
1 Introduction
About this lecture

• PSL(2, C) and hyperbolic 3-spaces.

• Subgroups of PSL(2, C)

• Hyperbolic manifolds and orbifolds

• Examples

• 3-manifold topology and Dehn surgery

• Rigidity

• Volumes and ideal tetrahedra

• Part 1: 1.1-1.4 Kleinian group theory

• Part 2: 1.5-1.7 Topology

Some helpful references

• Ratcliffe, Foundations of hyperbolic manifolds, Springer (elementary)

• K. Matsuzaki, M. Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford
(complete but technical)

• A. Marden, The geometry of finitely generated Kleinian groups, Ann of Math,
99 (1974) 299-323. (nice but more advanced)

• K. Ohshika, Discrete groups, AMS

• A. Adem, j. Leida, ... Orbifolds and stringly topology, Cambridge.

• W. Thurston, Three-dimensional geometry and topology I, Princeton University
Press.

• W. Thurston, Lecture notes, (This is hard to read and incomplete)

Some helpful references

• http://www.math.uiuc.edu/~nmd/computop/index.html These
include many computational tools for finding hyperbolic manifolds. (SnapPy,
originally Snappea by J. Weeks)

• http://www.geom.uiuc.edu/~crobles/hyperbolic/ Interactive Javalets
for experiments.

• http://www.geometrygames.org/SnapPea/



• http://www.ms.unimelb.edu.au/~snap/orb.html Snap, Orb (ex-
act alg. computations, computations for orbifolds)

• http://www.neverendingbooks.org/index.php/the-dedekind-tessellation.
html Modular groups

2 General introduction
The field of geometry and topology: geometric structures

• Basically, we try to understand the relationship between manifolds (orbifolds,
varieties, ...) with discrete subgroup of Lie groups acting on homogeneous (or
nice) spaces.

• Algebraic representations are often possible (Geometrization)

• Often such representations might be unique (rigidity, Margulis, Mostow) (Arithe-
maticity places an important role here.)

• If not, we have moduli spaces. (Teichmuller spaces)

• We obtain invariants in this way (volume, eta invariants, numerical invariants,....)

• Properties of groups can be studied using topological and geometric methods
(group decompositions and Gromov hyperbolicity)

• Thus, there are some correspondences between topology and algebra here.

Manifolds

• Manifolds: Hausdorff, covered by countable euclidean open balls. (2, 3-dim
only)

• Main objectives is to make sense of their variety.

• Examples:

– knot complements. The variety of these are suprisingly many. (still cannot
classify)

– Surfaces: classified by orientation, genus, and number of holes ( homology
theory is needed)

– 3-manifolds: Geomerization now makes the field into something of “alge-
braic problems".
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Geometrization of Manifolds

• If M is an orientable surface, then M can be written H2/Γ, E2/Γ, or S2/Γ by
the uniformization theorem. This is not unique. So we need Teichmuller spaces.

• If M is an orientable compact 3-manifold, then M can be canonically decom-
posed by spheres, disks into irreducible 3-manifolds.

• Irreducible 3-manifolds decomposes along tori into open or closed submanifolds
admitting one of eight geomeric structures S3/Γ, E3/Γ, H3/Γ, Nil/Γ, Sol/Γ,
S̃L(2,R)/Γ, H2 × R/Γ, and S2 × R/Γ.

• The hyperbolic pieces are most varied.

Orbifolds

• Orbifolds: Hausdorff, covered by countable quotients of open balls by finite
linear group actions that remember the action and the open balls. (Manifolds
“are” orbifolds)

• Orbifolds are of form M/Γ where M is a universal covering orbifold and Γ is a
properly discontinous action (not free).

• Given an orbifold O, we can always find M and Γ and the orbifold structure is
equivalent to the pair (M,Γ).

• If M is a manifold, then M/Γ is a good orbifold.

• If M is a compact 2-dim orbifold, then M is classified by orbifold Euler charac-
teristic.

• If M is a compact 3-dim orbifod, then M satisfies the geometrization.

Orbifolds

• Sometimes O = N/Γ for a manifold N and Γ finite. The O is very good.

• Selberg’s Lemma: If Γ is a finitely generated subgroup of GL(N,C), then it has
a torsion-free finite index subgroup.

• Most orbifolds here are very good.

3 PSL(2, C) and hyperbolic 3-space

• http://www.geom.uiuc.edu/docs/forum/hype/model.html

•
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PSL(2,C) and hyperbolic 3-space

• PSL(2,C) = SL(2,C)/{±I}.

• PSL(2,C) acts on Ĉ = C ∪ {∞} by z 7→ az+b
cz+d .

• H3 is defined as {(x, y, t) ∈ R3|t > 0}.

• t = 0 plane is identified with C.

• H3 compactifies to a closed ball with boundary Ĉ in the compactification of R3

as R̂3 = R3 ∪ {∞}.

• The boundary set is the sphere of infinity S2,∞ := Ĉ with a complex structure.

• Each Mobius transformation on S2,∞ extends to an action in R3 (Poincare ex-
tension) This is obtained by inversions in spheres perpendicular to t = 0 or the
the planes perpendicular to t = 0.

• The Mobius transformations form the isometry group of the Riemannian metric
given by δij/t2.

• The angles are same as the euclidean angles.

• PSL(2,C) is isomorphic to Isom+(H3). (Lie group)

• Geodesics are half circles perpendicular to S2,∞ or a straight line parallel to the
t-axis.
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• Totally geodesic subspaces are either hemispheres or half-spaces parallel to t-
axis.

• Horospheres are given by t = const or its images under isometries. The images
are spheres tangent to t = 0 or planes.

• In fact all isometries are generated by reflections. (Mobius type inversion actu-
ally)

• Volume form dx ∧ dy ∧ dt.

• Models http://www.geom.uiuc.edu/~crobles/hyperbolic/

H2

• Consider setting y = 0. Then we obtain H2 with metric δij/t2.

• This is a totally geodesic subspace. In fact, any other 2D-totally geodesic sub-
space is isometric to it.

• PSL(2,R) isomorphic to Isom+(H2).

• the angles, geodesics, subspaces.

• Isometries are generated by reflections.

• Volume form dx ∧ dt.

• The boundary is a circle R̂ = R ∪ {∞} in R̂3.

• Geodesics: http://www.geom.uiuc.edu/~crobles/hyperbolic/
hypr/modl/uhp/uhpjava.html

• Distances: http://www.geom.uiuc.edu/~crobles/hyperbolic/hypr/
modl/uhp/eq.html

Alternative view as a hyperboloid in the Lorentzian 4-space

• Let V be a four dimensional space with a quadratic form q(~x) = x2
1 +x2

2 +x2
3−

x2
4.

• V is decomposed into three parts q > 0, the positive open cone C+ with q <
0, x4 > 0, the negative open cone q < 0, x4 < 0, and the null cone q = 0.

• The vectors are called spacelike, positive timelike, negative timelike, or null.

• A hyperboloid is given by q = −1.

• We take the upper part Λ. Then the q restricts to Riemannian metric. Then Λ is
isometric with H3.

• Define O+(V, q) = O+(1, 3) be the orthogonal map preserving C+.
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• This group is generated by the Lorenztian reflection through time-like hyper-
planes.

• IsomΛ = PO+(V, q) and Isom+Λ = PSO+(V, q). These are isomorphic to
the previous groups.

Poincare model

• Consider the unit ball B3 in R3. There is a inversion sending H3 onto B3.

• The metric is given by 4δij/(1− |r|2)2.

• Again the isometry group is generated by reflections in spheres orthogonal to
∂B3.

• The unit disk B2 is identified with the hyperbolic plane.

The hyperbolic trigonometry

• hyperbolic law of sines:

sinA/ sinh a = sinB/ sinh b = sinC/ sinh c

• hyperbolic law of cosines:

cosh c = cosh a cosh b− sinh a sinh b cosC

cosh c = (coshA coshB + cosC)/ sinhA sinhB

• The triangles behave in a funny way... http://www.math.ksu.edu/~bennett/
gc/tri.html

4 Subgroups ofPSL(2, C)

The classifications of elements

• Assume γ 6= I.

• γ is elliptic if |trγ| < 2.

• γ is parabolic of trγ = ±2.

• γ is loxodromic otherwise.

• γ is elliptic if and only if it fixes a unique geodesic and if and only if it is conju-
gate to z 7→ eiθz for θ 6= 0.

• γ is loxodromic if and only if it acts on a unique geodesic and if and only it
is conjugate to z 7→ vz where v is a complex number whose length is not 1.
(hyperbolic if v is a positive real number)

• γ is parabolic if and only if it acts on horospheres and if and only if it is conjugate
to (x, y, t) → (x + a, y + b, t) for some real numbers a, b not both zero. (This
fixes a unique point of the tangency)
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Some more general theory in terms of symmetric space theory

• H3 is a symmetric space of the Lie group PSL(2,C) with maximal compact
group PSU(2,C) isomorphic to SO(3,R).

• A parabolic subgroup is a subgroup fixing an infinity and acts on leaves of foli-
ation given by a disjoint collection of horospheres. This is conjugate to a group
of upper triangular matrices.

• H3 can be compactified by adding one point for each parabolic subgroup.

• A geodesic ends at a point of infinite and Busemann function gives us a parame-
ter of horospheres. http://eom.springer.de/b/b120550.htm

• This description agrees with the above.

• Reference: Eberlein, Spaces of nonpositive curvature, Chicago

Subgroups of PSL(2,C)

• A subgroup is reducible if it fixes a unique point in Ĉ.

• A subgroup is elementary if it has a finite orbit in its action on H3∪Ĉ. Otherwise
it is non-elementary.

• Every non-elementary subgroup contains infinitely many loxodromic element,
no two of which have a common fixed point.

• Let x, y be elements of PSL(2,C). Then < x, y > is reducible if and only if
tr[x, y] = 2.

•

Kleinian group

• A Kleinian group is a discrete subgroup of PSL(2,C).

• In this setting, the discreteness implies that Γ acts properly discontinously (pos-
sibly with fixed points)

• Usually, we assume that it is non-elementary.

• H3/Γ is a 3-dimensional orbifold (3-manifold if no torsion).

• We give two-dimensional examples. But they also act on H3 as a Kleinian group
(called Fuchsian group).

• Fuchian group can be deformed to quasi-Fuchian groups.
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Triangle groups

• Find a triangle in H2 with angles submultiples of π.

• We divide into three cases π/a+ π/b+ π/c < 0.

• In fact, given a surface (or 2-orbifold) S with χ < 0, we have S = H2/Γ for a
Fuchian group.

• Example: once-puctured torus group by Wada http://vivaldi.ics.nara-wu.
ac.jp/~wada/OPTi/index.html

• (2, 4, 8)-triangle group

The modular group PSL(2,Z) action on H2.

• Generated by S : z 7→ −1/z, T : z 7→ z + 1.

• (2, 3,∞)-triangle group.

Kleinian group

• Let Γ be a nonelementary Kleinian group.

• A stabilizer of a point of H3 is a finite subgroup.

• A stabilizer of a point of the sphere of infinity S2,∞ can be conjugated to a
subgroup B with upper triangular matrices.

• B can be of the following form:

– Finite cyclic. (if it is finite)

– A finite extension of an infinite cyclic group generated by a loxodromic or
parabolic element. (if it contains a loxodromic)

– A finite extension of Z⊕ Z generated by two parabolic elements.

– Essentially proved from 2-dim Bieberbach theorem.

Cusp

• A point ζ of S2,∞ is a cusp point of Γ if the stablizer consists of parabolic
elements and the identity. (rank = 2)

• We will usually be working in finite volume case. So we do not need to know
"limit set". the domain of discontinuity in S2,∞.

• See ideal triangle examples.

• The ideal example http://egl.math.umd.edu/software.html
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Fundamental domain

• A fundamental domain F for a Kleinian group Γ is a closed subset of H3 satis-
fying

–
⋃
γ∈Γ γF = H3.

– F o ∩ γF o = ∅ if γ 6= I.

– the boundary of F has measure zero.

• F is usually a polyhedron (compact or noncompact, finite or infinite sided)

Dirichlet domains

• A Kleinian group Γ, choose a point p (not fixed)

• Dp(Γ) := {q ∈ H3|d(q, p) ≤ d(γ(q), p) for all γ ∈ Γ}.

• This is a polyhedron with locally finite sides.

• Sides are bisectors of p and γ(p) for some γ.

• The triangles in the triangle reflection groups are Dirichlet domains.

Geometrical finiteness

• A Kleinian group is geometrically finite if it admits a finite sided Dirichlet do-
main for every (some) points. (Another way is the thick part of the convex hull
is finite volume)

• Γ is cocompact if H3/Γ is compact. This is true if and only if all/some Dirichlet
domain is compact. (See triangle groups)

• Γ is of finite covolume if the volume of a Dirichlet domain is finite. (See ideal
triangle groups)

• This is well-defined.

• If A Kleinian group Γ is of finite covolume, then if Γ is geometrically finite and
hence finitely generated. (finitely presented) (Converse not true)

• This has a rather involved proof....
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5 Hyperbolic manifolds and orbifolds
Metric structures of hyperbolic manifolds in general

• Margulis constant ε > 0.

• Given a hyperbolic manifold M , M = H3/Γ for a torsion-free Γ, the set of thin
parts is defined as Mε = {x ∈ H3/Γ|∃x1, x2 ∈ x, d(x1, x2) ≤ ε}.

• The thick part is defined as M0 = {x ∈ H3/Γ|∀x1, x2 ∈ x, d(x1, x2) > ε}.

• The thin part either an annulus, a Mobius band, a torus or a Klein bottle times
interval (corresponds to cusps) or is a solid torus or solid Klein bottle.

• The thick part is a tame 3-manifold, i.e., either is compact or is the interior of a
compact 3-manifold. (Hence, the topology is finite.)

• The orbifold versions are similar to this..(that is the thin parts are finite quotients
of the above.)

• These work for general geometric manifolds...

Commensurability

• Γ1,Γ2 subgroups of PSL(2,C). They are directly commensurable if Γ1 ∩ Γ2 is
of finite index in both Γ1 and Γ2.

• They are commensurable if Γ1 and a conjugate of Γ2 are directly commensu-
rable.

• Two hyperbolic orbifolds H3/Γ1 and H3/Γ2 are commensurable if their groups
are so.

• Examples: Consider subgroups of a common Kleinian group.
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