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1. Cohomologial rigidity problems in Tori Topology

Cohomologial Rigidity Problem� �Are M and M 0 homeomorphi (or di�eomorephi)if H�(M) ' H�(M 0)?� �In general, the answer is NO.E.g., the Poinar�e homology sphere and the standard sphere.However, if we restrit the lass of the manifolds, then the answeris sometimes aÆrmative.
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Example (Hirzebruh surfaes)

S3 �S1 (Ck �C)  - C�C#CP1 projetify�������! S3 �S1 P(Ck �C)  - CP1#CP1Here, S1 ats on S3 � C2 naturally, on Ck by the k-times rotation(k 2 Z) and on C trivially.�Æ �We all Hk = S3 �S1 P(Ck �C) the Hirzebruh surfae.
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Cohomologial rigidity of Hirzebruh surfaesTheorem 1 (Hirzebruh). For all k 2 Z,Hk �= Hk+2:

Moreover, we haveH�(H2`) ' Z[�; �℄=h�2; �2iand H�(H2`+1) ' Z[�; �℄=h�2; �(�+ �)i:Hene, H2` 6�= H2`+1. +�Æ �Therefore, Hirzebruh surfaes satisfy ohomologial rigidity.4



What is the meaning of the integer k?

The Hirzebruh surfae Hk = S3�S1 P(Ck �C) has T2-ation by(t1; t2) � [(x; y); [z : w℄℄ 7�! [(x; t1y); [z : t2w℄℄;where (x; y) 2 S3 � C2 and [z : w℄ 2 CP1.

Theorem 2 ((essentially) Hirzebruh).k = k0 () (Hk; T2) �= (Hk0; T2)+�Æ �Therefore, the integer k determines their equivariant types.
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Invariant of Transformation Group Theory

Let M be a spae with T -ation, ET be the ontratible spaewith free T -ation and BT = ET=T . Then, T ats on ET �Mfreely. Take its quotient ET �T M (the Borel onstrution).Equivariant ohomology: H�T (M) = H�(ET �T M)Remark1: H�T (M) is not only ring but also H�(BT)-algebra byET �T M  - M� #BT H�=) H�T (M) ! H�(M)�� "H�(BT )

Remark2: If T is the n-dim torus, then H�(BT ;R) = R[x1; : : : ; xn℄where deg xi = 2. 6



Equivariant ohomologial rigidity of Hirzebruh surfaes

Let Hk be the Hirzebruh surfae. The H�(BT)-algebra type ofHT2(Hk) is given byH�(BT2) = Z[x1; x2℄ ���! H�T (Hk) ' Z[�1; �2; �3; �4℄=h�1�3; �2�4ix1 7�! �1 � �3x2 7�! �2 � �4+ k�3Proposition 1. If HT2(Hk) ' HT2(Hk0) as H�(BT)-algebra, thenk = k0, i.e., (Hk; T2) �= (Hk0; T2).+�Æ �Hirzebruh surfaes satisfy equivariant ohomologial rigidity.
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Cohomologial rigidity problem in Tori TopologyThe Hirzebruh surfaes are part of the tori manifolds (M2n; Tn).Theorem 3 (Masuda). Let (M;Tn) and (M 0; Tn) be two torimanifolds.(M;Tn) �= (M 0; Tn)() H�T (M) ' H�T (M 0);i.e., tori manifolds satisfy the equivariant ohomologial rigidity.Cohomologial Rigidity Problem of Tori manifolds� �[Masuda-Suh '06℄ Let M and M 0 be two tori manifolds.M �=M 0 ?() H�(M) ' H�(M 0):� �This problem is still open but many partial aÆrmative answersare shown by Choi-Masuda-Suh and so on.In this talk, we will onsider this problem for the tori hy-perK�ahler manifolds. 8



2. Tori hyperK�ahler manifolds

Tm ats on Hm = Cm � Cm by (z; w) � t = (zt; wt�1): Thenthe hyperK�ahler moment map �R � �C : Hm ! (tm)� � (tmC)� de-�ned by �R(z; w) = 12 mXi=1(jzij � jwij)�i 2 (tm)�;�C(z; w) = 2p�1 mXi=1(ziwi)�i 2 (tmC)�:For a subgroup K �,! Tm, we have the hyperK�ahler moment map�HK : Hm ! k� � k�Cby �HK = (�� � ��C) Æ (�R � �C).Tori hyperK�ahler variety: ��1HK(�;0)=K where � 6= 0(2 k�)9



Properties of tori hyperK�ahler varieties

� A tori hyperK�ahler varietyM� = ��1HK(�;0)=K is a 4n-dimensionalorbifold, where n= m� dimK.� M� has the Tn = Tm=K-ation.� This Tn-ation is hyperhamiltonian, i.e., this ation preservesthe hyperK�ahler struture and has a hyperK�ahler moment mape�b� = e�R � e�C suh thate�R[z; w℄ = 12 mXi=1(jzij � jwij)�i � b� 2 ker �� ' (tn)� � (tm)�;e�C[z; w℄ = 2p�1 mXi=1(ziwi)�i 2 ker ��C ' (tnC)� � (tmC)�;where b� 2 (tn)� suh that ��(b�) = �.e�b� :M�! (tn)� � (tnC)� ' ker(�� � ��C) ,! (tm)� � (tmC)� �����C�! k� � k�C;10



Example

Let K =� be the diagonal subgroup in Tn+1.The moment map �HK =: H n+1 ! R�C is de�ned by�HK(z; w) = 12 n+1Xi=1(jzij � jwij)� 2p�1 n+1Xi=1(ziwi):

Let � = 1 2 R It is easy to show that��1HK(1;0)=�= T �CPnwith the indued Tn = Tn+1=� ation on CPn.
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Hyperplane arrangements

To de�ne the tori hyperK�ahler variety M�, we need to use theexat sequene (tn)� ���! (tm)� ���! k�;and the non-zero element � 2 k�.There is a lift b� 2 (tm)� of �, i.e., ��(b�) = �.Hyperplane arrangement of M�: Hb� = fH1; : : : ; Hmg suh thatHi = fx 2 (tn)� j h��(x) + b�;eii = 0gwhere ei (i= 1; : : : ; m) is the basis of tm ' Rm.Remark: ��(ei) 2 tn determines the (weighted) normal vetorof Hi and hb�;eii determines the position of Hi. 12



Example

T �CP2 is onstruted by � �,! T3 and � = 1 2 k�. Then�� : (t3)� 3 (a; b; ) 7! a+ b+  2 k��� : (t2)� 3 (x; y) 7! (x; y;�x� y) 2 (t3)�:We may take b� = (1;0;0) 2 (t3)�.Beause Hi = f(x; y) 2 (t2)� j h(x; y;�x� y) + (1;0;0);eii = 0g,

H1 = f(�1; y) j y 2 Rg;H2 = f(x;0) j x 2 Rg;H3 = f(x;�x) j x 2 Rg: H(1;0;0) of T �CP2 13



Fundamental TheoremTheorem 4 (Bielawski-Daner).M is a smooth manifold i�() itshyperplane arrangement H = fHig is smooth, i.e.,1. dim\i2IHi = n�#I;2. if #I = n then f��(ei) j i 2 Ig spans (tnZ)�.

The right two �gures donot our as the hy-perplanes of tori hy-perK�ahler manifolds.
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Fundamental fat

There is the following orrespondene.

Smooth (M�; Tn; �b�)up to hyperhamiltonian. �! � Smooth Hb�up to weighted, ooriented,aÆne arrangement.

Here, (M�; Tn; �b�) �w (M 0�0; Tn; �0b�0) as weak hyperhamiltoniandef() there is a weak equivariant hyperK�ahler isometry f : M� !M 0�0 suh that '�Æ�b� = f Æ�0b�0, where ' : Tn ! Tn is the isometrysuh that f(x � t) = f(x)'(t). If ' is the identity map, then(M�; Tn; �b�) � (M 0�0; Tn; �0b�0) as hyperhamiltonian.
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3. Main Theorem

Reall the de�nition of tori hyperK�ahler manifoldsM = ��1HK(�;0)=K.

�HK =: Cm �Cm �R��C�����! (tm)� � (tmC)� �����C����! k� � k�C suh that�R(z; w) = 12 mXi=1(jzij � jwij)�i 2 (tm)�;�C(z; w) = 2p�1 mXi=1(ziwi)�i 2 (tmC)�:

There is the extra S1-ation on the seond Cm-fator (w-fator)in ��1HK(�;0) and this S1-ation ommutes with K-ation.+�Æ �Tori hyperK�ahler manifold has the Tn � S1-ation. 16



Equivariant ohomologial rigidity theorem

Theorem 5. (M�; T; �b�) �w (M 0�0; T; �0b�0) i�() there is a weakalgebra isomorphism f�T : H�T (M�;Z) ! H�T (M 0�0;Z) suh thatf�T (b�) = b�0.
Theorem 6. (M�; T; �b�) � (M 0�0; T; �0b�0) i�() For the extra S1-ations, there is an algebra isomorphism f�T�S1 : H�T�S1(M�;Z)!H�T�S1(M 0�0;Z) suh that f�T (b�) = b�0.

Corollary 1.Tori hyperK�ahler manifolds satisfy the weak equiv-ariant ohomologial rigidity for Tn-ation and the equivariantohomologial rigidity for Tn � S1-ation. 17



Cohomologial rigidity theorem

Theorem 7.Two tori hyperK�ahler manifolds are di�eomorphii�() their ohomology rings are isomorphi and their dimensionsare same.
Theorem 8 (Bielawsky). Let Mn be the set of all omplete,onneted, 4n-dimensional, hyperK�ahler manifolds with e�e-tive, hyperhamiltonian Tn-ations. Then all elements in Mn aredi�eomorphi to tori hyperK�ahler manifolds, and vie versa.

Corollary 2.Mn satis�es the ohomologial rigidity. 18



Remark of the ohomologial rigidity theorem

T �CPn and T �CPn�H` are examples of tori hyperK�ahler man-ifolds.If ` 6= 0, it is sasy to show thatH�(T �CPn) ' H�(T �CPn �H`):but T �CPn 6�= T �CPn �H`:

Therefore, we need the ondition of the dimension in the oho-mologial rigidity theorem of tori hyperK�ahler manifolds. 19



4. Outline of proofTheorem 9 (Konno). Let (M;T) be a tori hyperK�ahler manifoldand H = fH1; : : : ; Hmg be its hyperplane arrangement. . ThenH�T (M ;Z) ' Z[�1; : : : ; �m℄=Iwhere deg �i = 2, and the ideal I is generated by Qj2J �j suhthat \j2JHj = ;.For example, reall (T �CP2; T2) has the following arrangement.

H(1;0;0) of T �CP2 Hi \Hj 6= ;;H1 \H2 \H3 = ;:

Therefore, H�T (T �CP2) ' Z[�1; �2; �3℄=h�1�2�3i. 20



Outline of proof (Equivariant ohomologial rigidity)

1. By using the Konno's theorem, we an de�ne the hyperplanearrangement in H�T (M). +2. If (M;T) is a tori hyperK�ahler manifold, its hyperplane ar-rangement and the hyperplane arrangement in H�T (M) are equiv-alent (i.e., same arrangement).+3. For the generator � 2 H�T (M), we an de�ne Z(�) alled thezero length of � by the number of � jp = 0 for p 2MT .+ 21



+4. If Z(�) = 0, then M =M 0�H for the unique tori hyperK�ahler(4n� 4)-dimensional manifold. Hene, we may regard Z(�) 6= 0.+5. If f : H�T (M�) ' H�T (M�0) as weak H�(BT)-algebra, thenf : f�1; : : : ; �mg ! f� 01; : : : ; � 0mg up to sign. Therefore, their hyper-plane arrangemets are equivalent up to oorinetations.It follows that (M�; T; �b�) �w (M 0�0; T; �b�0) by the fundamentalfat of tori hyperK�ahler manifolds.Remark: The extra S1-ation determines the oorientation ofhyperplanes. Hene, it determines the weighted, ooriented hy-perplane arrangements. 22



Outline of proof (Cohomologial rigidity)Theorem 10 (Bielawski-Daner). The di�eomorphism type oftori hyperK�ahler manifolds does not depend on the ombinato-rial struture of their hyperplane arrangements.Therefore, by using Theorem 4 (smoothness of M), the di�eo-morphism types of tori hyperK�ahler manifolds are the followingtwo ases: M1(k1; : : : ; kn);M2(k0; k1; : : : ; kn);where ki is the number of hyperplanes whih are orthogonal withei (i = 1; : : : ; n) and k0 is the number of hyperplanes whih areorthogonal with e1+ � � �+ en.
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Examples of M1(k1; k1; : : : ; kn) and M2(k0; k1; : : : ; kn)

The following left is M1(3;2) and the right is M2(1;2;1):
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Final step of the proof

If f : H�(M1(k1; : : : ; kn)) ' H�(M1(k01; : : : ; k0n)), then (k1; : : : ; kn) �(k01; : : : ; k0n) up to permutation by omparing Ann(�) and Ann(f(�)).(By the same argument, we an also prove for the ase of M2)For example, the following M2(1;2;1) and M2(2;1;1) are di�eo-morphi:
Therefore, by Theorem 10 (Bielawski-Daner), we an easy toonstrut the di�eomorpshism. 25


