
ARITHMETIC INVARIANTS OF HYPERBOLIC 3–MANIFOLDS

WALTER D. NEUMANN

These are unfinished notes related to my lectures on arithmetic invariants of
hyperbolic manifolds for the NIMS workshop “Hyperbolic geometry: algorithmic,
number theoretic and numerical aspects”. They are in part cut and pasted from
elsewhere. They are therefore not for publication outside the workshop.

A good general reference is the book by Maclachlan and Reid [8]

1. Notation and terminology for algebraic number theory

1.1. Number fields. A number field K is a finite extension of Q. That is, K is a
field containing Q, and finite-dimensional as a vector space over Q. This dimension d,
denoted d = [K : Q], is the degree of the number field. K has exactly d embeddings
into the complex numbers,

θi : K → C, i = 1, . . . , d = r1 + 2r2 ,

where r1 is the number of them with real image, and the remaining embeddings
come in r2 complex conjugate pairs. Indeed, the “Theorem of the Primitive Element”
implies that K is generated over Q by a single element, from which if follows that
K ∼= Q[x]/(f(x)) with f(x) an irreducible polynomial of degree d; the embeddings
K → C arise by mapping the generator x of K to each of the d zeros in C of f(x).

A concrete number field is a number field K with a chosen embedding into C,
i.e., K given as a subfield of C. The union of all concrete number fields is the field
of algebraic numbers in C, which is the concrete algebraic closure Q ⊂ C of Q.

An algebraic integer is a zero of a monic polynomial with rational integer coeffi-
cients. The algebraic integers in K form a subring OK ⊂ K, the ring of integers of
K. It is a Dedekind domain, which is to say that any ideal in OK factors uniquely
as a product of prime ideals. Each prime ideal p (or “prime” for short) of OK is a
divisor of a unique ideal (p) with p ∈ Z a rational prime (determined by |OK/p| = pe

for some e > 0). The factorization of (p) as a product (p) = pf11 . . . pfk

k of primes of
OK follows patterns which can be found in any text on algebraic number theory.
In particular, the exponents fi are 1 for all but a finite number of primes p of OK ,
which are called ramified.

For the ring OQ = Z of Q, any ideal is principal, and the factorization of the ideal
(n) into a product of ideals (pi) expresses the familiar unique prime factorization of
rational integers. In general OK is a unique factorization domain (UFD) if and only
if it is a PID (every ideal is principal), which is somewhat rare. It is presumed to
happen infinitely often, but this is not proven.

Given a prime p of OK , there is a multiplicative norm ||.||p defined for a ∈ OK
by ||a||p := c−r, where pr is the largest power of p which “divides” a (i.e., contains
a) and c is a positive constant1; the norm is then determined for arbitrary elements

1The value of c is unimportant for topological considerations but is standardly taken as
c = N(p) := |OK/p|
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of K by the multiplicative property ||ab||p = ||a||p||b||p. This norm determines a
translation invariant topology on K and the completion of K in this topology is
called Kp. The unit ball around 0 in Kp is its ring of integers OKp , and the open
unit ball is the unique maximal ideal in this ring. The norm ||.||p is non-Archimedean,
i.e., it satisfies the strong triangle inequality ||a + b||p ≤ max(||a||p, ||b||p). Up to
equivalence (norms are equivalent if one is a positive power of the other), the only
non-Archimedean multiplicative norms are the ones just described, and the only
other multiplicative norms on K are the norms ||a||θ := |θ(a)| given by absolute
value in C for an embedding θ : K → C. The completion of K in the topology
induced by one of these is R or C according as the image of θ lies in R or not.

The fields R, C, Kp arising from completions are local fields2. The name is
geometrically motivated: one thinks of OK as a ring of functions on a “space” with
a “finite point” for each prime ideal, plus r1 + r2 “infinite points” corresponding to
the embeddings in R and C; “local” means focusing on an individual point. One
therefore refers to an embedding of K into Kp as a “finite place” and an embedding
into R or C as an “infinite place,” and if an object A associated with K (e.g., an
algebra A over K) has corresponding objects associated to each place (e.g., A⊗Kp,
A⊗ R, A⊗ C) then a “property of A at the (finite or infinite) place” means that
property for the associated object. We stress that an “infinite place” refers to the
embedding of K in C up to conjugation, so there are r1 real places and just r2
complex places.

1.2. Quaternion algebras. References for this section are [16] and [4]. A quater-
nion algebra over a field K is a simple algebra over K of dimension 4 and with
center K. The simplest example is the algebra M2(K) of 2 × 2 matrices over K.
This is the only quaternion algebra up to isomorphism for K = C. For K = R there
are exactly two, namely M2(R) and the Hamiltonian quaternions. The situation for
the non-Archimedean local fields Kp is similar: there are exactly two quaternion
algebras over each of them, one being the trivial one M2(Kp) and the other being a
division algebra. In each case the trivial quaternion algebra M2 is called unramified
and the division algebra is called ramified. For a number field K the classification
of quaternion algebras over K is as follows:

Theorem 1.1 (Classification). A quaternion algebra E over K is ramified at only
finitely many places (i.e., only finitely many of the E⊗Kp and E⊗R’s are division
algebras) and is determined up to isomorphism by the set of these “ramified places.”
The number of ramified places is always even, and every set of places of K of even
size arises as the set of ramified places of a quaternion algebra over K.

A quaternion algebra E over K can always be given in terms of generators and
relations in the form

E = K〈i, j : i2 = α, j2 = β, ij = −ji〉 ,

with α, β ∈ K∗. The Hilbert symbol notation
{
α,β
K

}
refers to this quaternion algebra.

For example,
{−1,−1

R
}

is Hamilton’s quaternions, and
{
1,β
K

}
= M2(K) for any K.

The Hilbert symbol for a given quaternion algebra is far from unique, but computing
the ramification—and hence the isomorphism class—of a quaternion algebra from

2The definition of local field is: non-discrete locally compact topological field. The ones
mentioned here are all that exist in characteristic 0.
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the Hilbert symbol is not hard, and is described in [16], see also [4] for a description
tailored to 3-manifold invariants.

In terms of the above presentation, the map i 7→ −i, j 7→ −j, ij 7→ −ij of a
quaternion algebra E to itself is an anti-automorphism called conjugation, and the
norm of x = a+ ib+ jc+ ijd ∈ E is defined as N(x) := xx̄ = a2 +αb2 +βc2 +αβd2.

1.3. Arithmetic subgroups of SL(2,C) and PSL(2,C). For a quaternion algebra
E over K the set OE of integers of E (elements which are zeros of monic polynomials
with coefficients in OK) does not form a subring. One considers instead an order
in E: any subring O of E, contained in OE and containing OK and of rank 4 over
OK . E has infinitely many maximal orders; we just pick one of them.

The subset O1 ⊂ O of elements of norm 1 is a subgroup. At any complex place,
E becomes E ⊗ C = M2(C) and O1 becomes a subgroup of SL(2,C), while at an
unramified real place E becomes E ⊗ R = M2(R) and O1 becomes a subgroup of
SL(2,R). We thus get an embedding of Γ := O1/{±1}

Γ ⊂
ru
1∏

i=1

PSL(2,R)×
r2∏
j=1

PSL(2,C) ,

where ru1 is the number of unramified real places of K. This subgroup is a lattice
(discrete and of finite covolume).

If ru1 = 0 and r2 = 1 this gives an arithmetic subgroup of PSL(2,C) (similarly for
ru1 = 1, r2 = 0 and PSL(2,R)). Up to commensurability this group only depends on
E and not on the choice of orderO. Any subgroup commensurable with an arithmetic
subgroup—i.e., sharing a finite index subgroup with it up to conjugation—is, by
definition, also arithmetic.

The general definition of an arithmetic group is in terms of the set of Z-points of
an algebraic group which is defined over Q. Borel shows in [1] that all arithmetic
subgroups of PSL(2,C) (and PSL(2,R)) can be obtained as described above.

2. Arithmetic invariants of hyperbolic manifolds

2.1. Invariant trace field and quaternion algebra. A Kleinian group Γ will
mean a discrete subgroup of PSL(2,C) = Isom+(H3) for which H3/Γ is finite volume
(it may be an orbifold). Let Γ ⊂ SL(2,C) be the inverse image of Γ under the
projection SL(2,C)→ PSL(2,C).

Definition 2.1. The trace field of Γ is the field tr(Γ) generated by all traces of
elements of Γ.

The invariant trace field is the field k(Γ) := tr(Γ(2)) where Γ(2) is the group gen-
erated by squares of elements of Γ. It can also be computed as k(Γ) = Q({(tr(γ))2 |
γ ∈ Γ}) ([15, 8], see also [11]).

The invariant quaternion algebra of Γ is the k(Γ)-subalgebra of M2(C) (2 × 2
matrices over C) generated over k(Γ) by the elements of Γ

(2)
. It is denoted A(Γ).

Theorem 2.2. k(Γ) and A(Γ) are commensurability invariants of Γ.

If Γ is arithmetic, then k(Γ) and A(Γ) equal the defining field and defining
quaternion algebra of Γ, so they form a complete commensurability invariant, but
this is not so the non-arithmetic case.

It follows that a necessary condition for arithmeticity is that k(Γ) have only one
non-real complex embedding (it always has at least one). Necessary and sufficient
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is that, in addition, for each γ ∈ Γ trace(γ2) should be an algebraic integer whose
absolute value at all real embeddings of k is bounded by 2. Alternatively, all traces
should be algebraic integers and A(Γ) should be ramified at all real places of k. See
[15].

These invariants are already quite powerful invariants of a hyperbolic manifold.
For example, if a hyperbolic manifold M is commensurable with an amphichiral
manifold N (i.e.,N has an orientation reversing self-homeomorphism) then k(M) =
k(M) and A(M) = A(M) (complex conjugation).

If M has cusps then the invariant quaternion algebra is always unramified, so
gives no more information than the invariant trace field, but for closed M unramified
invariant quaternion algebras are uncommon; for example among the almost 40
manifolds in the closed census which have invariant trace field Q[

√
−1], only two

have unramified quaternion algebra.

2.2. Bloch invariant and related invariants. For details on what we discuss
here see [10, 13, 14] or the expository article [9].

2.2.1. PSL-fundamental class of a hyperbolic manifold. The PSL-fundamental class
of M is a homology class

[M ]PSL ∈ H3(PSL(2,C)δ; Z) ,

where the superscript δ means “with discrete topology”.
This class is easily described if M is compact. Write M = H3/Γ with Γ ⊂

PSL(2,C). The PSL-fundamental class is the image of the fundamental class
of M under the map H3(M ; Z) = H3(Γ; Z) → H3(PSL(2,C)δ; Z), where the
first equality is because M is a K(Γ, 1)-space. If M has cusps one obtains
first a class in H3(PSL(2,C)δ, P ; Z), where P is a maximal parabolic subgroup
of PSL(2,C)δ and one then uses a natural splitting of the map H3(PSL(2,C)δ; Z)→
H3(PSL(2,C)δ, P ; Z) to get [M ]PSL. This was described in [10] and proved carefully
by Zickert in [6], who shows that the class in H3(PSL(2,C)δ, P ; Z) depends on
choices of horoballs at the cusps, but the image [M ]PSL ∈ H3(PSL(2,C)δ; Z) does
not.

The group Γ ⊂ PSL(2,C) can be conjugated to lie in PSL(2,K) for a number
field K (which can always be chosen to be a quadratic extension of the trace field,
but there is generally no canonical choice), so the PSL-fundamental class is then
defined in H3(PSL(2,K); Z).

Theorem 2.3 ([17]). [M ]PSL is actually defined in H3(PSL(2, k); Z), where k is
the invariant trace field

This was previously known in the cusped case, but only modulo torsion in the
closed case. We sketch the proof. If one chooses a spin structure on M then
[M ]PSL lifts to a class [M ]SL ∈ H3(SL(2;K); Z). This group is a Z/4 extension
of H3(PSL(2;K); Z) (see [7]). In [17] Zickert shows that H3(SL(2;K); Z) is nat-
urally isomorphic to Kind

3 (K), which is known to satisfy Galois descent. Since
[M ]SL is invariant under the action of the Galois group Gal(K/k), it descends to
H3(SL(2; k); Z).

The following theorem, which holds also with PSL replaced by SL, summarises
results of various people, see [14] and [17] for more details.
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Theorem 2.4. H3(PSL(2,C); Z) is the direct sum of its torsion subgroup, isomor-
phic to Q/Z, and an infinite dimensional Q vector space.

If k ⊂ C is a number field then H3(PSL(2, k); Z) is the direct sum of its torsion
subgroup and Zr2 , where r2 is the number of conjugate pairs of complex embeddings
of k. Moreover, the map H3(PSL(2, k); Z)→ H3(PSL(2,C); Z) is injective modulo
torsion.

Conjecture 2.5 (Rigidity Conjecture). The Rigidity Conjecture conjectures that
each the following equivalent statements is true:

(1) H3(PSL(2,C)δ; Z) is countable.
(2) H3(PSL(2,Q)δ; Z) = H3(PSL(2,C)δ; Z)
(3) H3(PSL(2,C)δ; Z) is the union of the images of the maps H3(PSL(2,K); Z)→

H3(PSL(2,C)δ; Z), as K runs through all concrete number fields.

2.3. Invariants of the PSL-fundamental class. There is a homomorphism

ĉ : H3(PSL(2,C); Z)→ C/π2Z

called the “Cheeger-Simons class” ([2]) whose real and imaginary parts give Chern-
Simons invariant and volume:

ĉ([M ]PSL) = π2 cs(M) + i vol(M) .

The Chern-Simons invariant here is the Chern-Simons invariant of the flat connection,
which is defined for any complete hyperbolic manifold M of finite volume. If M is
closed the Riemannian Chern-Simons invariant CS(M) ∈ R/2π2 is also defined; it
reduces to cs(M) mod π2. See [10] for details.

We denote the homomorphisms given in the obvious way by the real and imaginary
parts of ĉ by:

cs : H3(PSL(2,C); Z)→ R/π2Z , vol : H3(PSL(2,C); Z)→ R .

A standard conjecture that appears in many guises in the literature (see [9] for a
discussion) is:

Conjecture 2.6. The Cheeger-Simons class is injective. That is, volume and
Chern-Simons invariant determine elements of H3(PSL(2,C); Z) completely.

If k is an algebraic number field and σ1, . . . , σr2 : k → C are its different complex
embeddings up to conjugation then denote by volj the composition

volj = vol ◦(σj)∗ : H3(PSL(2, k); Z)→ R.

The map
Borel := (vol1, . . . , volr2) : H3(PSL(2, k); Z)→ Rr2

is called the Borel regulator.

Theorem 2.7. The Borel regulator maps H3(PSL(2, k); Z)/Torsion injectively onto
a full sublattice of Rr2 .

The homomorphism cs is injective on the torsion subgroup of H3(PSL(2,C); Z),
so by Theorems 2.4 and 2.7, cs(M) ∈ R/Z and Borel([M ]PSL) ∈ Rr2(k) determine
the PSL-fundamental class [M ]PSL ∈ H3(PSL(2,C); Z) completely, where k is the
invariant trace field of M . These invariants are computed by the program Snap, see
[4] for details.
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2.4. Bloch group and Bloch invariant. For C or a subfield K of C the Bloch
group B(K) is a certain quotient of H3(PSL(2,K)δ; Z) by a torsion subgroup. It
has the advantage that the image of [M ]PSL in B(C) is easily computed from an
ideal triangulation. The program “Snap” (see [4]) is able to do this.

There are different definitions of the Bloch group in the literature which differ at
most by torsion and agree with each other for algebraically closed fields. We use
the following.

Definition 2.8. Let K be a field. The pre-Bloch group P(K) is the quotient of the
free Z-module Z(K − {0, 1}) by all instances of the following relation:

[x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x
1− y

] = 0,

called the five term relation. The Bloch group B(K) is the kernel of the map

P(k)→ K∗ ∧Z K
∗, [z] 7→ 2(z ∧ (1− z)).

Suppose we have an ideal triangulation of a hyperbolic 3-manifold M using ideal
hyperbolic simplices with cross ratio parameters z1, . . . , zn. This ideal triangulation
can be a genuine ideal triangulation of a cusped 3-manifold, or a deformation of
such a one as used by Snap and SnapPea to study Dehn filled manifolds, but it may
be more generally any “degree one triangulation”; see [14].

Definition 2.9. The Bloch invariant β(M) is the element
∑n

1 [zj ] ∈ P(C). If the
zj ’s all belong to a subfield K ⊂ C, we may consider β(M) as an element of P(K).
By [14] it actually lies in B(K) ⊂ P(K) and is independent of triangulation.

Considering β(M) as the image of [M ]PSL under a map fromH3(PSL(2,K)δ; Z)→
B(K), it follows by [17] that β(M) can be defined in B(k), where k = k(M) is the
invariant trace field of M .

There are caveats to the definition as a sum of ideal simplex parameters. The
cross-ratio parameter of an ideal simplex depends on a chosen ordering of the vertices,
and if the orderings do not agree on faces of ideal simplices which are identified in
M then the appropriate sum

∑n
1 [zj ] may differ from β(M) by a torsion element (of

order dividing 12; this torsion issue does not arise in B(C), which is torsion-free). Not
every triangulation has compatible vertex-orderings for the simplices (although there
always are degree 1 triangulations which do), and if it does, these orderings induce
orientations on the simplices which may be incompatible with the orientation of M ,
so β(M) must then be defined as

∑n
1 ±[zj ], where the signs reflect orientations.

The Borel regulator Borel(M) can also be thought of as an invariant of the
Bloch invariant β(M). It is computed from the simplex parameters as follows. The
invariant trace field k of M is contained in the field K generated by the simplex
parameters zi, i = 1, . . . , n. The j-th component volj([M ]PSL) of Borel(M) is

Borel(M)j =
n∑
i=1

±D2(τj(zi)),

where τj : K → C is any complex embedding that extends σj : k → C. Here the
signs are as above, and D2 is the “Wigner dilogarithm function”

D2(z) = Im ln2(z) + log |z| arg(1− z), z ∈ C− {0, 1},
where ln2(z) is the classical dilogarithm function. D2(z) can also be defined as the
volume of the ideal simplex with parameter z.
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The component with largest absolute value in the Borel regulator is ± vol(M)
(see [14]). This restricts which elements of B(k) can be the Bloch invariant of a
hyperbolic 3-manifold. A related (and possibly equivalent) restriction is in terms
of the Gromov norm, which is defined on B(k) (see [14]); the Bloch invariants of
hyperbolic manifolds are constrained to lie in the cone over a single face of the norm
ball.

Nevertheless, it is plausible that the Bloch group can be generated by Bloch
invariants of 3-manifolds. No obstructions to this are known, and there is mild
experimental evidence for it for low degree fields that appear as invariant trace fields
of manifolds in the cusped and closed censuses. Some computations related to this
are given in [4].

3. Scissors Congruence

The scissors congruence group P(H3) is the abelian group generated by congruence
classes of hyperbolic polyhedra of finite volume modulo all relations of the form:
P = P1 + · · ·+Pn if the polyhedra P1, . . . , Pn can be glued along faces to create the
polyhedron P . Dupont and Sah showed that one obtains the same group whether
one allows ideal polyhedra or not ([5]; for an exposition and references for the
material of this section see [9]).

The Dehn invariant is the map

δ : P(H3)→ R⊗ R/π

defined on generators of P(H3) as follows. If P is a compact polyhedron then
δ(P ) =

∑
E l(E)⊗ θ(E) where the sum is over the edges E of P and l(E) and θ(E)

are length and dihedral angle. For an ideal polyhedron one first truncates the ideal
vertices by horocycles and then uses the same definition, summing only over edges
that do not bound one of the horocycle faces of the truncated polyhedron. The
kernel of the Dehn invariant will be denoted

D(H3) := ker(δ : P(H3)→ R⊗ R/π).

If one subdivides an hyperbolic 3-manifold M into polyhedra then the sum of
these polyhedra defines an element β0(M) in the scissors congruence group P(H3)
and it is an easy exercise to see that in fact β0(M) is in D(H3).

This group D(H3) is closely related to the Bloch group. Since B(C) is a Q-vector
space, it splits as the direct sum

B(C) = B+(C)⊕ B−(C)

of its +1 and −1 eigenspaces under the action of conjugation. Dupont and Sah [5]
showed:

Theorem 3.1. The Dehn invariant kernel D(H3) is naturally isomorphic to B−(C).
In fact the natural map of the pre-Bloch group P(C) to P(H3), defined by mapping a
class [z] to the ideal simplex with parameter z, induces a surjection B(C)→ D(H3)
with kernel B+(C). The Bloch invariant β(M) is taken to the scissors congruence
class β0(M) by this map.

In particular, this implies that the scissors congruence class β0(M) is orientation-
insensitive. In fact, it was first pointed out by Gerling in a letter to Gauss that any
polyhedron is scissors congruent to its mirror image. The paper [9] discusses to what
extent one may think of the Bloch group as giving an orientation-sensitive version
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of scissors congruence, and in [14] an explicit interpretation in terms of scissors
congruence allowing only cut-and-paste along ideal triangles is described. However,
the geometric interpretation of this for β(M) needs care — for instance the manifold
vol 3 discussed earlier appears to have no subdivision into ideal tetrahedra at all.

Note that if two manifolds have the same scissors congruence class, say β0(M1) =
β0(M2), this means a priori only that M1 and M2 are stably scissors congruent;
that is, there is some polyhedron Q such that M1 + Q can be cut-and-pasted to
form M2 +Q. However, one can show that if M1 and M2 are either both compact
or both non-compact then adding Q is unnecessary: M1 can be cut into polyhedra
that can be reassembled to form M2.

Theorem 3.2. Suppose M1 and M2 both have invariant trace field contained in the
field K. The following are equivalent:

1. M1 and M2 are stably scissors congruent, that is β0(M1) = β0(M2).
2. Borel(M1) + Borel(−M1) = Borel(M2) + Borel(−M2) (this must be computed

over a field containing K and K).
3. Borel(M1)− Borel(M2) is proportional to some Borel(x) with x ∈ B(K ∩ R).

Proof. The equivalence of the first two conditions follows because β(−M) = −β(M)
and the map x 7→ 1

2 (x− x) defines the projection B(C)→ B−(C).
Denote B(K)Q the image of B(K) ⊗ Q in B(C) ⊗ Q = B(C) (recall B(C) is a

Q-vector space). In [13] it is shown that the B(K)Q ∩ B+(C) = B(K ∩ R)Q. This
is thus the kernel of the map B(K) → P(H3), proving equivalence of the third
condition. �

The following conjecture has been made by many people. It is, as discussed in
[9], also a consequence of Conjecture 2.6 and hence of the Ramakrishnan conjecture.

Conjecture 3.3. The map vol : D(H3)→ R is injective.

Snap provides many examples which give evidence for this conjecture.

4. Realizing invariants

Let k be a number field, E a quaternion algebra over k, O an order in E, Γ a
torsion free subgroup of finite index in O∗. Then each complex embedding of k
induces a map Γ→ PSL(2,C) and each real embedding at which E is unramified
induces a map Γ → PSL(2,R). Via these maps, Γ acts discretely with finite co-
volume on a product X of copies of H3 and H2 with one copy of H3 for each complex
place of k and one copy of H2 for each real place of k at which E is unramified.
Denote Y = X/Γ. Each projection of X to one of the H3 factors gives a codimension
3 foliation on X which is preserved by the Γ–action, so Y inherits codimension 3
foliations from these projections. This is a transversally hyperbolic foliation: there
is a metric on the normal bundle of the foliation which induces a hyperbolic metric
on any local transverse section. Similarly, the projections to H2 give codimension 2
transversally hyperbolic foliations.

Pick one of the codimension 3 foliations F . Let M3 → Y be an immersion
of a 3-manifold to Y that is everywhere transverse to F . So M3 has an induced
hyperbolic metric. If M3 is compact this metric is, of course, complete of finite
volume. We are interested also in the case that M3 is not compact, but we require
then that the metric is complete of finite volume.
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Theorem 4.1. The invariant trace field and quaternion algebra for M3 embed in k
resp. E (as concrete field and quaternion algebra).

Conversely, up to commensurability, every finite volume hyperbolic 3–manifold
with integral traces occurs this way.
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