1 Introduction

About this lecture

- $\operatorname{PSL}(2, C)$ and hyperbolic 3 -spaces.
- Subgroups of $P S L(2, C)$
- Hyperbolic manifolds and orbifolds
- Examples
- 3-manifold topology and Dehn surgery
- Rigidity
- Volumes and ideal tetrahedra
- Part 1: 1.1-1.4 Kleinian group theory
- Part 2: 1.5-1.7 Topology

Some helpful references

- Ratcliffe, Foundations of hyperbolic manifolds, Springer (elementary)
- K. Matsuzaki, M. Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford (complete but technical)
- A. Marden, The geometry of finitely generated Kleinian groups, Ann of Math, 99 (1974) 299-323. (nice but more advanced)
- K. Ohshika, Discrete groups, AMS
- A. Adem, j. Leida, ... Orbifolds and stringly topology, Cambridge.
- W. Thurston, Three-dimensional geometry and topology I, Princeton University Press.
- W. Thurston, Lecture notes, (This is hard to read and incomplete)

Some helpful references

- http://www.math.uiuc.edu/~nmd/computop/index.html These include many computational tools for finding hyperbolic manifolds. (SnapPy, originally Snappea by J. Weeks)
- http://www.geom.uiuc.edu/~crobles/hyperbolic/ Interactive Javalets for experiments.
- http://www.geometrygames.org/SnapPea/
- http://www.ms.unimelb.edu.au/~snap/orb.html Snap, Orb (exact alg. computations, computations for orbifolds)
- http://www.neverendingbooks.org/index.php/the-dedekind-tessellation. html Modular groups

2 General introduction

The field of geometry and topology: geometric structures

- Basically, we try to understand the relationship between manifolds (orbifolds, varieties, ...) with discrete subgroup of Lie groups acting on homogeneous (or nice) spaces.
- Algebraic representations are often possible (Geometrization)
- Often such representations might be unique (rigidity, Margulis, Mostow) (Arithematicity places an important role here.)
- If not, we have moduli spaces. (Teichmuller spaces)
- We obtain invariants in this way (volume, eta invariants, numerical invariants,....)
- Properties of groups can be studied using topological and geometric methods (group decompositions and Gromov hyperbolicity)
- Thus, there are some correspondences between topology and algebra here.

Manifolds

- Manifolds: Hausdorff, covered by countable euclidean open balls. (2,3-dim only)
- Main objectives is to make sense of their variety.
- Examples:
- knot complements. The variety of these are suprisingly many. (still cannot classify)
- Surfaces: classified by orientation, genus, and number of holes (homology theory is needed)
- 3-manifolds: Geomerization now makes the field into something of "algebraic problems".

Geometrization of Manifolds

- If M is an orientable surface, then M can be written $\mathbb{H}^{2} / \Gamma, E^{2} / \Gamma$, or S^{2} / Γ by the uniformization theorem. This is not unique. So we need Teichmuller spaces.
- If M is an orientable compact 3-manifold, then M can be canonically decomposed by spheres, disks into irreducible 3-manifolds.
- Irreducible 3-manifolds decomposes along tori into open or closed submanifolds admitting one of eight geomeric structures $S^{3} / \Gamma, E^{3} / \Gamma, \mathbb{H}^{3} / \Gamma, N i l / \Gamma, S o l / \Gamma$, $\widetilde{S L}(2, \mathbb{R}) / \Gamma, \mathbb{H}^{2} \times \mathbb{R} / \Gamma$, and $\mathbf{S}^{2} \times \mathbb{R} / \Gamma$.
- The hyperbolic pieces are most varied.

Orbifolds

- Orbifolds: Hausdorff, covered by countable quotients of open balls by finite linear group actions that remember the action and the open balls. (Manifolds "are" orbifolds)
- Orbifolds are of form M / Γ where M is a universal covering orbifold and Γ is a properly discontinous action (not free).
- Given an orbifold O, we can always find M and Γ and the orbifold structure is equivalent to the pair (M, Γ).
- If M is a manifold, then M / Γ is a good orbifold.
- If M is a compact 2-dim orbifold, then M is classified by orbifold Euler characteristic.
- If M is a compact 3 -dim orbifod, then M satisfies the geometrization.

Orbifolds

- Sometimes $O=N / \Gamma$ for a manifold N and Γ finite. The O is very good.
- Selberg's Lemma: If Γ is a finitely generated subgroup of $G L(N, \mathbb{C})$, then it has a torsion-free finite index subgroup.
- Most orbifolds here are very good.

$3 \operatorname{PSL}(2, \mathbb{C})$ and hyperbolic 3 -space

- http://www.geom.uiuc.edu/docs/forum/hype/model.html
-

$\operatorname{PSL}(2, \mathbb{C})$ and hyperbolic 3 -space

- $\operatorname{PSL}(2, \mathbb{C})=\operatorname{SL}(2, \mathbb{C}) /\{ \pm I\}$.
- $\operatorname{PSL}(2, \mathbb{C})$ acts on $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ by $z \mapsto \frac{a z+b}{c z+d}$.
- \mathbb{H}^{3} is defined as $\left\{(x, y, t) \in \mathbb{R}^{3} \mid t>0\right\}$.
- $t=0$ plane is identified with \mathbb{C}.
- \mathbb{H}^{3} compactifies to a closed ball with boundary $\hat{\mathbb{C}}$ in the compactification of \mathbb{R}^{3} as $\hat{\mathbb{R}}^{3}=\mathbb{R}^{3} \cup\{\infty\}$.
- The boundary set is the sphere of infinity $\mathbf{S}^{2, \infty}:=\hat{\mathbb{C}}$ with a complex structure.
- Each Mobius transformation on $\mathbf{S}^{2, \infty}$ extends to an action in \mathbb{R}^{3} (Poincare extension) This is obtained by inversions in spheres perpendicular to $t=0$ or the the planes perpendicular to $t=0$.
- The Mobius transformations form the isometry group of the Riemannian metric given by $\delta_{i j} / t^{2}$.
- The angles are same as the euclidean angles.
- $\operatorname{PSL}(2, \mathbb{C})$ is isomorphic to $\operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right)$. (Lie group)
- Geodesics are half circles perpendicular to $\mathbf{S}^{2, \infty}$ or a straight line parallel to the t-axis.
- Totally geodesic subspaces are either hemispheres or half-spaces parallel to t axis.
- Horospheres are given by $t=$ const or its images under isometries. The images are spheres tangent to $t=0$ or planes.
- In fact all isometries are generated by reflections. (Mobius type inversion actually)
- Volume form $d x \wedge d y \wedge d t$.
- Models http://www.geom. uiuc.edu/~crobles/hyperbolic/
\mathbb{H}^{2}
- Consider setting $y=0$. Then we obtain \mathbb{H}^{2} with metric $\delta_{i j} / t^{2}$.
- This is a totally geodesic subspace. In fact, any other $2 D$-totally geodesic subspace is isometric to it.
- $\operatorname{PSL}(2, \mathbb{R})$ isomorphic to $\operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right)$.
- the angles, geodesics, subspaces.
- Isometries are generated by reflections.
- Volume form $d x \wedge d t$.
- The boundary is a circle $\hat{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$ in $\hat{\mathbb{R}}^{3}$.
- Geodesics: http://www.geom.uiuc.edu/~crobles/hyperbolic/ hypr/modl/uhp/uhpjava.html
- Distances: http://www.geom.uiuc.edu/~crobles/hyperbolic/hypr/ modl/uhp/eq.html

Alternative view as a hyperboloid in the Lorentzian 4-space

- Let V be a four dimensional space with a quadratic form $q(\vec{x})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-$ x_{4}^{2}.
- V is decomposed into three parts $q>0$, the positive open cone C^{+}with $q<$ $0, x_{4}>0$, the negative open cone $q<0, x_{4}<0$, and the null cone $q=0$.
- The vectors are called spacelike, positive timelike, negative timelike, or null.
- A hyperboloid is given by $q=-1$.
- We take the upper part Λ. Then the q restricts to Riemannian metric. Then Λ is isometric with \mathbb{H}^{3}.
- Define $O^{+}(V, q)=O^{+}(1,3)$ be the orthogonal map preserving C^{+}.
- This group is generated by the Lorenztian reflection through time-like hyperplanes.
- Isom $\Lambda=P O^{+}(V, q)$ and $\operatorname{Isom}^{+} \Lambda=P S O^{+}(V, q)$. These are isomorphic to the previous groups.

Poincare model

- Consider the unit ball B^{3} in \mathbb{R}^{3}. There is a inversion sending \mathbb{H}^{3} onto B^{3}.
- The metric is given by $4 \delta_{i j} /\left(1-|r|^{2}\right)^{2}$.
- Again the isometry group is generated by reflections in spheres orthogonal to ∂B^{3}.
- The unit disk B^{2} is identified with the hyperbolic plane.

The hyperbolic trigonometry

- hyperbolic law of sines:

$$
\sin A / \sinh a=\sin B / \sinh b=\sin C / \sinh c
$$

- hyperbolic law of cosines:

$$
\begin{gathered}
\cosh c=\cosh a \cosh b-\sinh a \sinh b \cos C \\
\cosh c=(\cosh A \cosh B+\cos C) / \sinh A \sinh B
\end{gathered}
$$

- The triangles behave in a funny way... http://www.math.ksu.edu/~bennett/ gc/tri.html

4 Subgroups ofPSL $(2, \mathbb{C})$

The classifications of elements

- Assume $\gamma \neq \mathrm{I}$.
- γ is elliptic if $|t r \gamma|<2$.
- γ is parabolic of $\operatorname{tr} \gamma= \pm 2$.
- γ is loxodromic otherwise.
- γ is elliptic if and only if it fixes a unique geodesic and if and only if it is conjugate to $z \mapsto e^{i \theta} z$ for $\theta \neq 0$.
- γ is loxodromic if and only if it acts on a unique geodesic and if and only it is conjugate to $z \mapsto v z$ where v is a complex number whose length is not 1 . (hyperbolic if v is a positive real number)
- γ is parabolic if and only if it acts on horospheres and if and only if it is conjugate to $(x, y, t) \rightarrow(x+a, y+b, t)$ for some real numbers a, b not both zero. (This fixes a unique point of the tangency)

Some more general theory in terms of symmetric space theory

- \mathbb{H}^{3} is a symmetric space of the Lie group $\operatorname{PSL}(2, \mathbb{C})$ with maximal compact group $\operatorname{PSU}(2, \mathbb{C})$ isomorphic to $\mathrm{SO}(3, \mathbb{R})$.
- A parabolic subgroup is a subgroup fixing an infinity and acts on leaves of foliation given by a disjoint collection of horospheres. This is conjugate to a group of upper triangular matrices.
- \mathbb{H}^{3} can be compactified by adding one point for each parabolic subgroup.
- A geodesic ends at a point of infinite and Busemann function gives us a parameter of horospheres. http://eom.springer.de/b/b120550.htm
- This description agrees with the above.
- Reference: Eberlein, Spaces of nonpositive curvature, Chicago

Subgroups of $\operatorname{PSL}(2, \mathbb{C})$

- A subgroup is reducible if it fixes a unique point in $\widehat{\mathbb{C}}$.
- A subgroup is elementary if it has a finite orbit in its action on $\mathbb{H}^{3} \cup \hat{\mathbb{C}}$. Otherwise it is non-elementary.
- Every non-elementary subgroup contains infinitely many loxodromic element, no two of which have a common fixed point.
- Let x, y be elements of $\operatorname{PSL}(2, \mathbb{C})$. Then $\langle x, y>$ is reducible if and only if $\operatorname{tr}[x, y]=2$.

Kleinian group

- A Kleinian group is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{C})$.
- In this setting, the discreteness implies that Γ acts properly discontinously (possibly with fixed points)
- Usually, we assume that it is non-elementary.
- \mathbb{H}^{3} / Γ is a 3-dimensional orbifold (3-manifold if no torsion).
- We give two-dimensional examples. But they also act on \mathbb{H}^{3} as a Kleinian group (called Fuchsian group).
- Fuchian group can be deformed to quasi-Fuchian groups.

Triangle groups

- Find a triangle in \mathbb{H}^{2} with angles submultiples of π.
- We divide into three cases $\pi / a+\pi / b+\pi / c<0$.
- In fact, given a surface (or 2-orbifold) S with $\chi<0$, we have $S=\mathbb{H}^{2} / \Gamma$ for a Fuchian group.
- Example: once-puctured torus group by Wada http://vivaldi.ics.nara-wu. ac.jp/~wada/OPTi/index.html
- (2, 4, 8)-triangle group

The modular group $P S L(2, \mathbb{Z})$ action on \mathbb{H}^{2}.

- Generated by $S: z \mapsto-1 / z, T: z \mapsto z+1$.
- $(2,3, \infty)$-triangle group.

Kleinian group

- Let Γ be a nonelementary Kleinian group.
- A stabilizer of a point of \mathbb{H}^{3} is a finite subgroup.
- A stabilizer of a point of the sphere of infinity $\mathbf{S}^{2, \infty}$ can be conjugated to a subgroup B with upper triangular matrices.
- B can be of the following form:
- Finite cyclic. (if it is finite)
- A finite extension of an infinite cyclic group generated by a loxodromic or parabolic element. (if it contains a loxodromic)
- A finite extension of $\mathbb{Z} \oplus \mathbb{Z}$ generated by two parabolic elements.
- Essentially proved from 2-dim Bieberbach theorem.

Cusp

- A point ζ of $\mathbf{S}^{2, \infty}$ is a cusp point of Γ if the stablizer consists of parabolic elements and the identity. (rank $=2$)
- We will usually be working in finite volume case. So we do not need to know "limit set". the domain of discontinuity in $\mathbf{S}^{2, \infty}$.
- See ideal triangle examples.
- The ideal example http://egl.math.umd.edu/software.html

Fundamental domain

- A fundamental domain F for a Kleinian group Γ is a closed subset of \mathbb{H}^{3} satisfying
- $\bigcup_{\gamma \in \Gamma} \gamma F=\mathbb{H}^{3}$.
- $F^{o} \cap \gamma F^{o}=\emptyset$ if $\gamma \neq$ I.
- the boundary of F has measure zero.
- F is usually a polyhedron (compact or noncompact, finite or infinite sided)

Dirichlet domains

- A Kleinian group Γ, choose a point p (not fixed)
- $D_{p}(\Gamma):=\left\{q \in \mathbb{H}^{3} \mid d(q, p) \leq d(\gamma(q), p)\right.$ for all $\left.\gamma \in \Gamma\right\}$.
- This is a polyhedron with locally finite sides.
- Sides are bisectors of p and $\gamma(p)$ for some γ.
- The triangles in the triangle reflection groups are Dirichlet domains.

Geometrical finiteness

- A Kleinian group is geometrically finite if it admits a finite sided Dirichlet domain for every (some) points. (Another way is the thick part of the convex hull is finite volume)
- Γ is cocompact if \mathbb{H}^{3} / Γ is compact. This is true if and only if all/some Dirichlet domain is compact. (See triangle groups)
- Γ is of finite covolume if the volume of a Dirichlet domain is finite. (See ideal triangle groups)
- This is well-defined.
- If A Kleinian group Γ is of finite covolume, then if Γ is geometrically finite and hence finitely generated. (finitely presented) (Converse not true)
- This has a rather involved proof....

5 Hyperbolic manifolds and orbifolds

Metric structures of hyperbolic manifolds in general

- Margulis constant $\epsilon>0$.
- Given a hyperbolic manifold $M, M=\mathbb{H}^{3} / \Gamma$ for a torsion-free Γ, the set of thin parts is defined as $M_{\epsilon}=\left\{x \in \mathbb{H}^{3} / \Gamma \mid \exists x_{1}, x_{2} \in x, d\left(x_{1}, x_{2}\right) \leq \epsilon\right\}$.
- The thick part is defined as $M_{0}=\left\{x \in \mathbb{H}^{3} / \Gamma \mid \forall x_{1}, x_{2} \in x, d\left(x_{1}, x_{2}\right)>\epsilon\right\}$.
- The thin part either an annulus, a Mobius band, a torus or a Klein bottle times interval (corresponds to cusps) or is a solid torus or solid Klein bottle.
- The thick part is a tame 3-manifold, i.e., either is compact or is the interior of a compact 3-manifold. (Hence, the topology is finite.)
- The orbifold versions are similar to this..(that is the thin parts are finite quotients of the above.)
- These work for general geometric manifolds...

Commensurability

- Γ_{1}, Γ_{2} subgroups of $\operatorname{PSL}(2, \mathbb{C})$. They are directly commensurable if $\Gamma_{1} \cap \Gamma_{2}$ is of finite index in both Γ_{1} and Γ_{2}.
- They are commensurable if Γ_{1} and a conjugate of Γ_{2} are directly commensurable.
- Two hyperbolic orbifolds $\mathbb{H}^{3} / \Gamma_{1}$ and $\mathbb{H}^{3} / \Gamma_{2}$ are commensurable if their groups are so.
- Examples: Consider subgroups of a common Kleinian group.

