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* Network Topology and Dynamics
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Surroundings




Systems Biology Research

The Prerequisites:

“Experiments” should be quantitative!

“Modeling” should be predictive!



Network Systems
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Brain Systems Biology
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Cancer Systems

interactio

Intracellular 3 e
oncogenic network

Colon cancer

~

Gene mutation simulation (Protein overexpression simulation

Protein inhibitor simulation

1
[REEE R T T TIE IR eI ]

( ﬁ
,)
u\ Lw_’\

To ]

-
]

\.
el

oW B A W0 9B
Tire [mis]

\ /




Biological Networks

Node

* Protein D
« Gene —
*  Metabolite

« mRNA

Link

*  Protein-protein interaction (PPI)

* Protein-DNA interaction

* Enzyme reaction

Examples

* Protein-protein interaction network
« Signaling pathway

*  Gene regulation network (GRN)
*  Metabolic network (pathway)

Adrenergic Pathway (STKE)



Gene Regulation Network

m Genes are able to regulate one another's expression levels via proteins
called transcription factors.

m We will call the set of genes that regulate transcription of a specific
gene its regulators.

m The network of regulatory relations among genes throughout the
genome is called a gene regulation network.



Reverse Engineering

Reverse Engineering means building a network structure from the observed
gene expression patterns.

A clustered transcript response index
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Reverse Engineering

. Cogmlex Temporal series of data
knput — System — (+ measurement error)
(known) (unkf®own) (known)

Temporal dynamics, between one state of the system and another,
are necessary to infer the structure of the system.

Temporal series of data
_|_

Input

Reverse :
Engineering Complex System Modeling




Reverse Engineering of Gene Regulatory
Network

< Problems
s Too many genes
m Too few measurements
m Missing and incorrect values

m Complexity (time/space)

< Various Approaches
m Logical rules (Boolean network)
m Statistical approach (Bayesian network, dynamic Bayesian network)
m Differential equation model (linear or nonlinear models)
m Neural network (nonlinear model)

m Genetic algorithm



Reverse Engineering

* Reverse engineering biomolecular
regulatory networks uses the followings
as input data:

— Experimental expression profiles

e ¢cDNA Microarray data

e ChIP-chip data Input
— Sequence or annotations

* Binding motif

* (Gene annotations

Reverse
engineering

* The output of reverse engineering ®
biomolecular networks can be b0 e N ¥
—_ i i 000 3 4 4
Dlrf:cted or undlorected graph po0 s ~ e
— Adjacency matrix -13020 )

— Regulation matrix
— Interaction network of modules Output



From Microarray Data to the Gene

Network

DNA Microarrays

*Temporal §>

Sequence
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Differential Equation Model
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Reverse Engineering Methods

* Boolean Method * Regulation Matrix Method
— Discretized expression — Assume a nonlinear
levels ODE model
— Find a Boolean function X _ .x p
explaining the dt

relationships of
discretized data

— Linearize the nonlinear

model near steady states
dX
a -

« Bayesian Method or

— Use the Bayesian rules X1 = AX,

— Network learning

— Find a regulation matrix A



Regulation Matrix Methods #1

« Van Someren et al. (Proc. ICSB, 2000)
— Time—series data
— Solve X;ii = AX, qa?ﬁ
— Reduce the network size @X@D

(clustering)

— Transform under—determined
problems into over—determined True network
problems

@ D

=(019 003 097 048)'
024 008 101 053)'

(
(
,=(029 012 105 058 t+1
(
(

)
033 016 109 062)' (t=1,2,3,4)
)

Find A such that
AX, =X

—

- T

037 020 112 066
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Regulation Matrix Methods #2

* Yeung et al. (PNAS, 2002)

— Steady state data

dX

_ — =AX + B
Solve 77 +

— Singular Value Decomposition

/x0=(0.19 003 097 0.48)“ (i) Use SVD to decompose X"
048 020 0.26 X' =UwWw'
, U e I (ii) Find a special solution A, of X = AX +B
W o o T
050 000 000 with /]<N,- taken to be zero if w; =0
. { 000 000 000 = A=A +CV' isthe general solution
000 050 000 (C=(c;) wherec, =0 if j <dim(ker(X")))
\ 000 000 050 / (iii) Find A such that A is as sparse as possible




Regulation Matrix Methods #3

« Kholodenko et al. (PNAS, 2002)
— Parameter perturbation data
 Steady state data before/after perturbation
— Construct an interaction network of gene modules
 Calculate global interactions £Zp

 Calculate local interactions using chain rules

f D
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Regulation Matrix Methods #4

e Gardner et al. (Science, 2003)

dX

— Solve 0=—-=A4X+5B

— Biomolecular networks are mostly sparse
= Introduce a maximal indegree constraint

— Multiple linear regressions
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Limitations in Reverse Engineering

Intrinsic noise

« Experimental noise

« Various time delays between nodes

e Time complexity

 Insufficient data for large scale networks

* Sometimes, non-deterministic regulations



Inferring Biomolecular Regulatory Networks from Time-
Series Expression Profiles
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Inferring Biomolecular Regulatory Networks from Time-
Series Expression Profiles

» Two measures to quantify the interaction properties and to systematically infer
the regulatory relation: slope index (S1) and winding index (WI1).

» S| . a measure to determine the regulatory type (activation or inhibition)

> WI : a measure for the direction of such regulation.
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Inferring Biomolecular Regulatory Networks from Time-

Series Expression Profiles

» A synthetic gene network of four nodes

Model

®

hY

N

(A) (B)
NI/

Phase portrait

Inferred

X1 X
X
t \ 3
Xy Xy

> Fig. (A) 1s the posited regulatory network
of example system.

» Fig. (C) shows corresponding phase
portraits. We can presume activating
regulations 1n (x,X,), (X,,X,), and
inhibiting regulations in (X; X;), (X,,X;),
(X5, Xy)-

» The inferred whole regulatory network is
illustrated in Fig. (B)

> We compute the SI and WI for the phase
portraits.

b
€T ) I3 x4
a
T - 0.4/0.8 -04/-0.8 0.0/0.8
T2 0.4/-0.8 - -1.0/0.0 0.6/1.0
T3 -0.4/0.8 -1.0/0.0 - -0.6/-1.0
Ty 0.0/-0.8 0.6/-1.0 -0.6/1.0




Example

Dictyostelium discoedium Network * Inferred Network
SRR PR
€

\,/

Performance Comparison

Bayesian Dynamic The proposed
network Bayesian network | scheme
True positive ratio 4/18 (22%) 2/9 (22%) 3/7 (43%)
True negative ratio 18/24 (75%) 25/33 (76%) 28/35 (80%)




Merits & Limitations

« Merits
— Simple!
— Low complexity!
— Fast calculations!

— Applicable to measuring time-delays!

e Limitations
— ... still cannot handle highly nonlinear networks

— ... still cannot handle systems with time-varying
coefficients



Network Motif

0 Complex cellular behaviors can be seen as a result of interactions
of numerous intracellular or extracellular biomolecules.

O To figure out cellular behaviors, it is important to investigate the
topology of cellular circuits and corresponding dynamical
characteristics.

O As a way of conducting such investigations, network motifs have
been proposed and studied in various cellular circuits.

0 Network motif examples
= Feedforward loops in gene transcriptional networks
= Feedback loops in signaling networks

0 The dynamic characteristics of feedforward and feedback loops
is well known.

<Feedforward loops >

<Gene transcriptional network in E. coli >

@ZCY?

<Feedback loops >



Coherent Feedforward Loops

O There are 4 types of coherent feedforward loops (Fig. A)

O Coherent feedforward loops induces delays in response

= AND logic case
— Type 1 and Type 4 induce delays in response when the stimulation on X appears while Type

2 and Type 3 induce delays when the stimulation on X disappears (Fig. B)

= OR logic case

— Type 2 and Type 4 induce delays in response when the stimulation on X appears while Type

1 and Type 3 induce delays when the stimulation on X disappears (Fig. C)

B

Type 1 AND logic

———  Simple regulation ||

5 10
Time

15

0 5 10
0 5 10
Simple
regulation

Type 1
OR logic :
0 5 10
Time

<S4 and Sy denote the stimuli given on X and Y, respectively >



Incoherent Feedforward Loops

L There are 4 types of incoherent feedforward loops (Fig. A) A

O Incoherent feedforward loops accelerate responses (Fig. B) pet Type?
= Type 1 and Type 4 accelerate responses when the
stimulation appears while Type 2 and Type 3 accelerate Ve
responses when the stimulation disappears e @/

U Incoherent feedforward loops induces biphasic
responses
= Temporal biphasic (Fig. C)
= Dose (stimulus) biphasic (Fig. D)

Response

Simple
regulation |

— Typel |
AND logic

Response

Stimulus

Time



Feedback Loops

0 Feedback loops may be positive or negative, depending upon the parity of the number of negative
interactions in the loop.

O Negative feedback loops tend to act within biological systems to maintain homeostasis.
O Systems involving negative feedback loops tend to settle to a steady state.

O Positive feedback loops promote multistationarity; that is, the existence of a number of different stable
states.

e o0 © oo
- o 0 0
- X. } o0

\ ‘J \‘/

<Negative feedback> <Positive feedback>




Bistability (multistationarity)

L Multistationarity is essential to development, since different cell types represent different stable
states in the gene expression space of the organism.

O Multistationarity is also fundamental to the development of bistable switches in regulatory
networks, in which there are two stable states, between which the system can be moved by an external
stimulus.

Population Average
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<Bistable dynamics in a double-inhibition feedback system>

(BMC Cell Biol. 7:11 (2006))



Positive Feedbacks and Memory

Q Bistable switches induced by positive feedbacks are essentially a memory for the cell, since the state
in which 1t finds itself is dependent upon the history of the system.

| | = | 1 +
+ +
[trigger 1] —» CAD < [trigger 2] trigger 1] = CAD (B [trigger 2]
_—[ | + + | | -
trigger 1 2 trigger 1 2
_I1 [ ] I [ ]
100% - — 100% —
= B | I = ;""
E | | E
Q Q
<L ll'. |I-I < ]A.B
0% L — . 0% L = -
Time Time

(Current Opinion in Chemical Biology 6:140-148 (2006))
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Dynamic Behaviors of a Two-Node Feedback Loop

Consider a two-node feedback with nodes and edged
labeled (assume a;<0 (i=1,2)) (Fig. A)

a;,™*a,;<0 => negative feedback ( - region in Fig. B)

a;,™a, ;>0 => positive feedback ( + region in Fig. B)

For small perturbation from steady-state, the system can be
stable (green), oscillatory (blue), or unstable (red) (Fig. B).
The stability regions vary as the values of self-degradation
terms a,;; and a,, change.

The more stable the open-loop nodes (i.e., more negative
a;; and a,,), the greater the regions of closed loop stability.
However, if a;, and a,, are close in sign and magnitude, the
size of the oscillatory regions increases.

A

11 — 8y

\

L
il

=

R R T T TR -

&
"

(PLoS Biology 3:11 (2005))



Single Feedback Loops

O The roles of positive feedback loops (Fig. B)
= Signal amplification
= Slow response (Fig. D)
= Bistability & hysteresis

O The time delays between nodes in a feedback
loop affect its dynamics

O Larger time delays between nodes in a
positive feedback loop induce slower

O The roles of negative feedback loops (Fig. C) responses (Fig. B &E)

= Homeostasis (oscillation & attenuation)
= Signal adaptation or desensitization
= Noise filters

= Fast responses (Fig. D)

O Larger time delays between nodes in a
negative feedback loop induce oscillations
with larger amplitudes (Fig. C & F)

A B T @ r
p N ’/\ /‘.ﬁ“\
— (Y (:)“'—Y ——(Y)
— ) _—
® / \\.__// \‘-H../
D E E
: Ve | -
/ = i~
-~ / - o | .’; ...... =
o l o
g | P E — 70 g | — 7-0
= 05 Simple Z 05 SR 0 = PR o |
£ ---- N E Tin EOSIT | )
zZ z zZ
0% 0
8 15 0 10 20 0 8 16
Time Time Time

<Single feedback loops and their dynamical properties >



Coupled Feedback Loops

O Feedback loops have been considered as playing important roles in keeping cellular
homeostasis, producing sustained oscillations, and making critical decisions such as cell fate
decision and cell development decision.

U Interestingly, feedback loops are often found as a coupled structure rather than a single
isolated form in various cellular circuits. What does it mean?

L We can represent such coupled feedback loops with topologically equivalent three-node
networks by simplifying serial connections (Fig. A)

O Three basic modules of the coupled feedback structures : PP, PN, and NN (Fig. B)

B

A
PP PN NN
; ; : =02 @=0=2 @0z
@:'{( ~<(Z @:Y ~—(Z — () ~—=(Z
; : O—0—2 O=0—=2 O—0—=(z
v v Q-0 —(z

<All possible network structures with three nodes > <Coupled feedback structures >



Mathematical modeling

O Xactivates Y
dY /dt =V, (X /K, )" /1+(X /K )" =K, Y + K,

O Xrepresses Y
dY/dt =V, /1+(X /K )" =K, Y + K,

O Both X and Z activate Y

dY /dt =V, (X /Ky )" +(Z /K )™/ A+ (XK ) +(Z /K )™M =Ky Y + Koy

O Both X and Z repress Y
dY /dt =V, /(1+(X /K" +(Z /K )M =Ky Y + Ky

O X activates Y but Z represses Y
dY /dt =V, (X /K )" /A + (X T KO +(Z7Kx )™M =Ky Y + K,y



Coupled Feedbacks: PP

O Example circuits of PP.

Related network Coupled feedback loops Related network Coupled feedback loops

Ca2+ spikes IP3R > Ca*", st - IP3R Mitotic trigger in Weel q cdc2 H weel
/oscillations RYR > Ca*", « 2 RYR Xenopus Cdc25 = cdc2 > Cdce25
Muscle cell fate CDO > MyoD - CDO Mitotic trigger in Mytl o cdc2 - Mytl
specification Akt2 >MyoD > Akt2 Xenopus Cdc25 - cdc2 > Cdc25
Muscle cell fate CDO - MyoD - CDO Start of cell cycle in Sicl 4 cdc28 4 Sicl
specification Myostain = MyoD - Myostain budding yeast Cln = cdc28 = Cln
Galactose-signaling Gal3 - Gal4 >Gal3 B. subtilis competence RoK - ComK 4 RoK
network in yeast Gal2 - Gal4 > Gal2 event ComK - ComK
Kallikrein-kinin PLAT - PLG - PLAT Th1 and Th2 STAT6 - GATA3 - STAT6
system F12 = PLG = FI12 differentiation STAT4- GATA3 - STAT4

O PP enhances bistability (Fig. A)
O PP induces a slower but amplified signal response (Fig. B & C)

A B C
3
1.8 |
/ﬁ/ o > -
P / g /
71— PP 1 / ; = /
\\\‘: ~~~~ >-4 / — — — PP 'EOS P
e T / é . / ——— pp
/ 3 /
Z /
. /
-1 0 : : 0 : ,
0 3 6 0 10 20 30 0 10 20 30

Vv, Time Time



PP and Hysteretic Switching

O Hysteretic switching systems show different stimulus-

Stimulus

response characteristics depending on the increasing or

Switching system

decreasing direction of stimulus profiles Ol:;ut
O A hysteretic switching system with a wider range of 2o I
safety zone can suppress the chattering over a wider §
range of stimuli and, as a result, can be more resistant to il el
noises PRGN
N S, S,
O Hysteretic switch can be created using a single positive ~
feedback circuit in engineering systems. However, g J_
o
Off

various cellular signaling systems use coupled positive

feedback circuits to implement the hysteretic switch.
Why?

O The simulation study revealed that coupling of positive B
feedbacks extends (i) the safety zone and (i1) the
parameter range for both reversible and irreversible
hysteretic switching. In other words, hysteretic
switching is substantially enhanced in coupled positive
feedback circuits.

O Cellular systems with coupled positive feedback circuits
can make a more reliable decision under noisy signaling.

Stimulus

Stimulus P@ Stimulus *

10

>

(=]

Stimulus

15

Parameter V

Parameter K

Stimulus

SR
bl TTLL

Time

vl

Stimulus 15

S

4

Parameter V

o

ot
A5 | S rreversible
foe = Reversible

Parameter K

3



Coupled Feedback: PN

O Transcriptional noise is known to be an important cause of cellular heterogeneity and phenotypic variation.

O The yeast genetic network regulating galactose metabolism involves two proteins, Gal3p and Gal80p, that
feed back positively and negatively, respectively, on GAL gene expression.

O Dual feedback loops (PN) in the GAL regulon suppress cellular heterogeneity in yeast.

0.5

3 Wild-type
m 044, = = = Mutant
=
@ |
P- fA 3 03
GFF Y \J - k= Ify
GALT.GFP Z 0z
4] I
= |
Metabolic 8 0.1
flux
ol
i 5 10 16 20
PTG L 2
I~ | T - Flucrescence (A.L.)
GAL1, 7,10 GALZ
Galaciose 0 h ft t l t =
. < T alter stumulation
<Wild-type>
b - .
L
AN sAL 0.1
GFP L’f 'L_f - _L . I|ﬂlr||d't"_r'|:|a
GAL 1:GFF TCYCT:GALE.’J w 0.08 — — — Mutant
Metabolic T CYC1:GALS E 0.06
flux Sl
[
= 0.04
gssnamnnmn [T E -
ﬁ & r 8 DDE f| bl n
GALT, 7,10 GALZ 0 -
Galacfose N
0 y Fha
0 5 10 16 20
<Mutant> Fluorescence (A.L.)

(Nature Genetics 38:1082 - 1087 (2006)) <6 hr after stimulation>



Coupled Feedbacks: PN

O Example circuits of PN.

Related network

Coupled feedback loops

Related network

Coupled feedback loops

Mitotic trigger in Xenopus

APCH Cdc2 > APC
Cdc25 = Cdc2 = Cdc25

Galactose-signaling
network in yeast

Gal80 - Gal4 > Gal80
Gal3 = Gal4 >Gal3

Ca2+ spikes /oscillations

SERCA - Ca** , > SERCA
IP3R > Ca?*_ > IP3R

Receptor Signals by B-
Arrestins

¢-Src 1 GRK = ¢-Src
G2>GRK~>G

Ca2+ spikes /oscillations

SERCA - Ca?*_, > SERCA
RYR - Ca*_, > RYR

cyt

B. subtilis competence
event

ComS = ComK 4 ComS
ComK = ComK

Circadian oscillation in
Drosophila

Per/Tim - Clk/Cyc = Per/Tim
PDP1 > Clk/Cyc - PDP1

Mitotic trigger in Xenopus

APCH Cdc2 > APC
Weel 4 Cdc2 - Weel

Circadian oscillation in
Drosophila

Vri Clk/Cyc = Vri
PDP1 - Clk/Cyc - PDP1

Mitotic trigger in Xenopus

APCH Cdc2 > APC
Mytl - Cdc2 Mytl

Circadian oscillation in
Mammalia

Per/Cry - Clock/Bmall - Per/Cry
Rora = Clock/Bmall - Rora

Circadian oscillation in
Mammalia

Rev-erba 4 Clock/Bmall = Rev-erba
Rora =2 Clock/Bmall 2 Rora

3
O PN enables reliable decision by properly modulating
signal responses and effectively dealing with noises 71
|
- || Stimulus
0 A .
0 40 80

Time

[« TN

Stimulus intensity




Coupled Feedbacks: NN

O Example circuits of NN.

Related network Coupled feedback loops
Circadian oscillation in Per/Tim 4 Clk/Cyc = Per/Tim
Drosophila Vri - Clk/Cyc = Vri
Circadian oscillation in Per/Tim - Clk/Cyc = Per/Tim
Mammalia Vri - Clk/Cyc = Vri

TSH-cAMP signaling pathway RGS2 4 AC = RGS2
in thyrocytes GRK - AC = GRK

Chemotactic signaling in Ameba | ERK2 = PKAH ERK2
ACA-> PKA - ACA

Plant circadian clock TOC1 = CCAI/LHY 4 TOC1
CCAI/LHY 4 CCAI/LHY

p53 network p38MAPK - p53 4 p3SMAPK
Mdm2 - p53 > Mdm2

L NN enforces the sustained 6
oscillation (Fig. A) 5 Dj} i) L NN

O NN enhances oscillations (Fig.

> 47
B) ) =s
O NN induces robust oscillation to 3 D NN O
1 1.5 2 0 5 10 15 20

noises (Fig. C)

Time K Time



Coupled Feedbacks and Circadian Clocks

O The plant circadian rhythm is quickly entrained to the change of a
light stimulus but the mammalian circadian rhythm shows a
relatively slow entrainment. Where does a different entrainment
feature of plants and mammals originate?

O The core circadian regulatory network (CCRN)
Plants : coupled negative feedback loops
Animals: coupled negative and positive feedback loops

O The way of regulation induced by a light stimulus
Plants and mammals : gene transcription
Drosophila: protein degradation

J Mathematical Simulations

A

B

= How does the topological difference of CCRNSs affect the different C

feature of entrainments? = the additional positive feedback induced
much longer time to entrain (Fig. C).

= How does the different role of light stimulus determine the
entrainment time? = the protein degradation induced by light
expedites the entrainment compared to the gene transcription

(Fig. D).

O The topological structure of a CCRN, the regulatory mechanism
induced by light, and the interacting point of light are important
factors determining entrainment features.

(Biophysical Journal 93:L01-L03 (2007) )
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Coupled Feedbacks: Summary

PP

U PP with different feedback reaction speeds can effectively reduce the signal noises (Science
310:496-498 ).
O PP can enhance signal amplification and bistability.
O PP is found in the muscle cell fate specification networks , T-cell differentiation network,
the cell cycle start system whose switching mechanisms require strong bistability.
0 These network systems might have evolutionarily acquired PP.

PN

0 PN can have the properties of both positive feedback loops and negative feedback loops
O PN is considered as a regulatory motif that can efficiently deal with signal noises while
achieving proper response time
O PN can reduce noises
O PN suppresses cellular heterogeneity in the yeast GAL regulon network (Nat. Genet.
38:1082-1087)
O The response time of PN is shorter than that of positive feedback loops while longer than
that of negative feedback loops
O PN is most ubiquitous (compared to PP and NN)

NN

O NN suppresses signal amplitudes resulting in noise reduction.
0 NN accelerates the response time.
L NN enforces sustained oscillation which is robust to noises.
O Many circadian networks and the chemotactic signaling network in ameba, both showing
sustained oscillations, contain NN.



Mathematics to Biology?

Data analysis => Bioinformatics
— Clustering
— Classification
Mathematical modeling
— ODE
— PDE
Dynamics analysis
— Simulation analysis
— Bifurcation analysis
Data to Network => Reverse engineering
— ODE
— Boolean network
— Statistic models
Network topology analysis
— Graph theory
— Motif analysis
Topology < Dynamics
— Network reduction
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