
PRELIMINARY LECTURES ON KLEINIAN GROUPS

KEN’ICHI OHSHIKA

In this two lectures, I shall present some backgrounds on Kleinian
group theory, which, I hope, would be useful for understanding more
advanced theory, which will be given by the main speakers in the latter
half of the workshop. In the first part, I shall talk about the general
theory, including definitions of basic notions in this field, and classical
results. The basic references for this part are [4], [3] and [5]. In the
second part, I shall focus on Thurston’s theory of uniformisation (or
hyperbolisation) of Haken manifolds, which is a beautiful but highly
complicated theory. The best reference for this part is [2].

1. General theory

1.1. Basic notions. Kleinian groups are discrete subgroups of the Lie
group PSL2C, which is the group of linear fractional transformations
of the Riemann sphere. This coincides with the group of orientation-
preserving isometries of the hyperbolic space H3, where the Riemann
sphere can be regarded as the sphere at infinity S2

∞ in the Poincaré
ball model of the hyperbolic space.

The elements of PSL2C are classified into three types: elliptic, par-
abolic, and loxodromic elements.

Definition 1.1. An element of PSL2C is said to be

(1) elliptic if it is conjugate to a matrix of the form

(
ω 0
0 ω̄

)
with

|ω| = 1,

(2) parabolic if it is conjugate to

(
1 1
0 1

)
, and

(3) loxodromic if it is conjugate to a matrix of the form

(
λ 0
0 λ−1

)
with |λ| > 1.

Since a Kleinian group is discrete, any elliptic element in a Kleinian
group must be a torsion. Since a Kleinian group G acts on H3 by
isometries, the action is properly discontinuous, and the quotient H3/G
is a hyperbolic 3-orbifold. Selberg’s lemma says that any Kleinian
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group has a finite-indexed subgroup which is torsion-free. Therefore,
any hyperbolic 3-orbifold has a finitely sheeted ramified covering which
is a hyperbolic 3-manifold. This shows that usually it is sufficient to
consider only torsion-free Keinian groups. In this talk, I always assume
Kleinian groups to be torsion free.

A parabolic element acts on H3 without fixed points, but has a unique
fixed point on S2

∞. A loxodromic element has an axis in H3 on which
the translation distance takes minimum, and its endpoints at S2

∞ are
the fixed points of the element on S2

∞.
The following Margulis’s lemma is used quite often in the theory of

Kleinian groups.

Lemma 1.1 (Margulis’s lemma). There exists a universal constant ε0
with the following properties. For any hyperbolic 3-manifold M , the set
of points in M where the injectivity radii are less than ε0 is a disjoint
union of the following three types of sets.

(1) Margulis tube: A tubular neighbourhood of a closed geodesic
whose length is less than ε0.

(2) Z-cusp-neighbourhood: The quotient of a horoball by a parabolic
group isomorphic to Z fixing the tangent point.

(3) Z×Z-cusp-neighbourhood: The quotient of a horoball by a par-
abolic group isomorphic to Z× Z fixing the tangent point.

This lemma also shows that any non-trivial abelian subgroup in a
torsion-free Kleinian group is isomorphic to either Z or Z×Z, and that
in the latter case the group consists of parabolic elements fixing the
same point on S2

∞.
Now, for the moment, I regard a Kleinian group as acting on the

Riemann sphere (S2
∞) by linear fractional transformations. I turn to

consider the dynamics of the action of a Kleinian group on the Riemann
sphere.

Definition 1.2. Let G be a Kleinian group. The limit set ΛG of G is
the closure of the set of fixed points on S2

∞ of (non-trivial) elements of
G. The complement of ΛG is called the region of discontinuity of G.

As its name suggests, G acts on ΛG properly discontinuously. Actu-
ally, ΩG is the largest subset of S2

∞ on which G acts properly discontin-
uously. Since G acts on ΩG as conformal automorphisms, its quotient
ΩG/G is a Riemann surface. The following is a classical theorem by
Ahlfors.

Theorem 1.2 (Ahlfors’s finiteness theorem). Let G be a finitely gen-
erated Kleinian group. Then the Riemann surface ΩG/G is of finite
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type: that is, it has finitely many components each of which has finite
genus and a finite number of punctures, without open ends.

Ahlfors moreover conjectured that for every finitely generated Kleinian
group, ΛG either is the entire S2

∞ or has null Lebesgue measure. This
conjecture, called the Ahfors conjecture is known to be true now. Bona-
hon proved this conjecture for freely indecomposable Kleinian groups.
(A group is said to be freely indecomposable when it cannot be decom-
posed into a non-trivial free product.) Canary then showed that this
conjecture follows from Marden’s tameness conjecture, which I shall
explain later. Finally, Marden’s tameness conjecture was solved by
Agol and Calegari-Gabai independently. (Canary [1] is a very good
exposition to learn these things.)

1.2. Topological properties of hyperbolic 3-manifolds. Now, I
shall turn to a more topological aspect of the theory of Kleinian groups.
From now on, I shall consider only finitely generated Kleinian groups.

Definition 1.3. Let M = H3/G be a hyperbolic 3-manifold corre-
sponding to a Kleinian group G. The convex core of M is the smallest
convex submanifold of M that is a deformation retract.

We can construct a convex core explicitly as follows. Consider the
limit set ΛG, and take the convex hull HG of the set consisting of all
geodesics in H3 whose endpoints lie in ΛG. This set HG is G-invariant,
and its quotient HG/G is exactly the convex core of M .

A Kleinian group G and its corresponding hyperbolic 3-manifold
H3/G are said to be geometrically finite when the convex core of H3/G
has finite volume.

It is known that there are geometrically infinite Kleinian groups: for
instance boundary groups constructed by Bers. Still, we can capture
the topological property of the quotient manifold using the theory of
3-dimensional topology.

Theorem 1.3 (Scott, McCullough-Miler-Swarup). Let M be an open
3-manfiold whose fundamental group is finitely generated. Then there
is a compact 3-submanifold C of M such that the inclusion from C
to M is a homotopy equivalence. The homeomorphism type of such a
manifold is unique.

Such a compact submanifold is called a compact core of M . In gen-
eral, even if the fundamental group is finitely generated, M itself may
not be homeomorphic to the interior of a compact 3-manifold. Mar-
den’s conjecture says that a hyperbolic 3-manifold with finitely gener-
ated fundamental group is always homeomorphic to the interior of a
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compact 3-manifold, hence the interior of its compact core. As was
mentioned in the previous subsection, this conjecture is known to be
true today.

1.3. Deformation theory of Kleinian groups. One of the most
interesting part of the theory of Kleinian groups resides in the defor-
mation theory. The notion of the deformations of Kleinian groups go
back to the work of Ahlfors and Bers in 1960’s.

Recall that a map f from a domain X in Ĉ to Ĉ is said to be

quasi-conformal if µ(f) =
∂z̄f

∂zf
has essential norm less than 1. For a

quasi-conformal map f , we call
1 + ‖µ(f)‖∞
1− ‖µ(f)‖∞

the dilatation of f . The

Teichmüller theory says that for any homeomorphic Riemann surfaces
S and T with a homeomorphism f : S → T , there is a unique quasi-
conformal homeomorphism g : S → T homotopic to f with minimal
dilatation. This map is called the Teichmüller map. For a Riemann
surface S, its Teichmüller space is the set consisting of equivalence
classes pairs (Σ, f), where f is a Teichmüller map from S to Σ and two
pairs (Σ1, f1) and (Σ2, f2) are identified when f1 ◦f−1

2 is conformal. We
can endow a topology where two points (Σ1, f1), (Σ2, f2) are near when
f1 ◦ f−1

2 is near to a conformal homeomorphism.
A Kleinian group Γ is said to be a quasi-conformal deformation of

G when there is a quasi-conformal homeomorphism f : S2
∞ → S2

∞ such
that Γ = fGf−1. The set of all quasi-conformal deformations of G is
denoted by QC(G), where two deformations are identified when they
are conjugate, and the topology is the one induced from the represen-
tation space of G into PSL2C modulo conjugacy.

The following result due to Ahlfors, Bers, Maskit, Kra, Marden is
essential.

Theorem 1.4. There is a ramified covering map qf : T (ΩG/G) →
QC(G).

Thus, unless T (ΩG/G) is trivial, there are non-trivial deformations
of G. This should be contrasted with the extreme case when H3/G
has finite volume, which implies that ΩG is empty in particular. Then
Mostow’s rigidity theorem says the following.

Theorem 1.5 (Mostow). Let G be a Kleinian group such that H3/G
has finite volume. Then any Kleinian group Γ that has an isomorphism
φ : G→ Γ preserving the parabolicity in both directions is realised as a
conjugation in PSL2C.
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In the case when G is a Fuchsian group, its quasi-conformal defor-
mations are called quasi-Fuchsian groups. The map qf is a homeomor-
phism from T (S) × T (S) in this case, where S is a Riemann surface
corresponding to G.

We can consider a larger space of deformations:

Definition 1.4. For a Kleinian group G, the deformation space of G,
denoted by AH(G) is defined to be the set of faithful discrete represen-
tations of G into PSL2C preserving the parabolicity, modulo conjugacy.

Mostow’s rigidity theorem says this space AH(G) is trivial when
H3/G has finite volume. It was proved by Sullivan that when G is
geometrically finite, QC(G) is an open subset of AH(G). The Bers-
Sullivan-Thurston density conjecture says that for a geometrically finite
Kleinian groupG, the quasi-conformal defomration space is dense in the
entire the deformation space. This conjecture is known to be true today
by work of Thurston, Kleineidam-Souto, Bromberg, Brock-Bromberg,
Lecuire, Kim-Lecuire-Ohshika, Namazi-Souto and Ohshika.

2. Thurston’s uniformisation theorem for Haken
manifolds

In this second lecture, I shall focus on Thurston’s uniformisation
theorem for Hekan manifolds. I start with some basic notions in 3-
manifold topology.

2.1. Basic notions for 3-manifolds. In this talk, a 3-manifold is
always assumed to be C∞ and orientable. We say that a 3-manifold
M is irreducible when every 2-sphere embedded in M bounds a ball.
By the prime-decomposition theorem due to Kneser and Milnor, there
is a unique prime decomposition of M into irreducible manifolds and
S2×S1. (A manifold is called prime when it does not have a separating
2-sphere not bounding a ball.) From now on, I shall only deal with
irreducible 3-manifolds.

An orientable embedded surface S in M is said to be incompressible
when the inclusion induces a monomorphism between the fundamental
groups. I always assume surfaces to be orientable from now on when I
talk about embedded surfaces in 3-manifolds. A 3-manifold is said to
be Haken when it is irreducible and has an incompressible surface.

Haken manifolds had been called irreducible sufficiently large 3-
manifolds up to 1970’s. As was shown in fundamental work by Wald-
hausen, a Haken manifold admits a hierarchy by which the manifold
is reduced to a union of balls by being cut along incompressible sur-
faces. The existence of hierarchies shows that an inductive argument
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works for Haken manifolds, which was the main technique in Wald-
hausen’s work showing homotopy equivalent closed Haken manifolds
are homeomorphic.

Let M be a Haken manifold. The theory of Jaco-Shalen-Johannson
says that there is a unique family of disjoint incompressible tori {Tj}
and annuli {Ak} in M such that each component of M \(∪jTj∪∪Ak) is
the interior of either a Seifert fibred manifold or an atoroidal manifold.
A 3-manifold M is said to be atoroidal when every incompressible torus
in M is homotopic to a boundary component.

2.2. Uniformisation theorem. The following theorem is Thurston’s
unifomisation theorem.

Theorem 2.1. Let M be a compact irreducible atoroidal Haken man-
ifold. Then the interior of M admits a geometrically finite hyperbolic
metric.

This means that any Haken manifold is decomposed into Seifert fi-
bred manifolds and hyperbolic manifolds by cutting along disjoint in-
compressible tori and annuli. The proof of this theorem is very long
and complicated. Actually Thurston planned to write a paper consist-
ing of seven parts to show this. In this talk, I shall present one part of
his argument, which I think is the most essential.

2.3. Pasting along quasi-Fuchsian groups. The proof of Thurston’s
uniformisation theorem uses the following theorem, which is a special
case of a more general theorem called Maskit’s combination theorem
in each step of induction based on a hierarchy.

Theorem 2.2 (Maskit). Let M1 and M2 be two Haken manifolds
whose interiors admit geometrically finite hyperbolic metrics. Suppose
that there are incompressible boundary components S1 of M1 and S2

of M2 with a homeomorphism h : S1 → S2. Let M be a Haken
manifold obtained by glueing M1 and M2 identifying S1 and S2 via
h. Let GS1 and GS2 be quasi-Fuchsian groups corresponding to sub-
groups π1(S1) ⊂ π1(M1) and π1(S2) ⊂ π1(M2). Suppose further that
GS1 and GS2 are conjugate in PSL2C. Then there is a geometrically
finite hyperbolic metric on IntM such that the coverings of M associ-
ated to π1(M1) and π1(M2) give original hyperbolic metrics on IntM1

and IntM2 respectively.

To illustrate Thurston’s argument, now I focus on the last step of
the induction for the case when M is a closed manifold. Actually, there
are two different situations for this special case. The one is when M
is a surface bundle over S1, and the other is when M is not “fibred”.
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I shall only consider the latter case, assuming further M1 and M2 are
acylindrical: i.e. we assume that they contain no essential annuli. Since
this is the last step and we assumed that M is closed, we have ∂M1 = S1

and ∂M2 = S2.
Recall that we can consider the spaces of quasi-conformal deforma-

tions of the original geometrically finite hyperbolic metrics of M1 and
M2, which we denote by QC(M1) and QC(M2) respectively. They are
open subsets of the entire deformation spaces AH(M1) and AH(M1)
respectively.

Let x be a point in QC(M1). Then we consider the quasi-Fuchsian
group GS1(x) corresponding to π1(S1) in (IntM1, x). Now, recall that
the space of quasi-Fuchsian groups are parametrised by T (S1)×T (S1).
One of the parameter corresponds to the conformal structure appearing
as the conformal structure at infinity of M1, whereas the other is hidden
inside M1. We pick up the second coordinate, the hidden one, and
denote it by q(x). Regarding q(x) as the conformal structure at infinity
for M2, identifying S1 with S2 via h, we get a point r(x) ∈ QC(M2). We
consider the quasi-Fuchsian group GS2(q(x)) corresponding to π1(S1)
in (IntM2, r(x)), and take the hidden conformal structure, which we
denote by s(x). What we need to apply Maskit’s theorem to glue the
hyperbolic structures is the condition x = s(x). Therefore, what we
have to do is look for a fixed point for the map s : T (S1)→ T (S1).

McMullen proved that this map s, which is called the skinning map,
has a fixed point by showing that s is distance-decreasing. Thurston’s
original proof is more complicated. He showed that s has a fixed point if
we consider the larger space AH(M1) instead of QC(M1) since AH(M1)
is compact in the present case, and then showed that the fixed point
cannot lie outside QC(M1) using the “covering theorem” which says
that a covering of a geometrically infinite end is always finite-sheeted.
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