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Introduction
Question:

Which surface automorphism is the “simplest”?

i.e.

* Which surface automorphism have minimal dilatation?

* Which surface automorphism have minimal volume?

Talk Plan

1. Surface automorphisms – dilatation, entropy and volume

2. Entropy vs Volume

3. On the minimal dilatation
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Why surface automorphism?

One reason is very simple.

Topological classification of surface had finished long time ago. So, next

object must be maps from surface to itself.

Another reason is it helps to understand 3-manifold.

Conj (Virtually fibered conjecture).

M : closed, irreducible atoroidal 3-manifold with infinite π1,

Then M has a finite cover which is a surface bundle over the circle.
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1 Surface Automorphisms
Surface

Dn : n-punctured disk

Σg,n : n-punctured surface of genus=g

Mapping class group

The set of f : Σg,n → Σg,n becomes a group with composition as a

product. The mapping class group is the quotient of this group by isotopy.

M(Σg,n) = {f : Σg,n → Σg,n}/ ∼isotopy
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Topological Entropy

Def. f : X → X, C: open cover of X

ent(f, C) = lim
n→∞

1
n

log |C ∨ f−1(C) ∨ · · · f−n+1(C)|

ent(f) = sup
C

ent(f, C)

where A ∨B is a common refinement of A and B.
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Classification Theorem

Def.

ϕ is periodic ⇔ ∃n, ϕn = id

(Virtually identity)

ϕ is reducible ⇔ ∃C = {C1, C2, · · · , Ck} ⊂ Σ, ϕ(C) = C
(ϕ is a mapping class on smaller surface Σ \ C)

Thm (Nielsen, Thurston).

Non periodic irreducible mapping class is pseudo-Anosov.
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Anosov map

Example

f : T 2 → T 2, induced by

(
2 1

1 1

)
: R2 → R2

eigen values and eigen vectors are

* λ =
2

3 +
√

5
≈ 2.618 and v =

(
−1 +

2
3 +
√

5
, 1
)

* λ−1 =
2

3−
√

5
≈ 0.382 and v′ =

(
−1 +

2
3−
√

5
, 1
)

f preserve two foliation Fs and Fu.

The “width” of the foliation stretch/shrink by λ.

Remark that degree of minimal polynomial of λ is always 2.
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Def

A map f is pseudo-Anosov. ⇔ There are two invariant measured foliations

(Ls, µs), (Lu, µu) on S and a positive constant λf > 1 such that

f(Ls, µs) = (Ls, λµs), f(Lu, µu) = (Lu, λ−1µu).

λf is called the dilatation of f .

→
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Def

A mapping class ϕ is pseudo-Anosov. ⇔ There is a pseudo-Anosov map

f ∈ ϕ.

The dilatation of mapping class ϕ is λϕ := λf .

Fact

Degree of minimal polynomial of λ is bounded by a constant which only

depends on the topology of Σ.

We can define minimal dilatation as

λmin(g, n) := min
ϕ∈M(Σg,n)

λϕ
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Fact
ent(ϕ) = log(λϕ)

We can define minimal entropy as

entmin(g, n) := log(λmin(g, n))
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Def

The mapping torus Tf of f is

Tf = S × [0, 1]/ ∼f

where (x, 0) ∼ (f(x), 1).

For a mapping class ϕ,

we can define Tϕ := Tf (f ∈ ϕ) .

Thm (Thurston).

ϕ : pseudo−Anosov⇔ Tϕ : hyperbolic
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2 Entropy vs hyperbolic volume

× × × ×

mapping class

mapping torus

Entropy
= log(dilatation)

Hyperbolic
Volume

(complexity of map)

(complexity of 3-mfd)

× × × ×
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Computer Experiment
We have computed the pseudo-Anosovness, the entropy and the volume

for all words of mapping classes of punctured disk of limited length using

SnapPea (Jeff Weeks) and trains (Toby Hall).

The following graphs are mapping classes of

3-punctured disk (3-braids) up to length=15,

4-punctured disk (4-braids) up to length=12,

5-punctured disk (5-braids) up to length=10, and

6-punctured disk (6-braids) up to length=9.
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Computer experiment: D3

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  5  10  15  20  25  30

en
tr

op
y

volume

length=15
length=14
length=13
length=12
length=11
length=10
length=9
length=8
length=7
length=6
length=5
length=4
length=3
length=2

3-punctured disk



Bounds for minimal dilatations of pseudo-Anosovs 15/ 51

Computer experiment: D4
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Computer experiment: D5
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Computer experiment: D6
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Thm (Kojima - Kin - T).

∃c1 = c1(Σ) s.t. for all pseudo-Anosov f : Σ→ Σ,

ent(f) ≥ c1 vol(f)

This theorem is the direct conclusion of the following two theorems.

Thm (Brock, 2003).

vol(f) < K · inf
x∈T (S)

dWP (x, f(x))

Thm (Linch, 1974).

dWP (x, y) <
√

area(Σ) · dT (x, y)



Bounds for minimal dilatations of pseudo-Anosovs 19/ 51

The converse inequality holds under some geometric restriction.

Thm (Kojima - Kin - T).

∃c2 = c2(Σ, ε) s.t. for any pseudo-Anosov f : Σ → Σ whose mapping

torus Tf has no closed geodesics of length < ε,

ent(f) ≤ c2 vol(f)

Kojima extend the result for non pseudo-Anosov maps.

Thm (Kojima).

∃c = c(Σ, ε) s.t. for any f : Σ→ Σ with some geometric condition,

c−1 ent(f) ≤ ||Tf ||Gr ≤ c ent(f)
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Manifolds with small volume and small entropy
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Manifolds with small volume (examples of fiber bundle structure)



Bounds for minimal dilatations of pseudo-Anosovs 22/ 51

The magic manifold M

M = S3 − C3

M(p, q) : (p, q)-Dehn surgery along

one component of M

3-chain link C3
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3 Minimal entropy

known facts

It is difficult to determine the minimal dilatations λmin(g, n). Known

minimal dilatations are for Σ0,4, Σ1,0, Σ1,1, Σ0,5, and Σ2,0.

Thm (Ham-Song, 2007).

λmin(5, 0) ≈ 1.72208

which is the largest zero of

x4 − x3 − x2 − x + 1.
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Upper bounds

There are many bounds for minimal dilatation/entropy. For example by

Penner, Hironaka-Kin, Minakawa, and Hironaka.

Thm (Hironaka). Let r(k, l) be the largest real root of the following

polynomial
t2k − tk+l − tk − tk−l + 1 = 0.

• λmin(g, 0) ≤ r(g + 1, 3) (g ≡ 0, 1, 3, 4 (mod 6))

• λmin(g, 0) ≤ r(g + 1, 1) (g ≡ 2, 5 (mod 6))

Thm (Hironaka).

lim sup
g→∞

χ(Σg,0) entmin(g, 0) ≤ 2 log

(
3 +
√

5
2

)
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To find better bounds

Our strategy is very simple.

Compute entropies which “live” in the magic 3-manifold M .

i.e.

Find f : Σg, n → Σg, n s.t. Tf is isomorphic to M or some Dehn filling

M

(
p1

q1

)
, M

(
p1

q1
,
p2

q2

)
, M

(
p1

q1
,
p2

q2
,
p3

q3

)

Remark. All of known minimal entropies “live” in M .

Hironaka’s theorem comes from M

(
−1
2

)
.
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Fibrations in M
Thurston (semi) norm

Thurston norm || · || : H2(M,∂M ; R)→ R is defined as follows.

• For integral homology classes,

|| σ || = min
S
{χ−(S) | σ = [S]}

χ−(S) =
∑

i

max{−χ(Si), 0}（Si is a connected component of S）

• Extend linearly for rational homology classes.

• There are unique extension for real homology classes.

Today you can think || · || just as negative of Euler characteristic.
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How many fiber bundle structures does M admit?

Cor (Thurston). H2(M, ∂M) = Z3 and the unit ball is shown in below.

Every 2-cell is a fiber face.

(∆: fiber face ⇒ lattice point in the cone of ∆ is a fiber surface)

γ

αβ

gener-

ators of H2
unit ball of Thurston norm

We can concentrate on ∆ = {(a, b, c)|a + b − c = 1, a > 0, b > 0, a >

c, b > c} because of the symmetries of the link.
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In other words

For each rational point δ =
aα + bβ + cγ

k
in the face ∆, there is a fiber

bundle whose fiber surface S has homology class [S] = kδ = aα+ bβ + cγ .

red:
α + β

2
∈ ∆

black: [S] = α + β

S is the fiber surface of



Bounds for minimal dilatations of pseudo-Anosovs 29/ 51

Compute the topology of a fiber surface

Prop. Let σ = aα + bβ + cγ be an integral homology class in the cone

of ∆ and S be the realizing surface for σ.

• χ−(S) = a + b− c

• n = |∂S| = gcd(a, b + c) + gcd(b, c + a) + gcd(c, a + b)

• boundary slopes of S are
(
−b + c

a
,−c + a

b
,−a + b

c

)
• genus g(S) = (χ−(S) + 2− n)/2.

Proof. (1) Thurston norm on ∆ = {(a, b, c)|a + b − c = 1, a > 0, b >

0, a > c, b > c} is 1.

(2), (3) Using the boundary map ∂ : H2(M,∂M)→ H1(∂M).
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Entropy function

For a homology class σ, we denote by ent(σ) the entropy ent(f) of the

map f : S → S where S is the realizing surface of σ.

Thm (Fried, Matsumoto, McMullen). Entropy function ent(δ) :

cone(∆)→ R has following properties.

• For integral homology classes,
1

ent(nδ)
= n

1
ent(δ)

.

• One can extend
1

ent
to rational classes and then real classes.

• 1
ent

is strictly concave.

• χ(δ)ent(δ) is constant on the ray through origin.

（You can get every information of the function only on ∆.)

• χ(δ)ent(δ) has unique minimal on ∆.
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How to compute the entropy?

For fixed fiber face ∆, there is a very powerful way to compute the entropy.

Thm (Fried, Oertel). For any two point σ, τ in the cone of a fiber

surface ∆, their suspended invariant laminations are isotopic.

Using Oertel’s recipe, we have the following polynomial to compute the

entropy.

Prop. The dilatation λ of σ = xα + yβ + zγ is the largest real root of

the following polynomial.

f∆(x, y, z) = −λx − λy + λx+y + λz − λx+z − λy+z = 0
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Entropy function on ∆
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Compute the entropy function (1/4)

→
isotopy

→
twist

α, β, γ
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Compute the entropy function (2/4)

p1 p2

↓ σ2

p1 p2

↓ σ−1
1

p1p2

↓ σ2

p2 p1

↓ isotopy

p2 p1

↓ isotopy

p2 p1
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Compute the entropy function (3/4)

p1

← τi1

← τi2

← τi3

← τ1

← τ0

← τi4

p1p2

p2

(1 + t3)(t2w1 + t1w2)

t1 + t2t3w1

w1
t3

w2
t3

t2

t1

t3

(1 +
1

t3
)w1

(1 +
1

t3
)w2

t1
t2

(1 +
1

t3
)w2

w2

1

t2
(1 +

1

t3
)w2

w4 =
t2

t23

w1
t3

t1

t2

t2(1 + t3)

t3
w1

t1(1 + t3)

t3
w2

w3 = t1w2
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Compute the entropy function (4/4)

We have the following equation for the measure of the stable lamination.

 t1
t2(1 + t3)

t3
− 1

t1(1 + t3)
t3

− 1
t2
t23

+
t2(1 + t3)

t3

( w2

w1

)
=
(

0
0

)

⇒ −t1 − t2 + t3 + t1t2 − t1t3 − t2t3
−t3

= 0

Substituting t1 = λa, t2 = λb, t3 = λc, we have,

P (a, b, c)(λ) = −λa − λb + λa+b + λc − λa+c − λb+c = 0.
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Entropy function on ∆
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How to compute the entropy after Dehn filling.

Example: S3 − L6a2

∼

twist

along

blue disk

→
S◦ = 2α + γ

λ =
3 +
√

5
2

fill blue component ↓ ↓ fill blue component

along (−1/2) along (1/0)

∼
S• = σ + τ

λ =
3 +
√

5
2
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Entropy function on M(p/q)

ent(S◦) = ent(S•) except when the invariant foliation of S have a 1-

prong singularity on the filled puncture. In that case ent(S◦) > ent(S•).

We can compute when the invariant foliation have 1-prong singularity.

Namely, p1/q1 ∈ Z or p2/q2 ∈ Z or p3/q3 ∈ {−2− 1/n | n ∈ N}.
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Thurston polytope of M and M(p/q)

→ −→
S◦ = 2α + γ Dehn filling along p/q S• = σ + τ

If original fiber surface S◦ of M has a boundary slope p/q, filled surface

S• is also fiber surface of M(p, q).
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Fiber surfaces whose boundary slope is (p/q)

Recall that the slope of aα + bβ + cγ is

(
−b + c

a
,−c + a

b
,−a + b

c

)
.

(p, q) =
(
− a + b

gcd(a + b, c)
,

c

gcd(a + b, c)

)
⇒ q(a + b) = −pc

H2(M, ∂M ; R)∩{(a, b, c) | −pc = qa+qb} ↔ H2(M(p/q), ∂M(p/q); R)

↔

||S•||M(p/q) = ||S◦||M −#{filled punctures}

= ||S◦||M − gcd(a + b, c) = ||S◦||M −
c

q



Bounds for minimal dilatations of pseudo-Anosovs 42/ 51

Experiment

Let σ = xα + yβ + zγ where x, y ∈ [0, 100] and z ∈ [−100, max(x, y))

s.t. gcd(x, y, z) = 1

• Compute the boundary slopes

(
p1

q1
,
p2

q2
,
p3

q3

)
of σ

• Using Theorem of Martelli-Petronio, compute hyperbolicity for M

and every Dehn filling M

(
p1

q1

)
, M

(
p2

q2

)
, · · · , M

(
p1

q1
,
p2

q2

)
, · · ·

, M

(
p1

q1
,
p2

q2
,
p3

q3

)
• If they are hyperbolic, compute

* χ(σ) ent(σ) and

* topology of the fiber surface.
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Example:

Let σ = 2α + 2β + γ.

• Boundary slopes are (−3/2,−3/2,−4).

• M(−3/2), M(−4), M(−3/2,−3/2), M(−3/2,−4) are hyperbolic

and M(−3/2,−3/2,−4) is not hyperbolic.

• The fiber of M(−3/2,−3/2) is Σ1,1 and χ(σ)ent(σ) =
3 +
√

5
2

.

...

Table: upper bounds for minimal dilatation

For each g and n, find the homology class σ which attains the smallest

entropy among genus = g and # of boundary = n.
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Observation

Roughly speaking, the smallest entropy is attained by

• for Σ0,n, σ = xα + yβ where x ≈ n

2
and y ≈ n

2
with gcd(x, y) = 1.

• for Σ1,n, M

(
1
1

)
.

• for Σg,0, M

(
−1
2

, ∗, ∗
)

or M

(
−3
2

, ∗, ∗
)

.

• for Σg,n n >> g, σ = xα+ yβ + zγ where x ≈ n, y ≈ n + 2g

2
, z ≈

n− 2g

2
with gcd(x, y, z) = 1.

• for Σg,n n < g, we don’t guess anything yet

(with some exceptions).

Remark. All known minimal entropies appear in this table.
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For Σ0,n

Thm (Kin-T). For each n ≥ 4, the minimum among the dilatations of

f ∈M(Σ0,n) s.t T (f) 'M is realized by

• n = 4, 6, 8 : exceptional case.

• n = 2k + 1, σ = kα + (k − 1)β

• n = 4k + 2, σ = (2k + 1)α + (2k − 1)β

• n = 8k + 4, σ = (4k + 3)α + (4k − 1)β

• n = 8k, σ = (4k + 1)α + (4k − 3)β
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For Σg,0

Recall that Hironaka’s theorem which comes from M(−1/2).

Thm (Hironaka). Let r(k, l) be the largest real root of the following

polynomial
t2k − tk+l − tk − tk−l + 1 = 0.

• λmin(g, 0) ≤ r(g + 1, 3) (g ≡ 0, 1, 3, 4 (mod 6))

• λmin(g, 0) ≤ r(g + 1, 1) (g ≡ 2, 5 (mod 6))

Thm (Hironaka). lim sup
g→∞

χ(Σg,0)entmin(g, 0) ≤ 2 log

(
3 +
√

5
2

)
.
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For some cases, we have better bounds from M(−3/2).

Thm (K-T). Let r(k, l) be the largest real root of the following polyno-

mial
t2k − tk+l − tk − tk−l + 1 = 0.

• λmin(g, 0) ≤ r(g + 2, 1) (g ≡ 0, 1, 5, 6 (mod 10))

• λmin(g, 0) ≤ r(g + 2, 2) (g ≡ 7, 9 (mod 10))

Idea of proof

Construct a series of homology classes whose realizing surface is Σ(g, n)

and their entropy is obtained by the largest root of the polynomial.

• σ = (2g + 5)α + (2g + 6)β + (g + 4)γ (g ≡ 0, 1, 5, 6 (mod 10))

• σ = (2g + 6)α + (2g + 8)β + (g + 6)γ (g ≡ 7, 9 (mod 10))
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Conjectures

Let f : Σg,0 → Σg,0,

1) If mapping torus T (f) is isomorphic to M or a Dehn filling of M ,

(Hironaka’s bound + Our’s) is best possible and

lim sup
g→∞

χ(Σg,0)entmin(g, 0) = 2 log

(
3 +
√

5
2

)

2) Without any condition (Hironaka’s bound + Our’s) is best possible

and

lim sup
g→∞

χ(Σg,0)entmin(g, 0) = 2 log

(
3 +
√

5
2

)
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Evidences for conjecture 1

||S• ||M(p1/q1, p2/q2, p3/q3)

= ||S◦||M −#{filled punctures}
= ||S◦||M − gcd(a + b, c)− gcd(b + c, a)− gcd(c + a, b)

= ||S◦||M −
c

q1
− a

q2
− b

q3

= a + b− c− c

q1
− a

q2
− b

q3

Plot the normalized entropy χ(σ)ent(σ) for σ(∗, ∗, ∗).
It gives an upper bounds for entmin(g, 0).
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Evidences for conjecture 2

Thm (Kojima-Kin-T). ∃c = c(Σg,n) s.t.

vol(Tf ) ≤ c · ent(f)

Conj. M is the smallest volume 3-cusped hyperbolic manifold.

Thm (Farb-Leininger-Margalit). For any P > 0, there exists finitely

many 3-manifolds {M1,M2, · · ·Mn} such that, all pseudo-Anosovs f :

Σg,0 → Σg,0 whose χ(Σg,0)ent(f) are less than log(P ) live in one of the

Dehn filling Mi(∗).


