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What is Systems Biology?



If we have all the information on each 
player in a soccer team. Then, can we 
predict the play of this team?

Surroundings

System



Systems Biology Research

The Prerequisites:

“Experiments” should be quantitative!

“Modeling” should be predictive!



Network Systems BiologyNetwork Systems Biology
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Biological Networks

Node 
• Protein
• Gene
• Metabolite
• mRNA 
• ...

Link 
• Protein-protein interaction (PPI)
• Protein-DNA interaction 
• Enzyme reaction 
• …

Examples 
• Protein-protein interaction network
• Signaling pathway
• Gene regulation network (GRN)
• Metabolic network (pathway)

AR

Gq

+

Gi

+

Gs

+

b-ARR

-

JNK 3

-

Gbg Gbg

+

Gaq

+

ptx

-

Gai

+

Gbg

+

+

Gas

+

GRK

-

RGS

---

Src

+

AC

-

B-Raf

+

+

PLC

+

PYK

+

PDE

cAMP

-

NCC

+

CNG

+

PKA

+

PIP2

+

++

Ras

+

GIRK

+

EGFR

+

++

L-Ca++ Ch

+

Raf-1

+

p38alpha

+

MAPK 1,2

+

PI3K

+

DAG

+

IP3

+

AKT/PKB

Ca++

+

+

+

PKC

+

++

+

+

IP3R

+

+

Epi genes

+

-

+

Adrenergic Pathway (STKE)



Gene Regulation Network

Genes are able to regulate one another's expression levels via proteins 
called transcription factors. 

We will call the set of genes that regulate transcription of a specific 
gene its regulators. 

The network of regulatory relations among genes throughout the 
genome is called a gene regulation network. 



Reverse Engineering 

Reverse Engineering means building a network structure from the observed 
gene expression patterns.

Network structure

Reverse 
Engineering

Observed data



Temporal series of data
(+ measurement error)

(known)

Complex 
System

(unknown)

Input
(known) ?

Temporal dynamics, between one state of the system and another, 
are necessary to infer the structure of the system.

Temporal series of data
+

Input
Complex System ModelingReverse

Engineering

Reverse Engineering 



Reverse Engineering of Gene Regulatory 
Network

Problems
Too many genes

Too few measurements

Missing and incorrect values 

Complexity (time/space) 

Various Approaches
Logical rules (Boolean network)

Statistical approach (Bayesian network, dynamic Bayesian network)

Differential equation model (linear or nonlinear models)

Neural network (nonlinear model)

Genetic algorithm



• Reverse engineering biomolecular
regulatory networks uses the followings 
as input data:
– Experimental expression profiles

• cDNA Microarray data
• ChIP-chip data

– Sequence or annotations
• Binding motif
• Gene annotations

• The output of reverse engineering 
biomolecular networks can be
– Directed or undirected graph
– Adjacency matrix
– Regulation matrix
– Interaction network of modules

Input

Output

Reverse 
engineering

Reverse Engineering 



REVERSE 
ENGINEERING
NETWORKING

DNA Microarrays
•Temporal 
Sequence
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Reverse Engineering Methods

• Boolean Method
– Discretized expression 

levels 
– Find a Boolean function 

explaining the 
relationships of 
discretized data

• Bayesian Method
– Use the Bayesian rules
– Network learning 

• Regulation Matrix Method
– Assume a nonlinear 

ODE model

– Linearize the nonlinear 
model near steady states

or

– Find a regulation matrix 



• Van Someren et al. (Proc. ICSB, 2000)
– Time-series data
– Solve 
– Reduce the network size 

(clustering)
– Transform under-determined 

problems into over-determined 
problems

Regulation Matrix Methods #1
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Regulation Matrix Methods #2

• Yeung et al. (PNAS, 2002)
– Steady state data
– Solve 
– Singular Value Decomposition
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Regulation Matrix Methods #3
• Kholodenko et al. (PNAS, 2002)

– Parameter perturbation data
• Steady state data before/after perturbation

– Construct an interaction network of gene modules
• Calculate global interactions 
• Calculate local interactions using chain rules
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Regulation Matrix Methods #4

• Gardner et al. (Science, 2003)
– Solve 
– Biomolecular networks are mostly sparse 
⇒ Introduce a maximal indegree constraint

– Multiple linear regressions
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Limitations in Reverse Engineering

• Intrinsic noise

• Experimental noise

• Various time delays between nodes

• Time complexity

• Insufficient data for large scale networks 

• Sometimes, non-deterministic regulations



Inferring Biomolecular Regulatory Networks from Time-
Series Expression Profiles

Activation Inhibition

Activation Inhibition



Two measures to quantify the interaction properties and to systematically infer 
the regulatory relation: slope index (SI) and winding index (WI).

SI : a measure to determine the regulatory type (activation or inhibition)

WI : a measure for the direction of such regulation.

Inferring Biomolecular Regulatory Networks from Time-
Series Expression Profiles



We compute the SI and WI for the phase 
portraits. 

Fig. (A) is the posited regulatory network 
of example system.

A synthetic gene network of four nodes
Model

Phase portrait

Fig. (C) shows corresponding phase 
portraits. We can presume activating 
regulations in (x1,x2), (x2,x4), and 
inhibiting regulations in (x1; x3), (x2,x3), 
(x3, x4).

Inferred

The inferred whole regulatory network is 
illustrated in Fig. (B)

Inferring Biomolecular Regulatory Networks from Time-
Series Expression Profiles



Example

• Dictyostelium discoedium Network • Inferred Network

• Performance Comparison

28/35 (80%)25/33 (76%)18/24 (75%)True negative ratio
3/7 (43%)2/9 (22%)4/18 (22%)True positive ratio

The proposed 
scheme

Dynamic 
Bayesian network

Bayesian 
network



Merits & Limitations

• Merits
– Simple!
– Low complexity!
– Fast calculations!
– Applicable to measuring time-delays!

• Limitations
– … still cannot handle highly nonlinear networks
– … still cannot handle systems with time-varying 

coefficients



Network Motif

Complex cellular behaviors can be seen as a result of interactions 
of numerous intracellular or extracellular biomolecules.

To figure out cellular behaviors, it is important to investigate the 
topology of cellular circuits and corresponding dynamical 
characteristics. 

As a way of conducting such investigations, network motifs have 
been proposed and studied in various cellular circuits. 

Network motif examples
Feedforward loops in gene transcriptional networks
Feedback loops in signaling networks

The dynamic characteristics of feedforward and feedback loops 
is well known.

B 

A 

D C 

<Gene transcriptional network in E. coli >

p53 Mdm2

PTEN

ARF

PIP3

AKT

SIAH1

p73
CyclinG PP2A

Rb

p21

Cyclin 
E-cdk2

WIP1

P38
MAPK

Beta-
cateninCOP1

PIRH2 CyclinG

PP2A

<p53 signaling network >

<Feedback loops >
<Feedforward loops >



Coherent Feedforward Loops
There are 4 types of coherent feedforward loops (Fig. A)

Coherent feedforward loops induces delays in response
AND logic case
− Type 1 and Type 4 induce delays in response when the stimulation on X appears while Type 

2 and Type 3 induce delays when the stimulation on X disappears (Fig. B)
OR logic case
− Type 2 and Type 4 induce delays in response when the stimulation on X appears while Type 

1 and Type 3 induce delays when the stimulation on X disappears (Fig. C)
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S X
S Y

Z
<SX and SY denote the stimuli given on X and Y, respectively >



Incoherent Feedforward Loops

Incoherent feedforward loops accelerate responses (Fig. B)
Type 1 and Type 4 accelerate responses when the 
stimulation appears while Type 2 and Type 3 accelerate 
responses when the stimulation disappears

Incoherent feedforward loops induces biphasic 
responses

Temporal biphasic (Fig. C)
Dose (stimulus) biphasic (Fig. D)
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There are 4 types of incoherent feedforward loops (Fig. A)
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Feedback Loops
Feedback  loops  may  be  positive  or  negative,  depending upon  the parity of  the number of negative 
interactions  in  the loop.
Negative  feedback  loops  tend  to  act  within  biological systems  to maintain homeostasis.
Systems involving negative feedback  loops  tend  to  settle  to a  steady  state.
Positive  feedback  loops  promote multistationarity; that is, the existence of a number of different stable  
states.

<Negative feedback> <Positive feedback>



Bistability (multistationarity)
Multistationarity is  essential  to development, since  different  cell  types  represent different stable  
states  in  the gene  expression  space  of  the organism.
Multistationarity is  also  fundamental  to  the  development  of bistable switches  in  regulatory  
networks, in which  there  are two stable states, between which the system can be moved by an  external  
stimulus.

<Bistable dynamics in a double-inhibition feedback system>

(BMC Cell Biol. 7:11 (2006)) 



Positive Feedbacks and Memory
Bistable switches induced by positive feedbacks are  essentially  a memory  for  the cell,  since  the  state  
in which  it  finds  itself  is dependent upon the history of the system.

(Current Opinion in Chemical Biology 6:140-148 (2006))



Dynamic Behaviors of a Two-Node Feedback Loop

Consider a two-node feedback with nodes and edged 
labeled (assume aii<0 (i=1,2)) (Fig. A)
a12*a21<0 => negative feedback ( - region in Fig. B)
a12*a21>0 => positive feedback ( + region in Fig. B)
For small perturbation from steady-state, the system can be 
stable (green), oscillatory (blue), or unstable (red) (Fig. B).
The stability regions vary as the values of self-degradation 
terms a11 and a22 change.
The more stable the open-loop nodes (i.e., more negative 
a11 and a22), the greater the regions of closed loop stability.
However, if a11 and a22 are close in sign and magnitude, the 
size of the oscillatory regions increases.

A

B

C

(PLoS Biology 3:11 (2005))



Single Feedback Loops
The roles of positive feedback loops (Fig. B)

Signal amplification
Slow response (Fig. D)
Bistability & hysteresis

The roles of negative feedback loops (Fig. C)
Homeostasis (oscillation & attenuation)
Signal adaptation or desensitization 
Noise filters 
Fast responses (Fig. D)

The time delays between nodes in a feedback 
loop affect its dynamics 

Larger time delays between nodes in a 
positive feedback loop induce slower 
responses (Fig. B &E)

Larger time delays between nodes in a 
negative feedback loop induce oscillations 
with larger amplitudes (Fig. C & F)

<Single feedback loops and their dynamical properties >



Coupled Feedback Loops
Feedback loops have been considered as playing important roles in keeping cellular 
homeostasis, producing sustained oscillations, and making critical decisions such as cell fate 
decision and cell development decision.

Interestingly, feedback loops are often found as a coupled structure rather than a single 
isolated form in various cellular circuits. What does it mean?

We can represent such coupled feedback loops with topologically equivalent three-node 
networks by simplifying serial connections (Fig. A)

Three basic modules of the coupled feedback structures : PP, PN, and NN (Fig. B)

<Coupled feedback structures ><All possible network structures with three nodes >

PP PN NN
ZX Y

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y

A B 



Mathematical modeling

X activates Y
( / ) 1 ( / )H H

X XY XY dY bYdY dt V X K X K K Y K= + − +

X represses Y
1 ( / )H

X XY dY bYdY dt V X K K Y K= + − +

Both X and Z activate Y

/ (( / ) ( / ) ) (1 ( / ) ( / ) )H H H H
Y XY ZY XY ZY dY bYdY dt V X K Z K X K Z K K Y K= + + + − +

Both X and Z repress Y
/ (1 ( / ) ( / ) )H H

Y XY ZY dY bYdY dt V X K Z K K Y K= + + − +

X activates Y but Z represses Y
/ ( / ) (1 ( / ) ( / ) )H H H

Y XY XY ZY dY bYdY dt V X K X K Z K K Y K= + + − +



Coupled Feedbacks: PP

PP enhances bistability (Fig. A) 
PP induces a slower but amplified signal response (Fig. B & C)

STAT6 GATA3 STAT6
STAT4 ┫ GATA3 ┫ STAT4

Th1 and Th2 
differentiation 

PLAT PLG PLAT
F12 PLG F12

Kallikrein-kinin
system

RoK ┫ComK ┫ RoK
ComK ComK

B. subtilis competence 
event

Gal3 Gal4 Gal3
Gal2 Gal4 Gal2

Galactose-signaling 
network in yeast

Sic1 ┫cdc28 ┫ Sic1
Cln cdc28 Cln

Start of cell cycle in 
budding yeast

CDO MyoD CDO
Myostain MyoD Myostain

Muscle cell fate 
specification

Myt1 ┫cdc2 ┫Myt1
Cdc25 cdc2 Cdc25

Mitotic trigger in 
Xenopus

CDO MyoD CDO 
Akt2 MyoD Akt2

Muscle cell fate 
specification

Weel┫cdc2 ┫weel
Cdc25 cdc2 Cdc25

Mitotic trigger in 
Xenopus

IP3R Ca2+
cyt IP3R

RYR Ca2+
cyt RYR

Ca2+ spikes 
/oscillations 

Coupled feedback loopsRelated networkCoupled feedback loopsRelated network

Example circuits of PP.
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PP and Hysteretic Switching 
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Hysteretic switching systems show different stimulus-
response characteristics depending on the increasing or 
decreasing direction of stimulus profiles 

A hysteretic switching system with a wider range of 
safety zone can suppress the chattering over a wider 
range of stimuli and, as a result, can be more resistant to 
noises 

Hysteretic switch can be created using a single positive 
feedback circuit in engineering systems. However, 
various cellular signaling systems use coupled positive 
feedback circuits to implement the hysteretic switch. 
Why? 

The simulation study revealed that coupling of positive 
feedbacks extends (i) the safety zone and (ii) the 
parameter range for both reversible and irreversible 
hysteretic switching. In other words, hysteretic 
switching is substantially enhanced in coupled positive 
feedback circuits.

Cellular systems with coupled positive feedback circuits 
can make a more reliable decision under noisy signaling. 
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Coupled Feedback: PN
Transcriptional noise is known to be an important cause of cellular heterogeneity and phenotypic variation.
The yeast genetic network regulating galactose metabolism involves two proteins, Gal3p and Gal80p, that 
feed back positively and negatively, respectively, on GAL gene expression.
Dual feedback loops (PN) in the GAL regulon suppress cellular heterogeneity in yeast.

(Nature Genetics 38:1082‐1087 (2006))

X X

<Wild-type>

<Mutant>

<0 hr after stimulation>

<6 hr after stimulation>



Coupled Feedbacks: PN

PN enables reliable decision by properly modulating 
signal responses and effectively dealing with noises 

Example circuits of PN.

Rev-erbα┫Clock/Bmal1 Rev-erbα
Rorα Clock/Bmal1 Rorα

Circadian oscillation in 
Mammalia

Per/Cry ┫Clock/Bmal1 Per/Cry
Rorα Clock/Bmal1 Rorα

Circadian oscillation in 
Mammalia

APC ┫Cdc2 APC
Myt1 ┫Cdc2 ┫Myt1

Mitotic trigger in XenopusVri┫Clk/Cyc Vri
PDP1 Clk/Cyc PDP1

Circadian oscillation in 
Drosophila

APC ┫Cdc2 APC
Weel┫Cdc2 ┫Weel

Mitotic trigger in XenopusPer/Tim ┫Clk/Cyc Per/Tim
PDP1 Clk/Cyc PDP1

Circadian oscillation in 
Drosophila

ComS ComK┫ComS
ComK ComK

B. subtilis competence 
event

SERCA ┫Ca2+
cyt SERCA

RYR Ca2+
cyt RYR

Ca2+ spikes /oscillations

c-Src┫GRK c-Src
G GRK G 

Receptor Signals by ß-
Arrestins

SERCA ┫Ca2+
cyt SERCA

IP3R Ca2+
cyt IP3R

Ca2+ spikes /oscillations

Gal80 ┫Gal4 Gal80
Gal3 Gal4 Gal3

Galactose-signaling 
network in yeast

APC ┫Cdc2 APC
Cdc25 Cdc2 Cdc25

Mitotic trigger in Xenopus

Coupled feedback loopsRelated networkCoupled feedback loopsRelated network
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Coupled Feedbacks: NN

NN enforces the sustained 
oscillation (Fig. A)
NN enhances oscillations (Fig. 
B)
NN induces robust oscillation to 
noises (Fig. C)

Example circuits of NN.

p38MAPK p53┫ p38MAPK
Mdm2 ┫p53 Mdm2

p53 network

TOC1 CCA1/LHY ┫ TOC1
CCA1/LHY ┫CCA1/LHY

Plant circadian clock

ERK2 PKA┫ ERK2
ACA PKA ┫ACA

Chemotactic signaling in Ameba

RGS2 ┫AC RGS2
GRK ┫AC GRK

TSH-cAMP signaling pathway 
in thyrocytes

Per/Tim ┫Clk/Cyc Per/Tim
Vri ┫Clk/Cyc Vri

Circadian oscillation in 
Mammalia

Per/Tim ┫Clk/Cyc Per/Tim
Vri ┫Clk/Cyc Vri

Circadian oscillation in 
Drosophila

Coupled feedback loopsRelated network

Y V

Y



Coupled Feedbacks and Circadian Clocks
The plant circadian rhythm is quickly entrained to the change of a 
light stimulus but the mammalian circadian rhythm shows a 
relatively slow entrainment. Where does a different entrainment 
feature of plants and mammals originate? 

The core circadian regulatory network (CCRN) 
Plants : coupled negative feedback loops
Animals: coupled negative and positive feedback loops

The way of regulation induced by a light stimulus
Plants and mammals : gene transcription     
Drosophila: protein degradation

Mathematical Simulations
How does the topological difference of CCRNs affect the different 

feature of entrainments? the additional positive feedback induced 
much longer time to entrain (Fig. C). 

How does the different role of light stimulus determine the 
entrainment time? the protein degradation induced by light 
expedites the entrainment compared to the gene transcription 
(Fig. D). 

The topological structure of a CCRN,  the regulatory mechanism 
induced by light, and the interacting point of light are important 
factors determining entrainment features.
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Coupled Feedbacks: Summary

NN suppresses signal amplitudes resulting in noise reduction.
NN accelerates the response time.
NN enforces sustained oscillation which is robust to noises.

Many circadian networks and the chemotactic signaling network in ameba, both showing 
sustained oscillations, contain NN.  

PP
PP with different feedback reaction speeds can effectively reduce the signal noises (Science 

310:496-498 ).
PP can enhance signal amplification and bistability. 

PP is found in the muscle cell fate specification networks , T-cell differentiation  network, 
the cell cycle start system  whose switching mechanisms require strong bistability. 
These network systems might have evolutionarily acquired PP. 

PN can have the properties of both positive feedback loops and negative feedback loops 
PN is considered as a regulatory motif that can efficiently deal with signal noises while 

achieving proper response time 
PN can reduce noises
PN suppresses cellular heterogeneity in the yeast GAL regulon network (Nat. Genet. 

38:1082-1087)  
The response time of PN is shorter than that of positive feedback loops while longer than 

that of negative feedback loops 
PN is most ubiquitous (compared to PP and NN)

PN

NN



Mathematics to Biology?

• Data analysis => Bioinformatics
– Clustering
– Classification

• Mathematical modeling
– ODE
– PDE

• Dynamics analysis
– Simulation analysis
– Bifurcation analysis

• Data to Network => Reverse engineering
– ODE
– Boolean network
– Statistic models

• Network topology analysis
– Graph theory
– Motif analysis

• Topology Dynamics
– Network reduction
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