e 0 x D? maps to mPl9 for relatively prime integers p, q.

(p, q) classify the resulting manifold up to diffeomorphism.

This is called (p, ¢)-Dehn surgery

Dehn surgery and hyperbolic structure

Theorem 3. M compact, orientable, incompressible torus boundary components Ty, - - -

The interior of M admits a complete hyperbolic structure. Then except for only finitely
many Dehn surgeries ((p1,q1), (D2, 42); -, (Pns qn)), the Dehn surgeries admit hyper-
bolic structures. (Good bounds like 12)
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Figure 8 knot complement
S3—N.(K) for a figure eight knot K . The only exceptions are {(1,0), (0,1), £(1,1), £(2,1), £(3,1),+(4,1)}.
All other surgeries yield compact hyperbolic manifolds.

Snappea

J. Week’s program does Dehn surgeries also and find many informations such as fun-
damental group presentations, volume, symmetry, and so on.
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