1 Introduction

About this lecture
e PSL(2,C) and hyperbolic 3-spaces.
e Subgroups of PSL(2,C)
e Hyperbolic manifolds and orbifolds
e Examples
e 3-manifold topology and Dehn surgery
e Rigidity
e Volumes and ideal tetrahedra
e Part 1: 1.1-1.4 Kleinian group theory
e Part 2: 1.5-1.7 Topology

Some helpful references

e Ratcliffe, Foundations of hyperbolic manifolds, Springer (elementary)

e K. Matsuzaki, M. Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford
(complete but technical)

A. Marden, The geometry of finitely generated Kleinian groups, Ann of Math,
99 (1974) 299-323. (nice but more advanced)

K. Ohshika, Discrete groups, AMS

A. Adem, j. Leida, ... Orbifolds and stringly topology, Cambridge.

e W. Thurston, Three-dimensional geometry and topology I, Princeton University
Press.

W. Thurston, Lecture notes, (This is hard to read and incomplete)

Some helpful references

e http://www.math.uiuc.edu/~nmd/computop/index.html These
include many computational tools for finding hyperbolic manifolds. (SnapPy,
originally Snappea by J. Weeks)

e http://www.geom.uiuc.edu/~crobles/hyperbolic/ Interactive Javalets
for experiments.

e http://www.geometrygames.org/SnapPea/



e http://www.ms.unimelb.edu.au/~snap/orb.html Snap, Orb (ex-
act alg. computations, computations for orbifolds)

e http://www.neverendingbooks.org/index.php/the-dedekind-tessellation.
html Modular groups

2 General introduction
The field of geometry and topology: geometric structures

e Basically, we try to understand the relationship between manifolds (orbifolds,
varieties, ...) with discrete subgroup of Lie groups acting on homogeneous (or
nice) spaces.

o Algebraic representations are often possible (Geometrization)

o Often such representations might be unique (rigidity, Margulis, Mostow) (Arithe-
maticity places an important role here.)

e If not, we have moduli spaces. (Teichmuller spaces)
e We obtain invariants in this way (volume, eta invariants, numerical invariants,....)

e Properties of groups can be studied using topological and geometric methods
(group decompositions and Gromov hyperbolicity)

e Thus, there are some correspondences between topology and algebra here.

Manifolds

e Manifolds: Hausdorff, covered by countable euclidean open balls. (2, 3-dim
only)

e Main objectives is to make sense of their variety.
e Examples:
— knot complements. The variety of these are suprisingly many. (still cannot

classify)

— Surfaces: classified by orientation, genus, and number of holes ( homology
theory is needed)

— J-manifolds: Geomerization now makes the field into something of “alge-
braic problems".



Geometrization of Manifolds

If M is an orientable surface, then M can be written H? /T, E?/T', or S2/T by
the uniformization theorem. This is not unique. So we need Teichmuller spaces.

If M is an orientable compact 3-manifold, then M can be canonically decom-
posed by spheres, disks into irreducible 3-manifolds.

Irreducible 3-manifolds decomposes along tori into open or closed submanifolds
admitting one of eight geomeric structures S2/T, E3/T, H3/T, Nil/T', Sol/T,
SL(2,R)/T', H? x R/T, and S? x R/T.

The hyperbolic pieces are most varied.

Orbifolds

Orbifolds: Hausdorff, covered by countable quotients of open balls by finite
linear group actions that remember the action and the open balls. (Manifolds
“are” orbifolds)

Orbifolds are of form M /T where M is a universal covering orbifold and I is a
properly discontinous action (not free).

Given an orbifold O, we can always find M and I' and the orbifold structure is
equivalent to the pair (M, T).

If M is a manifold, then M /T is a good orbifold.

If M is a compact 2-dim orbifold, then M is classified by orbifold Euler charac-
teristic.

If M is a compact 3-dim orbifod, then M satisfies the geometrization.

Orbifolds

Sometimes O = N/T for a manifold N and T finite. The O is very good.

Selberg’s Lemma: If T is a finitely generated subgroup of GL(N, C), then it has
a torsion-free finite index subgroup.

Most orbifolds here are very good.

3 PSL(2,C) and hyperbolic 3-space

http://www.geom.uiuc.edu/docs/forum/hype/model.html



PSL(2,C) and hyperbolic 3-space

PSL(2,C) = SL(2, C)/{£I}.

PSL(2,C) acts on C = C U {o0} by z — gﬂ's
H? is defined as {(z,y,t) € R3|t > 0}.
t = 0 plane is identified with C.

3 ‘compactifies to a closed ball with boundary C in the compactification of R?
as R? = R® U {o0}.

The boundary set is the sphere of infinity S>> := C witha complex structure.

Each Mobius transformation on S?°° extends to an action in R? (Poincare ex-
tension) This is obtained by inversions in spheres perpendicular to ¢ = 0 or the
the planes perpendicular to ¢ = 0.

The Mobius transformations form the isometry group of the Riemannian metric
given by §;;/t2.

The angles are same as the euclidean angles.
PSL(2, C) is isomorphic to Isom™ (H?). (Lie group)

Geodesics are half circles perpendicular to S?°° or a straight line parallel to the
t-axis.



e Totally geodesic subspaces are either hemispheres or half-spaces parallel to ¢-
axis.

e Horospheres are given by ¢ = const or its images under isometries. The images
are spheres tangent to ¢ = 0 or planes.

o In fact all isometries are generated by reflections. (Mobius type inversion actu-
ally)

e Volume form dz A dy A dt.

e Models http://www.geom.uiuc.edu/~crobles/hyperbolic/
H2
e Consider setting y = 0. Then we obtain H? with metric &;; /2.

e This is a totally geodesic subspace. In fact, any other 2D-totally geodesic sub-
space is isometric to it.

e PSL(2,R) isomorphic to Isom™ (H?).

e the angles, geodesics, subspaces.

e Isometries are generated by reflections.

e Volume form dz A dt.

e The boundary is a circle R = R U {oo} in R3.

e Geodesics: http://www.geom.uiuc.edu/~crobles/hyperbolic/
hypr/modl/uhp/uhpjava.html

e Distances: http://www.geom.uiuc.edu/~crobles/hyperbolic/hypr/
modl/uhp/eq.html

Alternative view as a hyperboloid in the Lorentzian 4-space

e Let V be a four dimensional space with a quadratic form ¢(%) = 23 + 23 + 23 —

2.

e V is decomposed into three parts ¢ > 0, the positive open cone C+ with ¢ <
0,z4 > 0, the negative open cone ¢ < 0, x4 < 0, and the null cone ¢ = 0.

® The vectors are called spacelike, positive timelike, negative timelike, or null.
® A hyperboloid is given by ¢ = —1.

e We take the upper part A. Then the q restricts to Riemannian metric. Then A is
isometric with H?.

e Define O7(V, q) = O™ (1, 3) be the orthogonal map preserving C'T.



e This group is generated by the Lorenztian reflection through time-like hyper-
planes.

e IsomA = POt (V,q) and Isom*A = PSO*(V,q). These are isomorphic to
the previous groups.

Poincare model
e Consider the unit ball B3 in R?. There is a inversion sending H? onto B>.
e The metric is given by 44;; /(1 — |r|?)2.

e Again the isometry group is generated by reflections in spheres orthogonal to
B3,

e The unit disk B? is identified with the hyperbolic plane.

The hyperbolic trigonometry
e hyperbolic law of sines:
sin A/ sinh a = sin B/ sinh b = sin C'/ sinh ¢
e hyperbolic law of cosines:
cosh ¢ = cosh a cosh b — sinh a sinh b cos C
cosh ¢ = (cosh A cosh B + cos C)/ sinh Asinh B

e The triangles behave in a funny way... http://www.math.ksu.edu/~bennett/
gc/tri.html

4 Subgroups of PSL (2, C)

The classifications of elements
e Assume y # L.
e ~ is elliptic if |try| < 2.
e 7 is parabolic of try = £2.
e v is loxodromic otherwise.

e ~ is elliptic if and only if it fixes a unique geodesic and if and only if it is conju-
gate to z — ez for § # 0.

e 7 is loxodromic if and only if it acts on a unique geodesic and if and only it
is conjugate to z — vz where v is a complex number whose length is not 1.
(hyperbolic if v is a positive real number)

e ~is parabolic if and only if it acts on horospheres and if and only if it is conjugate
to (z,y,t) — (z + a,y + b, t) for some real numbers a, b not both zero. (This
fixes a unique point of the tangency)



Some more general theory in terms of symmetric space theory

H? is a symmetric space of the Lie group PSL(2,C) with maximal compact
group PSU (2, C) isomorphic to SO(3, R).

A parabolic subgroup is a subgroup fixing an infinity and acts on leaves of foli-
ation given by a disjoint collection of horospheres. This is conjugate to a group
of upper triangular matrices.

H? can be compactified by adding one point for each parabolic subgroup.

A geodesic ends at a point of infinite and Busemann function gives us a parame-
ter of horospheres. http://eom.springer.de/b/b120550.htm

This description agrees with the above.

Reference: Eberlein, Spaces of nonpositive curvature, Chicago

Subgroups of PSL(2,C)

A subgroup is reducible if it fixes a unique point in C.

A subgroup is elementary if it has a finite orbit in its action on H? UC. Otherwise
it is non-elementary.

Every non-elementary subgroup contains infinitely many loxodromic element,
no two of which have a common fixed point.

Let x,y be elements of PSL(2,C). Then < x,y > is reducible if and only if
tr(z,y] = 2.

Kleinian group

A Kleinian group is a discrete subgroup of PSL(2, C).

In this setting, the discreteness implies that I" acts properly discontinously (pos-
sibly with fixed points)

Usually, we assume that it is non-elementary.
3 /T is a 3-dimensional orbifold (3-manifold if no torsion).

We give two-dimensional examples. But they also act on H? as a Kleinian group
(called Fuchsian group).

Fuchian group can be deformed to quasi-Fuchian groups.



Triangle groups
e Find a triangle in H? with angles submultiples of 7.
e We divide into three cases 7/a + 7/b+ w/c < 0.

e In fact, given a surface (or 2-orbifold) S with x < 0, we have S = H?2/T for a
Fuchian group.

e Example: once-puctured torus group by Wadahttp://vivaldi.ics.nara-wu.
ac.jp/~wada/OPTi/index.html

(2,4, 8)-triangle group

The modular group PSL(2,7Z) action on HZ.

e Generatedby S: z+— —1/2,T :z+— z+ 1.

e (2,3, 00)-triangle group.

Kleinian group
e Let I be a nonelementary Kleinian group.
e A stabilizer of a point of H? is a finite subgroup.

e A stabilizer of a point of the sphere of infinity S>> can be conjugated to a
subgroup B with upper triangular matrices.

e B can be of the following form:

Finite cyclic. (if it is finite)

A finite extension of an infinite cyclic group generated by a loxodromic or
parabolic element. (if it contains a loxodromic)

A finite extension of Z & Z generated by two parabolic elements.

Essentially proved from 2-dim Bieberbach theorem.

Cusp

e A point ¢ of S%* is a cusp point of I' if the stablizer consists of parabolic
elements and the identity. (rank = 2)

e We will usually be working in finite volume case. So we do not need to know
"limit set". the domain of discontinuity in S2:°°.

e See ideal triangle examples.

e The ideal example http://egl.math.umd.edu/software.html
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Fundamental domain

e A fundamental domain F for a Kleinian group I is a closed subset of H? satis-
fying

- U»yer'VF:H3-
- F°naF°=0ify#L

— the boundary of F' has measure zero.

e Fis usually a polyhedron (compact or noncompact, finite or infinite sided)

Dirichlet domains

e A Kleinian group I', choose a point p (not fixed)

o D,(T) := {q € H|d(q,p) < d(7(q),p) forall v € T'}.

e This is a polyhedron with locally finite sides.

Sides are bisectors of p and ~y(p) for some ~.

The triangles in the triangle reflection groups are Dirichlet domains.

Geometrical finiteness

e A Kleinian group is geometrically finite if it admits a finite sided Dirichlet do-
main for every (some) points. (Another way is the thick part of the convex hull
is finite volume)

e T'is cocompact if H3 /T is compact. This is true if and only if all/some Dirichlet
domain is compact. (See triangle groups)

e I is of finite covolume if the volume of a Dirichlet domain is finite. (See ideal
triangle groups)

e This is well-defined.

e If A Kleinian group I is of finite covolume, then if I" is geometrically finite and
hence finitely generated. (finitely presented) (Converse not true)

e This has a rather involved proof....
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5 Hyperbolic manifolds and orbifolds

Metric structures of hyperbolic manifolds in general

Margulis constant € > 0.

Given a hyperbolic manifold M, M = H? /T for a torsion-free I', the set of thin
parts is defined as M, = {z € H?/T|3x1, 29 € x,d(x1,72) < €}

The thick part is defined as My = {z € H3/T'|Vay, 9 € x,d(21,72) > €}.

The thin part either an annulus, a Mobius band, a torus or a Klein bottle times
interval (corresponds to cusps) or is a solid torus or solid Klein bottle.

The thick part is a tame 3-manifold, i.e., either is compact or is the interior of a
compact 3-manifold. (Hence, the topology is finite.)

The orbifold versions are similar to this..(that is the thin parts are finite quotients
of the above.)

These work for general geometric manifolds...

Commensurability

Iy, T's subgroups of PSL(2, C). They are directly commensurable if 'y N Ty is
of finite index in both I'; and I's.

They are commensurable if T'y and a conjugate of I'y are directly commensu-
rable.

Two hyperbolic orbifolds H?/T'; and H?/T'y are commensurable if their groups
are so.

Examples: Consider subgroups of a common Kleinian group.
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