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1. Cohomological rigidity problems in Toric Topology I

Cohomological Rigidity Problem
Are M and M’ homeomorphic (or diffeomorephic)
if H*(M) ~ H*(M")?

In general, the answer is NO.
E.g., the Poincaré homology sphere and the standard sphere.

However, if we restrict the class of the manifolds, then the answer
IS sometimes affirmative.



Example (Hirzebruch surfaces) I

3 3 1
52 X g1 iCk@Q) «— CopC projectify. S xSllPl(Ck@Q) «~ CP

cpl cpl

Here, St acts on S3 C C2 naturally, on C, by the k-times rotation
(k € Z) and on C trivially.

[We call H, = S3 X g1 P(Cy, @ C) the Hirzebruch surface.}




Cohomological rigidity of Hirzebruch surfaces I

Theorem 1 (Hirzebruch). For all k € Z,

Moreover, we have

H*(Hoy) ~ Zle, B]/(a?, 52)

and

H*(Hopy1) ~ Zla, Bl /{a?, B(a + B)).
Hence, Hop 2 Hopy .

Y

[ T herefore, Hirzebruch surfaces satisfy cohomological rigidity. }
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What is the meaning of the integer k7 I

The Hirzebruch surface Hy, = S3 x o1 P(Cy, @ C) has T2-action by

(t17t2) ) [(:Uay)a [Z : w]] — [(w7t1y)7 [Z : th]L
where (z,y) € S3 C C2 and [z : w] € CP1.

Theorem 2 ((essentially) Hirzebruch).

k =k < (H,,T?) = (H,,, T?)

U

[ Therefore, the integer k£ determines their equivariant types. J




Invariant of Transformation Group Theory I

Let M be a space with T-action, ET be the contractible space
with free T-action and BT = ET/T. Then, T acts on ET x M
freely. Take its quotient ET xp M (the Borel construction).
Equivariant cohomology: H} (M) = H*(ET x17 M)

Remarkl: H7 (M) is not only ring but also H*(BT)-algebra by

ET xp M <+ M . Hn(M) — H*(M)
™l — 1
BT H*(BT)

Remark2: If T'is the n-dim torus, then H*(BT; R) = R[z1,...,Zn]
where degx; = 2.



Equivariant cohomological rigidity of Hirzebruch surfaces

Let H; be the Hirzebruch surface. The H*(BT)-algebra type of
H>(Hy) is given by

H*(BT?) = Zlz1,20] == Hp(Hy) ~ Z[r1, 7,73, 74l /(T173, T274)
X1 +——> T1 — T3
o +H=——> T2 —T4—|—k’7'3

Proposition 1. If H>(Hy) ~ Hp2(Hy) as H*(BT)-algebra, then
k=1F, ie, (H,,T?) = (Hy, T?).

U

[ Hirzebruch surfaces satisfy equivariant cohomological rigidity. }




Cohomological rigidity problem in Toric Topology I

The Hirzebruch surfaces are part of the toric manifolds (M2, 7).
Theorem 3 (Masuda). Let (M, T™) and (M',T™) be two toric
manifolds.

(M, T") & (M",T") <= H7(M) ~ H}(M'),
I.e., toric manifolds satisfy the equivariant cohomological rigidity.

— Cohomological Rigidity Problem of Toric manifolds —
[Masuda-Suh '06] Let M and M’ be two toric manifolds.

M2 M < HY (M) ~ H¥(M'). )
.

This problem is still open but many partial affirmative answers
are shown by Choi-Masuda-Suh and so on.

In this talk, we will consider this problem for the toric hy-
perKahler manifolds.



2. Toric hyperKahler manifolds I

T™ acts on H™ = C™ ¢ C™ by (z,w) -t = (zt,wt™1). Then
the hyperKahler moment map ur @ pc : H™ — (t")* @ (t&)* de-
fined by

pr(z,w) = =) (Jzi] = |wi)o; € (™)
i=1

N |~

pe(z,w) = 2v=1> (zw;)9; € (t&)*.
i=1

For a subgroup K N T™ we have the hyperKahler moment map

UWHE - Hmﬁé*@éﬂé
by pprx = (¢* Do) o (LR D pe)-

Toric hyperKahler variety: uﬁlK(oz,O)/K where a #= 0(€ £*)
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Properties of toric hyperKahler varieties I

e A toric hyperKahler variety My = ,u,ﬁlK(a, 0)/K is a 4n-dimensional
orbifold, where n = m —dim K.

e My has the T =T /K-action.

e T his T"™-action is hyperhamiltonian, i.e., this action preserves
the hyperKahler structure and has a hyperKahler moment map

n;, = pRr @ pe such that

1 m
pRrlz,w] = 5 > (lzi] = lwi])ds — & € ker ¥ ~ (t™)* C (t"™)*;
=~
! m
pclz,w] = 2v-1 Z (zjw;)0; € kerve ~ (t4)* C (t&)7,

1=1
where o € (1*)* such that *(a) = «a.

*@ B3
po: Mo — () @ (1) ~ker(W* @) = (") @ (18)” L—L>C e,
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Example I

Let K = A be the diagonal subgroup in T7t1,

The moment map pupx =: H**1 — R @ C is defined by

LK (z,w) = 5 > (lzi] = lwi]) @2V =1 > (zwy).
i=1 i=1

Let a =1 € R It is easy to show that
w(1,0)/A = T*CP"

with the induced 7" = T"*+1/A action on CP™.
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Hyperplane arrangements I

To define the toric hyperKahler variety M., we need to use the
exact sequence

(tn)* P_*> (tm)* L_*>€>|<’

and the non-zero element o € ¢*.
There is a lift a € (™)* of «, i.e., (@) = «.

Hyperplane arrangement of My: H,; = {H1,...,Hmn} such that

Hy={z e ()" [ (p"(z) +0a,e;) =0}

where e; (i=1, ..., m) is the basis of t" ~ R™.

Remark: pi«(e;) € t" determines the (weighted) normal vector
of H; and (a,e;) determines the position of H,.

12



Example I

T*CP? is constructed by A < T3 and a = 1 € . Then

G (3) 5 (ab,e) s a+btcett
p* () 2 (z,y) = (z,y,—z —y) € () .
We may take & = (1,0,0) € (£3)*.

Because H; = {(x,y) € (t2)* | ((x,y,—x—y)+(1,0,0),e;) = 0},

H = {(-1,y) | y € R}; TR
Ho = {(x,0) | z € R}; "
Hy = {(z,—z) | z € R}.

H(l,O,O) of T*CP2
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Fundamental Theorem |

Theorem 4 (Bielawski-Dancer). M is a smooth manifold AT s
hyperplane arrangement H = {H;} is smooth, i.e.,

1. dimnN;erH; = n — #1;

2. if #1 = n then {p«(€;) | i € I} spans (t;)*.

The right two figures do 1:2
not occur as the hy-

perplanes of toric hy-

perKahler manifolds.
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Fundamental fact |

There is the following correspondence.

Smooth H;
n - o
Smooth (Ma, T", ug) 5 up to weighted, cooriented,
up to hyperhamiltonian. — affine arrangement

Here, (Ma,T", ug) =w (M, T", u-,) as weak hyperhamiltonian
<d:ef> there is a weak equivariant hyperKahler isometry f : My —
M!, such that p*opug = fou’, where ¢ : T" — T™ is the isometry
such that f(z -t) = f(x)e(t). If ¢ is the identity map, then
(Mo, T", ug) = (M!,, T", u’,) as hyperhamiltonian.
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3. Main Theorem |

Recall the definition of toric hyperKahler manifolds M = N[}]K(O" 0)/K.
—- CM 3 CM PROULC Fm)* () * L*@LE g h that
HHK = O C" ———= (") © (tF)* — " @ £ such tha
1 m
pr(z,w) = 5 > (7| — |wio; € (1)
i=1

po(z,w) = 2vV-1)Y (zw;)d € (t&)".
i—1

There is the extra Sl-action on the second C™-factor (w-factor)
in yﬁk(a,O) and this Sl-action commutes with K-action.

U

[Toric hyperKahler manifold has the 7" x Sl_action. ]
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Equivariant cohomological rigidity theorem I

Theorem 5. (Ma, T, ng) =w (M(’X,,T, “/a') A there is a weak

algebra isomorphism f1 . H}(Ma,Z) — Hp(M!,;Z) such that
fr(a) =a'.

Theorem 6. (M, T,u5) = (M, T, 1) <% For the extra Si-

actions, there is an algebra isomorphism f:ﬁxsl ) H;Xsl(Ma; Z) —
H;xsl(Mcla/; Z) such that fr(a) = a'.

Corollary 1. Toric hyperKahler manifolds satisfy the weak equiv-
ariant cohomological rigidity for T™-action and the equivariant
cohomological rigidity for T™ x Sl-action.
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Cohomological rigidity theorem I

Theorem 7. Two toric hyperKahler manifolds are diffeomorphic
iff

<= their cohomology rings are isomorphic and their dimensions
are same.

Theorem 8 (Bielawsky). Let M,, be the set of all complete,
connected, 4n-dimensional, hyperKahler manifolds with effec-
tive, hyperhamiltonian T"-actions. Then all elements in M,, are
diffeomorphic to toric hyperKahler manifolds, and vice versa.

Corollary 2. M,, satisfies the cohomological rigidity.
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Remark of the cohomological rigidity theorem I

T*CP" and T*CP" x HY are examples of toric hyperKihler man-
ifolds.
If £ £ 0, it is sasy to show that
H*(T*CP™) ~ H*(T*CP™ x H").
but

T*CP" 2 T*CP™ x H'.

Therefore, we need the condition of the dimension in the coho-
mological rigidity theorem of toric hyperKahler manifolds.
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4. Outline of proof I

Theorem 9 (Konno). Let (M,T) be a toric hyperKahler manifold
and H ={Hi,...,Hn} be its hyperplane arrangement. . Then

H7(M;Z) ~Z[r1,...,™m]/Z

where degt; = 2, and the ideal I is generated by HjEJ T such

For example, recall (T*CP2,T2) has the following arrangement.

H Hs
| Hz'ﬂHj =
H. HiNH>yNHzy = 0.
H(l,O,O) of kaCjP2

T herefore, H;;(T*CPQ) ~ Z[Tl,TQ,T3]/<7'1T27'3>.
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Outline of proof (Equivariant cohomological rigidity) I

1. By using the Konno's theorem, we can define the hyperplane
arrangement in H7.(M).

U

2. If (M, T) is a toric hyperKahler manifold, its hyperplane ar-
rangement and the hyperplane arrangement in H:’;(M) are equiv-
alent (i.e., same arrangement).

U

3. For the generator 7 € H7 (M), we can define Z(r) called the
zero length of 7 by the number of 7|, = 0 for p € M7

U
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U

4. If Z(7) = 0, then M = M'xH for the uniqgue toric hyperKahler
(4n — 4)-dimensional manifold. Hence, we may regard Z(7) #= 0.

Y

5. If f: Hy(Ma) ~ H7(M,) as weak H*(BT)-algebra, then
fiAr,....mm} = {r1,...,7),} up to sign. Therefore, their hyper-
plane arrangemets are equivalent up to coorinetations.

It follows that (Mq,T,pug) =w (M), T,ug) by the fundamental
fact of toric hyperKahler manifolds.

Remark: The extra Sl-action determines the coorientation of
hyperplanes. Hence, it determines the weighted, cooriented hy-
perplane arrangements.
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Outline of proof (Cohomological rigidity) I

Theorem 10 (Bielawski-Dancer). The diffeomorphism type of
toric hyperKahler manifolds does not depend on the combinato-
rial structure of their hyperplane arrangements.

Therefore, by using Theorem 4 (smoothness of M), the diffeo-
morphism types of toric hyperKahler manifolds are the following
two cases:

Ml(kla . .,kn);
Mz(k07 kla LI kn)7

where k; is the number of hyperplanes which are orthogonal with
e, (1i=1,...,n) and kg is the number of hyperplanes which are
orthogonal with e{ 4 --- 4 e,.
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Examples of Mq(kq,k1,...,kn) and Mo>(kg, k1,...,kn)

The following left is M1(3,2) and the right is M»(1,2,1):
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Final step of the proof I

If f: H*(M]_(k]_, ce ey kn)) ~ H*(Ml(k/ ey k;%)), then (kl, Cee kn) =
(K%, ... kl) up to permutation by comparing Ann(7) and Ann(f(7)).
(By the same argument, we can also prove for the case of M>)

For example, the following M»(1,2,1) and M»(2,1,1) are diffeo-
morphic:

Therefore, by Theorem 10 (Bielawski-Dancer), we can easy to
construct the diffeomorpshism.
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