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Introduction

Main Goals

@ Non-abelian Hodge theory
@ Hitchin's self-duality equations

@ Application: Goldman's theorem, real variation of Hodge
structure, and Teichmiiller components, etc.
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Self-duality equations and Higgs pair

Semi-stable Bundles

@ A holomorphic vector bundle E of rank / is said to be
semi-stable if for all proper sub-bundles H of E we have

degH < degE

I H) =
slope(H) rank H = rank E

= slope(E).

It is said to be a stable bundle if the strict inequality holds.
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Semi-stable Bundles

@ A holomorphic vector bundle E of rank / is said to be
semi-stable if for all proper sub-bundles H of E we have

degH < degE

rankH — rankE slope(E).

slope(H) =

It is said to be a stable bundle if the strict inequality holds.
@ Any line bundle is stable.
@ A stable bundle is necessarily in-decomposable.
@ For any line bundle L, E is stable iff E®Q L is stable.
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Self-duality equations and Higgs pair

Higgs bundle

@ Let E be a holomorphic vector bundle over a compact
Riemann M. Then a Higgs field associated with E is a
holomorphic section ® of End(E) @ Ky,

e A Higgs bundle is a pair (E, ®) consisting of a holomorphic
vector bundle and a Higgs field.

@ A stable Higgs bundle is a Higgs bundle such that for any
®-invariant proper sub-bundles H of E we have

degH degE
slope(H) = =85 < =5+ = slope(E).
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Self-duality equations and Higgs pair

Problem

How to prove

Irreducible Representations
1A.Weil

Stable Higgs Bundles <> Irreducible Flat connections
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Self-duality equations and Higgs pair

Self-duality equations

@ Let M be a compact Riemann surface of genus > 2.

d;;CD =0 Holomorphic condition
F(A) =[®,9*] Unitary condition.

Ac AY(M;adP) and ¢ € AMO(M;ad P 2C).
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Self-duality equations and Higgs pair

Self-duality equations

@ Let M be a compact Riemann surface of genus > 2.

d;;CD =0 Holomorphic condition
F(A) =[®,9*] Unitary condition.
Ac AY(M;adP) and ¢ € AMO(M;ad P 2C).

@ In the case of rank 1,
d® =0
F(A) =0.
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Self-duality equations and Higgs pair

Solutions of self-dual equations and Higgs pairs

Theorem (N.Hitchin)

There is a one to one correspondence irreducible solutions of the
SO(3) self-duality equations modulo unitary gauge transformations
and rank 2 stable Higgs pairs modulo complex gauge
transformations.

7/28



Self-duality equations and Higgs pair

Solutions of self-dual equations and Higgs pairs

Theorem (N.Hitchin)

There is a one to one correspondence irreducible solutions of the
SO(3) self-duality equations modulo unitary gauge transformations
and rank 2 stable Higgs pairs modulo complex gauge
transformations.

@ An SO(3)-bundle can be thought as an SU(2) or U(2)-bundle.
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Self-duality equations and Higgs pair

|dea of proof

Irreducible Representations
IA.WeiI

Stable Higgs Bundles <> Irreducible Flat connections

Irreducible SoTutions of the self-duality equations
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Self-duality equations and Higgs pair

Step 1 and Step 2

Hitchin (Cf. Donaldson (Narashimhan-Seshadri))

e Given a stable pair (E, ®), can we find (A, ®) such that
F(A) +[®,¢*] = 0 and d;® = 0?
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Self-duality equations and Higgs pair

Step 1 and Step 2

Hitchin (Cf. Donaldson (Narashimhan-Seshadri))

e Given a stable pair (E, ®), can we find (A, ®) such that
F(A) +[®,¢*] = 0 and d;® = 0?

@ Minimizing sequence w.r.t. an adapted metric on the orbit of
(dg, ®):

[ 1)+ (00, 37 with 05,0 = 0.
M
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@ The Uhlenbeck’s weak compactness theorem: A limit (A, ®)
exits.

10/28



Self-duality equations and Higgs pair

Step 1 and Step 2

@ The Uhlenbeck’s weak compactness theorem: A limit (A, ®)
exits.

@ Stability implies that the limit (A, ®) is actually in the orbit of
(dg, ®) by the complex gauge group.

10/28



Self-duality equations and Higgs pair

Step 1 and Step 2

@ The Uhlenbeck’s weak compactness theorem: A limit (A, ®)
exits.

@ Stability implies that the limit (A, ®) is actually in the orbit of
(dg, ®) by the complex gauge group.
@ Step 2: Once we find (A, ®), the irreducible flat connection is
given by
dj+ dy + & + o
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Self-duality equations and Higgs pair

Step 3 and Step 4

Donaldson and Corlette
Definition

A p(m1(M))-equivariant function H : M — GL(n,C)/U(n) is called
a harmonic metric if it is an extremal of an energy functional

£(H) = /M dF?
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Step 3 and Step 4

Donaldson and Corlette
Definition

A p(m1(M))-equivariant function H : M — GL(n,C)/U(n) is called
a harmonic metric if it is an extremal of an energy functional

£(H) = /M dF?

v

@ Problem: Given an irreducible flat PSL(2, C)-connection D on
PC, is there a unique decomposition D = A + & + ®* such
that (A, ®) satisfies the self-dual equations?

e adPC = adP ®iadP.
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Self-duality equations and Higgs pair

Step 3 and Step 4

@ Answer: Find a canonical metric to give a unitary
decomposition.
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@ Answer: Find a canonical metric to give a unitary
decomposition.

Theorem (Corlette,Donaldson)

Let (P, D) be a principal G-bundle with a flat connection. (P, D)
admits a harmonic metric if and only if the Zariski closure of the
holonomy group of D is a reductive subgroup of G.
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Self-duality equations and Higgs pair

Step 3 and Step 4

@ Answer: Find a canonical metric to give a unitary
decomposition.

Theorem (Corlette,Donaldson)

Let (P, D) be a principal G-bundle with a flat connection. (P, D)
admits a harmonic metric if and only if the Zariski closure of the
holonomy group of D is a reductive subgroup of G.

@ Step 4: Once we find an irreducible (A, ®), we may construct
a stable Higgs bundle (E, ®) by taking d7.
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Geometry of the moduli space

Construction of the moduli space of the solutions of the
self-duality equations

e Space: A(M;P) x AYO(M;adP ®C)
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Geometry of the moduli space

Construction of the moduli space of the solutions of the
self-duality equations

e Space: A(M;P) x AYO(M;adP ®C)
o A(M;P) <= AY(M;adP) <= A% (M;adP ®C)
@ In this identification, a Riemannian metric
(1, 1), (U, ) = 2// Tr(WS A W + By A )
M

[:(V,0) — (iv,id)
o ¢ J:(V,d)— (iV* —id¥)

K:(V,®) — (—V* o%)
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Geometry of the moduli space

Hyperkahler manifold

W[(X, Y) = g(/X, Y)
e Hyperkahler structure:  wy(X,Y) = g(JX,Y)
wi(X,Y) = g(KX,Y)
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Geometry of the moduli space

Hyperkahler manifold

wi(X,Y)=g(IX,Y)
o Hyperkahler structure:  w (X, Y) = g(JX,Y)
wik(X,Y)=g(KX,Y)

@ Holomorphic symplectic structure w.r.t. /:
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Geometry of the moduli space

Hyperkahler manifold

wi(X,Y)=g(IX,Y)
o Hyperkahler structure:  w (X, Y) = g(JX,Y)
wik(X,Y)=g(KX,Y)

@ Holomorphic symplectic structure w.r.t. /:

Q[((\Ul, q)l), (wz, CDQ)) = wy + in

:/ Tr(¢2/\\lll—¢1/\\llz).
M

p (A, @) = F(A) + [@, 07]

e Moment maps: "
/’LQ/((A>¢)) = qu>
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Geometry of the moduli space

Hyperkahler reduction

o Hyperkihler reduction M = (3_; 17 1(0)/G
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Hyperkahler reduction

o Hyperkihler reduction M = (3_; 17 1(0)/G

Theorem (Hitchin)

Let M be the moduli space of irreducible solutions to the
self-duality equations on a rank 2 bundle of odd degree and fixed
determinant over M with g(M) > 2. Then

o All the complex structures of the hyperkahler family other
than £/ are equivalent

15/28



Geometry of the moduli space

Hyperkahler reduction

o Hyperkihler reduction M = (3_; 17 1(0)/G

Theorem (Hitchin)

Let M be the moduli space of irreducible solutions to the
self-duality equations on a rank 2 bundle of odd degree and fixed
determinant over M with g(M) > 2. Then

o All the complex structures of the hyperkahler family other
than £/ are equivalent

e Moreover, they are a Stein manifold except (M, ).
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Geometry of the moduli space

Hitchin's C*-action

@ Hitchin's circle action: (A, ®) — (A, ei(’d))_
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Geometry of the moduli space

Hitchin's C*-action

@ Hitchin's circle action: (A, ®) — (A, ei(’d))_
e Hitchin's C*-action: (A, ®) — (A, c®)

@ Using the Morse theory argument, we can calculate the Betti
numbers of M.
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Correspondence

Dolbeault groupoid and Betti groupoid

@ Weil's theorem and the SO(3) self-duality equations
o (M, J) is a covering of
Hom (1, PSL(2,C))°*" /PSL(2,C).
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Correspondence

Dolbeault groupoid and Betti groupoid

@ Weil's theorem and the SO(3) self-duality equations
o (M, J) is a covering of
Hom (1, PSL(2,C))°*" /PSL(2,C).

Theorem

Hom (T, SL(2,C))°dd’irr/SL(2,C) is smooth, connected, and
simply-connected.
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Correspondence

Generalizations

Theorem (Corlette,Donaldson,Hitchin,Simpson)

@ There is a one to one correspondence between stable Higgs
pairs over M and irreducible representations
p: 1 (M) — GL(n,C).
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Correspondence

Generalizations

Theorem (Corlette,Donaldson,Hitchin,Simpson)
@ There is a one to one correspondence between stable Higgs
pairs over M and irreducible representations
p: 1 (M) — GL(n,C).
@ There is a one to one correspondence between poly-stable
Higgs pairs over M and reductive representations
p:m(M)— GL(n,C).
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Correspondence

Real structure

Let (M, ]) be the moduli space of irreducible solutions to the
self-duality equations on a rank 2 vector bundle of odd degree and
fixed determinant. Define an involution

(A @) = (A -9).

o The fixed points of S'-action C The fixed points of ¢
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Correspondence

Real structure

Let (M, ]) be the moduli space of irreducible solutions to the
self-duality equations on a rank 2 vector bundle of odd degree and
fixed determinant. Define an involution

Ly - (A7 CD) = (A7 —d))
o The fixed points of S'-action C The fixed points of ¢

o (A, ) = 2i [, Tr(® A &%) = [|]2,.
o ut((d—3)m) = Mag-1forg—1>d>0.

19/28



Correspondence

Real structure

Theorem (Hitchin)

The fixed points of vy consist of complex submanifolds
Mo, Moy—1(1 < d < g — 1) each of dimension 3g — 3 where

e My is isomorphic to the moduli space of stable rank 2
bundles of fixed determinant and odd degree.
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Correspondence

Real structure

Theorem (Hitchin)

The fixed points of vy consist of complex submanifolds
Mo, Moy—1(1 < d < g — 1) each of dimension 3g — 3 where
e My is isomorphic to the moduli space of stable rank 2
bundles of fixed determinant and odd degree.

@ Myy_1 is a holomorphic vector bundle of rank g — 2 + 2d
over a 2%8-fold covering of S?6724=1 M.

@ Critical manifold: Normal bundle structure.
e vy on Hom (w1, PSL(2,C))/PSL(2,C).

° ./\/lk/Zgg is a holomorphic vector bundle of rank g — 1 + k
over S26=2=k\M for 0 < k < 2g — 2.
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Applications
[ 1}

Character variety

Character variety

Theorem (Narashimhan-Seshadri)

There is a one to one correspondence between stable holomorphic
vector bundles and irreducible unitary representations.
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Applications
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Character variety

Character variety

Theorem (Narashimhan-Seshadri)

There is a one to one correspondence between stable holomorphic
vector bundles and irreducible unitary representations.

Theorem (Hitchin)

Let w1(M) be the fundamental group of a compact Riemann
surface of genus g > 2, and let Hom(my, PSL(2,R))* denote the
space of homomorphisms of w1 to PSL(2,R) whose associated
RPL-bundle has Euler class k. Then

Hom(my, PSL(2,R))%/PSL(2,R) is a smooth manifold of
dimension (6g — 6) which is diffeomorphic to a complex vector
bundle of rank g — 1+ k over S?6=2=kM.
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Applications
oce

Character variety

Character variety

Corollary (Milnor,Wood)

The Euler class k of any flat PSL(2,R)-bundle satisfies
|k| < 2g —2.
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Applications
oce

Character variety

Character variety

Corollary (Milnor,Wood)

The Euler class k of any flat PSL(2,R)-bundle satisfies
|k| < 2g —2.

Corollary (Goldman)
Ifg=2and k =1, then

Hom (71, PSL(2,R))}/PSL(2,R) = M x R*,

When k = 2g — 2, then the Teichmiiller space

(C3g—3
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Applications
®00

Real variation of Hodge structure

Variation of Hodge structure

Definition

A real variation of Hodge structure of a weight k over a Riemann
surface M is a flat real vector bundle (E, D) together with a
smooth direct sum decomposition

Ec = ExC = (EE} EP-9
p+q=k

satisfying
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Applications
®00

Real variation of Hodge structure

Variation of Hodge structure

Definition

A real variation of Hodge structure of a weight k over a Riemann
surface M is a flat real vector bundle (E, D) together with a
smooth direct sum decomposition

Ec = ExC = (EE} EP-9
p+q=k

satisfying
o F'=p,, E” is a holomorphic subbundle of Ec relative to
the holomorphic structure D”
o Ds e F"1@Qj, for s € F’
o EP9 — E9P
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Applications
oceo

Real variation of Hodge structure

Period map

By taking the Hodge structures of a smooth family { X} of
algebraic varieties over M, we may define a map 1 : M — © where
® is a period domain. But M is not well-defined. Up to
monodromy p : (M) — I C Aut(Hz), we may define a period
mapping

Mn:M— .
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Real variation of Hodge structure

Period map

By taking the Hodge structures of a smooth family { X} of
algebraic varieties over M, we may define a map 1 : M — © where
® is a period domain. But M is not well-defined. Up to
monodromy p : (M) — I C Aut(Hz), we may define a period
mapping

Mn:M— .

It is well-known that if there exists a smooth family {X,} of
algebraic varieties over M then I1 is a variation of Hodge structure
(E, D).
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Applications
ocoe
Real variation of Hodge structure

Ubiquity of variations of Hodge structure

Theorem (Simpson)

Let G be a reductive group. The fixed points of S*-action on
Hom(m1, G) are the monodromy representations arising from
variations of Hodge structure over M.
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Applications
ocoe

Real variation of Hodge structure

Ubiquity of variations of Hodge structure

Theorem (Simpson)

Let G be a reductive group. The fixed points of S*-action on
Hom(m1, G) are the monodromy representations arising from
variations of Hodge structure over M.

The ubiquity of variation of Hodge structure by C. Simpson.

Corollary (Simpson)

Let p € Hom(71, G). Then for z € C*, lim,_0 zp exists in
Hom(m1, G), i.e., any homomorphism w1 — G can be deformed to
the monodromy representation of a variation of Hodge structure.
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Applications
[1e}

Further application

Hitchin-Teichmuller components

@ The number of components of
Hom(m, PSL(2,R))/PSL(2,R) is 4g — 3.
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Applications
[1e}

Further application

Hitchin-Teichmuller components

@ The number of components of
Hom(m, PSL(2,R))/PSL(2,R) is 4g — 3.

@ One of them is homeomorphic to R%~°, Teichmiiller space.

Theorem (Hitchin)

Let M be a compact oriented surface of genus > 2 and let GX be
the adjoint group of the split real form of a complex simple Lie
group GC. Let Hom™ (71, G®) denote the space of representations
which act completely reducibly on the Lie algebra of GX. Then
Hom(71, G®)T/G® has a connected component homeomorphic to
a Euclidean space of dimension (2g — 2) dim G®.
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Applications
oce

Further application

Convex RP?-structure

Definition
The above component is called a Hitchin-Teichmiiller component. }
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Further application

Convex RP?-structure

Definition

The above component is called a Hitchin-Teichmiiller component.

v

Theorem (Choi,Goldman)

The Hitchin-Teichmiiller component of
Hom(m1, PSL(3,R))"/PSL(3,R) is the deformation space of
marked convex RIP?-structures.
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Applications
oce

Further application

Convex RP?-structure

Definition
The above component is called a Hitchin-Teichmiiller component.

v

Theorem (Choi,Goldman)

The Hitchin-Teichmiiller component of
Hom(m1, PSL(3,R))"/PSL(3,R) is the deformation space of
marked convex RIP?-structures.

e When n > 4 for Hom(my, PSL(n,R))*/PSL(n,R), widely
open (?)
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Appendix

Rank 1 case

Rank 1 case

@ The fixed point set of (y is

J ~—~ Hom(7r1, C*) <—3Hom(771,]R*)

ﬂ

| ~~~= T* Jac(M) <——Jacy(M) x HYO(M)

o Hom(m, RT) =2 R?8 is the identity component of
Jaca(M) x HEO(M).
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