

A moduli space of Higgs bundles and a character variety II

Hitchin's self-duality equations and non-abelian Hodge theory

Taejung Kim

Korea Institute for Advanced Study

January 12, 2010

Main Goals

• Non-abelian Hodge theory

- Hitchin's self-duality equations
- Application: Goldman's theorem, real variation of Hodge structure, and Teichmüller components, etc.

Main Goals

- Non-abelian Hodge theory
- Hitchin's self-duality equations
- Application: Goldman's theorem, real variation of Hodge structure, and Teichmüller components, etc.

Main Goals

- Non-abelian Hodge theory
- Hitchin's self-duality equations
- Application: Goldman's theorem, real variation of Hodge structure, and Teichmüller components, etc.

• A holomorphic vector bundle E of rank / is said to be semi-stable if for all proper sub-bundles H of E we have

$$\mathsf{slope}(\mathsf{H}) = rac{\mathsf{deg}\,\mathsf{H}}{\mathsf{rank}\,\mathsf{H}} \leq rac{\mathsf{deg}\,\mathsf{E}}{\mathsf{rank}\,\mathsf{E}} = \mathsf{slope}(\mathsf{E}).$$

- Any line bundle is stable.
- A stable bundle is necessarily in-decomposable.
- For any line bundle L, E is stable iff $E \otimes L$ is stable.

• A holomorphic vector bundle E of rank / is said to be semi-stable if for all proper sub-bundles H of E we have

$$\mathsf{slope}(\mathsf{H}) = rac{\mathsf{deg}\,\mathsf{H}}{\mathsf{rank}\,\mathsf{H}} \leq rac{\mathsf{deg}\,\mathsf{E}}{\mathsf{rank}\,\mathsf{E}} = \mathsf{slope}(\mathsf{E}).$$

- Any line bundle is stable.
- A stable bundle is necessarily in-decomposable.
- For any line bundle L, E is stable iff $E \otimes L$ is stable.

• A holomorphic vector bundle E of rank / is said to be semi-stable if for all proper sub-bundles H of E we have

$$\mathsf{slope}(\mathsf{H}) = rac{\mathsf{deg}\,\mathsf{H}}{\mathsf{rank}\,\mathsf{H}} \leq rac{\mathsf{deg}\,\mathsf{E}}{\mathsf{rank}\,\mathsf{E}} = \mathsf{slope}(\mathsf{E}).$$

- Any line bundle is stable.
- A stable bundle is necessarily in-decomposable.
- For any line bundle L, E is stable iff $E \otimes L$ is stable.

• A holomorphic vector bundle E of rank / is said to be semi-stable if for all proper sub-bundles H of E we have

$$\mathsf{slope}(\mathsf{H}) = rac{\mathsf{deg}\,\mathsf{H}}{\mathsf{rank}\,\mathsf{H}} \leq rac{\mathsf{deg}\,\mathsf{E}}{\mathsf{rank}\,\mathsf{E}} = \mathsf{slope}(\mathsf{E}).$$

- Any line bundle is stable.
- A stable bundle is necessarily in-decomposable.
- For any line bundle L, E is stable iff $E \otimes L$ is stable.

Higgs bundle

- Let E be a holomorphic vector bundle over a compact Riemann M. Then a Higgs field associated with E is a holomorphic section Φ of End(E) ⊗ K_M
- A Higgs bundle is a pair (E, Φ) consisting of a holomorphic vector bundle and a Higgs field.
- A stable Higgs bundle is a Higgs bundle such that for any Φ -invariant proper sub-bundles H of E we have $slope(H) = \frac{\deg H}{\operatorname{rank H}} < \frac{\deg E}{\operatorname{rank E}} = slope(E).$

Higgs bundle

- Let E be a holomorphic vector bundle over a compact Riemann M. Then a Higgs field associated with E is a holomorphic section Φ of End(E) ⊗ K_M
- A Higgs bundle is a pair (E, Φ) consisting of a holomorphic vector bundle and a Higgs field.
- A stable Higgs bundle is a Higgs bundle such that for any Φ -invariant proper sub-bundles H of E we have $slope(H) = \frac{\deg H}{\operatorname{rank} H} < \frac{\deg E}{\operatorname{rank} E} = slope(E).$

Higgs bundle

- Let E be a holomorphic vector bundle over a compact Riemann M. Then a Higgs field associated with E is a holomorphic section Φ of End(E) ⊗ K_M
- A Higgs bundle is a pair (E, Φ) consisting of a holomorphic vector bundle and a Higgs field.
- A stable Higgs bundle is a Higgs bundle such that for any Φ -invariant proper sub-bundles H of E we have $slope(H) = \frac{\deg H}{rank H} < \frac{\deg E}{rank E} = slope(E).$

<□> <@> < 注→ < 注→ < 注→ < 注→ ○ 注 → ○

Problem

How to prove

$\label{eq:A.Weil} \end{tabular}$ Stable Higgs Bundles $\stackrel{?}{\longleftrightarrow}$ Irreducible Flat connections

- - Let M be a compact Riemann surface of genus ≥ 2 .
 - $\begin{cases} d''_A \Phi &= 0 \quad \text{Holomorphic condition} \\ F(A) &= [\Phi, \Phi^*] \quad \text{Unitary condition.} \end{cases}$
 - $A \in \mathcal{A}^1(M; \operatorname{ad} \mathsf{P}) \text{ and } \Phi \in \mathcal{A}^{1,0}(M; \operatorname{ad} \mathsf{P} \otimes \mathbb{C}).$

• In the case of rank 1,

$$\begin{cases} d''_A \Phi &= 0\\ F(A) &= 0. \end{cases}$$

< ロ > < 合 > < 注 > < 注 > 注 うへで 6/28

Self-duality equations

- Let M be a compact Riemann surface of genus ≥ 2 .
 - $\begin{cases} d''_A \Phi &= 0 \quad \text{Holomorphic condition} \\ F(A) &= [\Phi, \Phi^*] \quad \text{Unitary condition.} \end{cases}$
 - $A \in \mathcal{A}^1(M; \operatorname{ad} \mathsf{P}) \text{ and } \Phi \in \mathcal{A}^{1,0}(M; \operatorname{ad} \mathsf{P} \otimes \mathbb{C}).$
- In the case of rank 1,

$$\begin{cases} d''_A \Phi &= 0\\ F(A) &= 0. \end{cases}$$

<ロ><合><き><合><き><き><き><き><き><き><た)</td>6/28

Solutions of self-dual equations and Higgs pairs

Theorem (N.Hitchin)

There is a one to one correspondence irreducible solutions of the **SO**(3) self-duality equations modulo unitary gauge transformations and rank 2 stable Higgs pairs modulo complex gauge transformations.

• An **SO**(3)-bundle can be thought as an **SU**(2) or **U**(2)-bundle.

Solutions of self-dual equations and Higgs pairs

Theorem (N.Hitchin)

There is a one to one correspondence irreducible solutions of the **SO**(3) self-duality equations modulo unitary gauge transformations and rank 2 stable Higgs pairs modulo complex gauge transformations.

• An **SO**(3)-bundle can be thought as an **SU**(2) or **U**(2)-bundle.

Idea of proof

Hitchin (Cf. Donaldson (Narashimhan-Seshadri))

- Given a stable pair (E, Φ), can we find (A, Φ) such that $F(A) + [\Phi, \Phi^*] = 0$ and $d''_A \Phi = 0$?
- Minimizing sequence w.r.t. an adapted metric on the orbit of (d^{''}_E, Φ):

$$\int_M \|F(A_n) + [\Phi_n, \Phi_n^*]\|^2 \text{ with } d_{A_n}^{\prime\prime} \Phi_n = 0.$$

<ロ> (四) (四) (三) (三) (三)

9/28

Hitchin (Cf. Donaldson (Narashimhan-Seshadri))

- Given a stable pair (E, Φ), can we find (A, Φ) such that $F(A) + [\Phi, \Phi^*] = 0$ and $d''_A \Phi = 0$?
- Minimizing sequence w.r.t. an adapted metric on the orbit of (d["]_E, Φ):

$$\int_M \|F(A_n) + [\Phi_n, \Phi_n^*]\|^2 \text{ with } d_{A_n}^{''} \Phi_n = 0.$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣

9/28

- The Uhlenbeck's weak compactness theorem: A limit (*A*, Φ) exits.
- Stability implies that the limit (A, Φ) is actually in the orbit of (dⁿ_E, Φ) by the complex gauge group.
- Step 2: Once we find (A, Φ), the irreducible flat connection is given by

$$d'_A + d''_A + \Phi + \Phi^*$$

- The Uhlenbeck's weak compactness theorem: A limit (A, Φ) exits.
- Stability implies that the limit (A, Φ) is actually in the orbit of (dⁿ_E, Φ) by the complex gauge group.
- Step 2: Once we find (A, Φ), the irreducible flat connection is given by

$$d'_A + d''_A + \Phi + \Phi^*$$

- The Uhlenbeck's weak compactness theorem: A limit (A, Φ) exits.
- Stability implies that the limit (A, Φ) is actually in the orbit of (dⁿ_E, Φ) by the complex gauge group.
- Step 2: Once we find (A, Φ), the irreducible flat connection is given by

$$d'_A + d''_A + \Phi + \Phi^*$$

Donaldson and Corlette

Definition

A $\rho(\pi_1(M))$ -equivariant function $\widetilde{H}: \widetilde{M} \to \mathbf{GL}(n, \mathbb{C})/\mathbf{U}(n)$ is called a harmonic metric if it is an extremal of an energy functional

$$\mathcal{E}(\widetilde{H}) = \int_{\widetilde{M}} |d\widetilde{H}|^2$$

- Problem: Given an irreducible flat **PSL**(2, C)-connection D on P^C, is there a unique decomposition D = A + Φ + Φ* such that (A, Φ) satisfies the self-dual equations?
- ad $P^{\mathbb{C}} = ad P \oplus iad P$.

Donaldson and Corlette

Definition

A $\rho(\pi_1(M))$ -equivariant function $\widetilde{H}: \widetilde{M} \to \mathbf{GL}(n, \mathbb{C})/\mathbf{U}(n)$ is called a harmonic metric if it is an extremal of an energy functional

$$\mathcal{E}(\widetilde{H}) = \int_{\widetilde{M}} |d\widetilde{H}|^2$$

- Problem: Given an irreducible flat PSL(2, C)-connection D on P^C, is there a unique decomposition D = A + Φ + Φ* such that (A, Φ) satisfies the self-dual equations?
- ad $P^{\mathbb{C}} = ad P \oplus iad P$.

Donaldson and Corlette

Definition

A $\rho(\pi_1(M))$ -equivariant function $\widetilde{H}: \widetilde{M} \to \mathbf{GL}(n, \mathbb{C})/\mathbf{U}(n)$ is called a harmonic metric if it is an extremal of an energy functional

$$\mathcal{E}(\widetilde{H}) = \int_{\widetilde{M}} |d\widetilde{H}|^2$$

- Problem: Given an irreducible flat PSL(2, C)-connection D on P^C, is there a unique decomposition D = A + Φ + Φ* such that (A, Φ) satisfies the self-dual equations?
- ad $P^{\mathbb{C}} = ad P \oplus iad P$.

• Answer: Find a canonical metric to give a unitary decomposition.

Theorem (Corlette,Donaldson)

Let (P, D) be a principal *G*-bundle with a flat connection. (P, D) admits a harmonic metric if and only if the Zariski closure of the holonomy group of *D* is a reductive subgroup of *G*.

 Step 4: Once we find an irreducible (A, Φ), we may construct a stable Higgs bundle (E, Φ) by taking d^{''}_A.

• Answer: Find a canonical metric to give a unitary decomposition.

Theorem (Corlette, Donaldson)

Let (P, D) be a principal G-bundle with a flat connection. (P, D) admits a harmonic metric if and only if the Zariski closure of the holonomy group of D is a reductive subgroup of G.

 Step 4: Once we find an irreducible (A, Φ), we may construct a stable Higgs bundle (E, Φ) by taking d^{''}_A.

• Answer: Find a canonical metric to give a unitary decomposition.

Theorem (Corlette, Donaldson)

Let (P, D) be a principal G-bundle with a flat connection. (P, D) admits a harmonic metric if and only if the Zariski closure of the holonomy group of D is a reductive subgroup of G.

 Step 4: Once we find an irreducible (A, Φ), we may construct a stable Higgs bundle (E, Φ) by taking d^{''}_A.

- Space: $\mathfrak{A}(M; \mathsf{P}) \times \mathcal{A}^{1,0}(M; \operatorname{ad} \mathsf{P} \otimes \mathbb{C})$
- $\mathfrak{A}(M; \mathsf{P}) \iff \mathcal{A}^1(M; \operatorname{ad} \mathsf{P}) \iff \mathcal{A}^{0,1}(M; \operatorname{ad} \mathsf{P} \otimes \mathbb{C})$
- In this identification, a Riemannian metric

$$g((\Psi_1,\Phi_1),(\Psi_2,\Phi_2))=2i\int_M \mathrm{Tr}(\Psi_1^*\wedge\Psi_2+\Phi_2\wedge\Phi_1^*)$$

•
$$\begin{cases} I: (\Psi, \Phi) \mapsto (i\Psi, i\Phi) \\ J: (\Psi, \Phi) \mapsto (i\Psi^*, -i\Phi^*) \\ K: (\Psi, \Phi) \mapsto (-\Psi^*, \Phi^*) \end{cases}$$

0000000

Appendix

- Space: $\mathfrak{A}(M; \mathsf{P}) \times \mathcal{A}^{1,0}(M; \operatorname{ad} \mathsf{P} \otimes \mathbb{C})$
- $\mathfrak{A}(M; \mathsf{P}) \iff \mathcal{A}^1(M; \operatorname{ad} \mathsf{P}) \iff \mathcal{A}^{0,1}(M; \operatorname{ad} \mathsf{P} \otimes \mathbb{C})$
- In this identification, a Riemannian metric

$$g((\Psi_1,\Phi_1),(\Psi_2,\Phi_2))=2i\int_M \mathrm{Tr}(\Psi_1^*\wedge\Psi_2+\Phi_2\wedge\Phi_1^*)$$

•
$$\begin{cases} I: (\Psi, \Phi) \mapsto (i\Psi, i\Phi) \\ J: (\Psi, \Phi) \mapsto (i\Psi^*, -i\Phi^*) \\ K: (\Psi, \Phi) \mapsto (-\Psi^*, \Phi^*) \end{cases}$$

0000000

Appendix

- Space: $\mathfrak{A}(M; \mathsf{P}) \times \mathcal{A}^{1,0}(M; \operatorname{ad} \mathsf{P} \otimes \mathbb{C})$
- $\mathfrak{A}(M; \mathsf{P}) \iff \mathcal{A}^1(M; \operatorname{ad} \mathsf{P}) \iff \mathcal{A}^{0,1}(M; \operatorname{ad} \mathsf{P} \otimes \mathbb{C})$
- In this identification, a Riemannian metric

$$g((\Psi_1,\Phi_1),(\Psi_2,\Phi_2))=2i\int_M \mathsf{Tr}(\Psi_1^*\wedge\Psi_2+\Phi_2\wedge\Phi_1^*)$$

•
$$\begin{cases} I: (\Psi, \Phi) \mapsto (i\Psi, i\Phi) \\ J: (\Psi, \Phi) \mapsto (i\Psi^*, -i\Phi^*) \\ K: (\Psi, \Phi) \mapsto (-\Psi^*, \Phi^*) \end{cases}$$

0000000

◆□ → ◆□ → ◆注 → ◆注 → □ □ □

Appendix

13/28

- Space: $\mathfrak{A}(M; \mathsf{P}) \times \mathcal{A}^{1,0}(M; \operatorname{ad} \mathsf{P} \otimes \mathbb{C})$
- $\mathfrak{A}(M; \mathsf{P}) \iff \mathcal{A}^1(M; \operatorname{ad} \mathsf{P}) \iff \mathcal{A}^{0,1}(M; \operatorname{ad} \mathsf{P} \otimes \mathbb{C})$
- In this identification, a Riemannian metric

$$g((\Psi_1,\Phi_1),(\Psi_2,\Phi_2))=2i\int_M \mathsf{Tr}(\Psi_1^*\wedge\Psi_2+\Phi_2\wedge\Phi_1^*)$$

•
$$\begin{cases} I: (\Psi, \Phi) \mapsto (i\Psi, i\Phi) \\ J: (\Psi, \Phi) \mapsto (i\Psi^*, -i\Phi^*) \\ K: (\Psi, \Phi) \mapsto (-\Psi^*, \Phi^*) \end{cases}$$

Hyperkähler manifold

- Hyperkähler structure: $\omega_I(X, Y) = g(IX, Y)$ $\omega_J(X, Y) = g(JX, Y)$ $\omega_K(X, Y) = g(KX, Y)$
- Holomorphic symplectic structure w.r.t. *I*:

$$\begin{split} \Omega_I((\Psi_1,\Phi_1),(\Psi_2,\Phi_2)) &= \omega_J + i\omega_K \\ &= \int_M \mathsf{Tr}(\Phi_2 \wedge \Psi_1 - \Phi_1 \wedge \Psi_2). \end{split}$$

• Moment maps:
$$\begin{cases} \mu_{\omega_I}((A, \Phi)) &= F(A) + [\Phi, \Phi^*] \\ \mu_{\Omega_I}((A, \Phi)) &= d''_A \Phi \end{cases}$$

Hyperkähler manifold

• Hyperkähler structure:
$$\omega_I(X, Y) = g(IX, Y)$$

 $\omega_J(X, Y) = g(JX, Y)$
 $\omega_K(X, Y) = g(KX, Y)$

• Holomorphic symplectic structure w.r.t. *I*:

$$\Omega_I((\Psi_1, \Phi_1), (\Psi_2, \Phi_2)) = \omega_J + i\omega_K$$

= $\int_M \operatorname{Tr}(\Phi_2 \wedge \Psi_1 - \Phi_1 \wedge \Psi_2).$

• Moment maps:
$$\begin{cases} \mu_{\omega_l}((A, \Phi)) &= F(A) + [\Phi, \Phi^*] \\ \mu_{\Omega_l}((A, \Phi)) &= d''_A \Phi \end{cases}$$

Hyperkähler manifold

• Hyperkähler structure:
$$\omega_I(X, Y) = g(IX, Y)$$

 $\omega_J(X, Y) = g(JX, Y)$
 $\omega_K(X, Y) = g(KX, Y)$

• Holomorphic symplectic structure w.r.t. *I*:

$$\Omega_I((\Psi_1, \Phi_1), (\Psi_2, \Phi_2)) = \omega_J + i\omega_K$$

= $\int_M \operatorname{Tr}(\Phi_2 \wedge \Psi_1 - \Phi_1 \wedge \Psi_2).$

• Moment maps:
$$\begin{cases} \mu_{\omega_I}((A, \Phi)) &= F(A) + [\Phi, \Phi^*] \\ \mu_{\Omega_I}((A, \Phi)) &= d''_A \Phi \end{cases}$$

Hyperkähler reduction

• Hyperkähler reduction $\mathcal{M} = \bigcap_{i=1}^{3} \mu_{i}^{-1}(0)/\mathcal{G}$

Theorem (Hitchin)

Let \mathcal{M} be the moduli space of irreducible solutions to the self-duality equations on a rank 2 bundle of odd degree and fixed determinant over \mathcal{M} with $g(\mathcal{M}) \geq 2$. Then

- All the complex structures of the hyperkähler family other than ±1 are equivalent
- Moreover, they are a Stein manifold except (\mathcal{M}, I) .
Hyperkähler reduction

• Hyperkähler reduction $\mathcal{M} = \bigcap_{i=1}^{3} \mu_{i}^{-1}(0)/\mathcal{G}$

Theorem (Hitchin)

Let \mathcal{M} be the moduli space of irreducible solutions to the self-duality equations on a rank 2 bundle of odd degree and fixed determinant over \mathcal{M} with $g(\mathcal{M}) \geq 2$. Then

- All the complex structures of the hyperkähler family other than ±1 are equivalent
- Moreover, they are a Stein manifold except (\mathcal{M}, I) .

・ロト ・聞ト ・ヨト ・ヨト

Hyperkähler reduction

• Hyperkähler reduction $\mathcal{M} = \bigcap_{i=1}^{3} \mu_{i}^{-1}(0)/\mathcal{G}$

Theorem (Hitchin)

Let \mathcal{M} be the moduli space of irreducible solutions to the self-duality equations on a rank 2 bundle of odd degree and fixed determinant over \mathcal{M} with $g(\mathcal{M}) \geq 2$. Then

- All the complex structures of the hyperkähler family other than ±1 are equivalent
- Moreover, they are a Stein manifold except (\mathcal{M}, I) .

・ロト ・聞ト ・ヨト ・ヨト

Hitchin's \mathbb{C}^* -action

- Hitchin's circle action: $(A, \Phi) \mapsto (A, e^{i\theta}\Phi)$.
- Hitchin's \mathbb{C}^* -action: $(A, \Phi) \mapsto (A, c\Phi)$
- Using the Morse theory argument, we can calculate the Betti numbers of \mathcal{M} .

Hitchin's \mathbb{C}^* -action

- Hitchin's circle action: $(A, \Phi) \mapsto (A, e^{i\theta}\Phi)$.
- Hitchin's \mathbb{C}^* -action: $(A, \Phi) \mapsto (A, c\Phi)$
- Using the Morse theory argument, we can calculate the Betti numbers of \mathcal{M} .

Hitchin's \mathbb{C}^* -action

- Hitchin's circle action: $(A, \Phi) \mapsto (A, e^{i\theta}\Phi)$.
- Hitchin's \mathbb{C}^* -action: $(A, \Phi) \mapsto (A, c\Phi)$
- Using the Morse theory argument, we can calculate the Betti numbers of \mathcal{M} .

Dolbeault groupoid and Betti groupoid

- Weil's theorem and the SO(3) self-duality equations
- (M, J) is a covering of Hom (π₁, PSL(2, ℂ))^{odd,irr}/PSL(2, ℂ).

Theorem

Hom $(\Gamma, SL(2, \mathbb{C}))^{odd, irr} / SL(2, \mathbb{C})$ is smooth, connected, and simply-connected.

Dolbeault groupoid and Betti groupoid

- Weil's theorem and the SO(3) self-duality equations
- (M, J) is a covering of Hom (π₁, PSL(2, ℂ))^{odd,irr}/PSL(2, ℂ).

Theorem

Hom $(\Gamma, SL(2, \mathbb{C}))^{odd, irr}/SL(2, \mathbb{C})$ is smooth, connected, and simply-connected.

Generalizations

Theorem (Corlette, Donaldson, Hitchin, Simpson)

 There is a one to one correspondence between stable Higgs pairs over M and irreducible representations

 ρ : π₁(M) → GL(n, C).

• There is a one to one correspondence between poly-stable Higgs pairs over M and reductive representations $\rho : \pi_1(M) \to \mathbf{GL}(n, \mathbb{C}).$

Generalizations

Theorem (Corlette, Donaldson, Hitchin, Simpson)

- There is a one to one correspondence between stable Higgs pairs over M and irreducible representations

 ρ : π₁(M) → GL(n, C).
- There is a one to one correspondence between poly-stable Higgs pairs over M and reductive representations $\rho : \pi_1(M) \to \mathbf{GL}(n, \mathbb{C}).$

Let (\mathcal{M}, I) be the moduli space of irreducible solutions to the self-duality equations on a rank 2 vector bundle of odd degree and fixed determinant. Define an involution

$$\iota_U: (A, \Phi) \mapsto (A, -\Phi).$$

◆□> ◆□> ◆注> ◆注> □注□

- The fixed points of S^1 -action \subseteq The fixed points of ι_U
- $\mu(A, \Phi) = 2i \int_M \operatorname{Tr}(\Phi \wedge \Phi^*) = \|\Phi\|_{L^2}^2$. • $\mu^{-1}((d - \frac{1}{2})\pi) = \mathcal{M}_{2d-1} \text{ for } g - 1 \ge d > 0.$

Let (\mathcal{M}, I) be the moduli space of irreducible solutions to the self-duality equations on a rank 2 vector bundle of odd degree and fixed determinant. Define an involution

$$\iota_U: (A, \Phi) \mapsto (A, -\Phi).$$

- The fixed points of S^1 -action \subseteq The fixed points of ι_U
- $\mu(A, \Phi) = 2i \int_M \operatorname{Tr}(\Phi \wedge \Phi^*) = \|\Phi\|_{L^2}^2$.
- $\mu^{-1}((d-\frac{1}{2})\pi) = \mathcal{M}_{2d-1}$ for $g-1 \ge d > 0$.

Let (\mathcal{M}, I) be the moduli space of irreducible solutions to the self-duality equations on a rank 2 vector bundle of odd degree and fixed determinant. Define an involution

$$\iota_U: (A, \Phi) \mapsto (A, -\Phi).$$

- The fixed points of S^1 -action \subseteq The fixed points of ι_U
- $\mu(A, \Phi) = 2i \int_M \operatorname{Tr}(\Phi \wedge \Phi^*) = \|\Phi\|_{L^2}^2$. • $\mu^{-1}((d - \frac{1}{2})\pi) = \mathcal{M}_{2d-1} \text{ for } g - 1 \ge d > 0.$

Theorem (Hitchin)

The fixed points of ι_U consist of complex submanifolds $\mathcal{M}_0, \mathcal{M}_{2d-1} (1 \le d \le g-1)$ each of dimension 3g-3 where

- \mathcal{M}_0 is isomorphic to the moduli space of stable rank 2 bundles of fixed determinant and odd degree.
- M_{2d−1} is a holomorphic vector bundle of rank g − 2 + 2d over a 2^{2g}-fold covering of S^{2g−2d−1}M.
- Critical manifold: Normal bundle structure.
- ι_U on Hom $(\pi_1, \mathsf{PSL}(2, \mathbb{C}))/\mathsf{PSL}(2, \mathbb{C}).$
- *M_k*/ℤ₂^{2g} is a holomorphic vector bundle of rank g − 1 + k over S^{2g−2−k}M for 0 ≤ k ≤ 2g − 2.

Theorem (Hitchin)

The fixed points of ι_U consist of complex submanifolds $\mathcal{M}_0, \mathcal{M}_{2d-1} (1 \le d \le g-1)$ each of dimension 3g-3 where

- \mathcal{M}_0 is isomorphic to the moduli space of stable rank 2 bundles of fixed determinant and odd degree.
- M_{2d−1} is a holomorphic vector bundle of rank g − 2 + 2d over a 2^{2g}-fold covering of S^{2g−2d−1}M.
- Critical manifold: Normal bundle structure.
- ι_U on Hom $(\pi_1, \mathsf{PSL}(2, \mathbb{C}))/\mathsf{PSL}(2, \mathbb{C}).$
- *M_k*/ℤ₂^{2g} is a holomorphic vector bundle of rank *g* − 1 + *k* over *S*^{2g−2−k}*M* for 0 ≤ *k* ≤ 2*g* − 2.

Theorem (Hitchin)

The fixed points of ι_U consist of complex submanifolds $\mathcal{M}_0, \mathcal{M}_{2d-1} (1 \le d \le g-1)$ each of dimension 3g-3 where

- \mathcal{M}_0 is isomorphic to the moduli space of stable rank 2 bundles of fixed determinant and odd degree.
- M_{2d−1} is a holomorphic vector bundle of rank g − 2 + 2d over a 2^{2g}-fold covering of S^{2g−2d−1}M.
- Critical manifold: Normal bundle structure.
- ι_U on Hom $(\pi_1, \mathsf{PSL}(2, \mathbb{C}))/\mathsf{PSL}(2, \mathbb{C}).$
- *M_k*/ℤ₂^{2g} is a holomorphic vector bundle of rank *g* − 1 + *k* over *S*^{2g−2−k}*M* for 0 ≤ *k* ≤ 2*g* − 2.

Theorem (Hitchin)

The fixed points of ι_U consist of complex submanifolds $\mathcal{M}_0, \mathcal{M}_{2d-1} (1 \le d \le g-1)$ each of dimension 3g-3 where

- \mathcal{M}_0 is isomorphic to the moduli space of stable rank 2 bundles of fixed determinant and odd degree.
- M_{2d−1} is a holomorphic vector bundle of rank g − 2 + 2d over a 2^{2g}-fold covering of S^{2g−2d−1}M.
- Critical manifold: Normal bundle structure.
- ι_U on Hom $(\pi_1, \mathsf{PSL}(2, \mathbb{C}))/\mathsf{PSL}(2, \mathbb{C}).$

M_k/ℤ₂^{2g} is a holomorphic vector bundle of rank *g* − 1 + *k* over *S*^{2g−2−k}*M* for 0 ≤ *k* ≤ 2*g* − 2.

Theorem (Hitchin)

The fixed points of ι_U consist of complex submanifolds $\mathcal{M}_0, \mathcal{M}_{2d-1} (1 \le d \le g-1)$ each of dimension 3g-3 where

- \mathcal{M}_0 is isomorphic to the moduli space of stable rank 2 bundles of fixed determinant and odd degree.
- M_{2d−1} is a holomorphic vector bundle of rank g − 2 + 2d over a 2^{2g}-fold covering of S^{2g−2d−1}M.
- Critical manifold: Normal bundle structure.
- ι_U on Hom $(\pi_1, \mathsf{PSL}(2, \mathbb{C}))/\mathsf{PSL}(2, \mathbb{C}).$
- *M_k*/ℤ₂^{2g} is a holomorphic vector bundle of rank *g* − 1 + *k* over *S*^{2g−2−k}*M* for 0 ≤ *k* ≤ 2*g* − 2.

Theorem (Narashimhan-Seshadri)

There is a one to one correspondence between stable holomorphic vector bundles and irreducible unitary representations.

Theorem (Hitchin)

Let $\pi_1(M)$ be the fundamental group of a compact Riemann surface of genus $g \ge 2$, and let $\operatorname{Hom}(\pi_1, \operatorname{PSL}(2, \mathbb{R}))^k$ denote the space of homomorphisms of π_1 to $\operatorname{PSL}(2, \mathbb{R})$ whose associated $\mathbb{R}P^1$ -bundle has Euler class k. Then $\operatorname{Hom}(\pi_1, \operatorname{PSL}(2, \mathbb{R}))^k/\operatorname{PSL}(2, \mathbb{R})$ is a smooth manifold of dimension (6g - 6) which is diffeomorphic to a complex vector bundle of rank g - 1 + k over $S^{2g-2-k}M$.

Theorem (Narashimhan-Seshadri)

There is a one to one correspondence between stable holomorphic vector bundles and irreducible unitary representations.

Theorem (Hitchin)

Let $\pi_1(M)$ be the fundamental group of a compact Riemann surface of genus $g \ge 2$, and let $\operatorname{Hom}(\pi_1, \operatorname{PSL}(2, \mathbb{R}))^k$ denote the space of homomorphisms of π_1 to $\operatorname{PSL}(2, \mathbb{R})$ whose associated $\mathbb{R}P^1$ -bundle has Euler class k. Then $\operatorname{Hom}(\pi_1, \operatorname{PSL}(2, \mathbb{R}))^k/\operatorname{PSL}(2, \mathbb{R})$ is a smooth manifold of dimension (6g - 6) which is diffeomorphic to a complex vector bundle of rank g - 1 + k over $S^{2g-2-k}M$.

Corollary (Milnor, Wood)

The Euler class k of any flat $PSL(2, \mathbb{R})$ -bundle satisfies $|k| \leq 2g - 2$.

Corollary (Goldman) If g = 2 and k = 1, then $Hom(\pi_1, PSL(2, \mathbb{R}))^1/PSL(2, \mathbb{R}) \cong M \times \mathbb{R}^4$.

When k = 2g - 2, then the Teichmüller space

$$\mathbb{C}^{3g-3}$$

Corollary (Milnor, Wood)

The Euler class k of any flat $PSL(2, \mathbb{R})$ -bundle satisfies $|k| \leq 2g - 2$.

Corollary (Goldman) If g = 2 and k = 1, then

 $\operatorname{Hom}(\pi_1, \operatorname{\mathsf{PSL}}(2,\mathbb{R}))^1/\operatorname{\mathsf{PSL}}(2,\mathbb{R}) \cong M \times \mathbb{R}^4.$

When k = 2g - 2, then the Teichmüller space

$$\mathbb{C}^{3g-3}$$

Corollary (Milnor, Wood)

The Euler class k of any flat $PSL(2, \mathbb{R})$ -bundle satisfies $|k| \leq 2g - 2$.

Corollary (Goldman) If g = 2 and k = 1, then $Hom(\pi_1, PSL(2, \mathbb{R}))^1/PSL(2, \mathbb{R}) \cong M \times \mathbb{R}^4$.

When k = 2g - 2, then the Teichmüller space

$$\mathbb{C}^{3g-3}$$

<ロ> (四) (四) (三) (三) (三)

22/28

Variation of Hodge structure

Definition

A real variation of Hodge structure of a weight k over a Riemann surface M is a flat real vector bundle (E, D) together with a smooth direct sum decomposition

$$\mathsf{E}_{\mathbb{C}} = \mathsf{E} \otimes \mathbb{C} = \bigoplus_{p+q=k} \mathsf{E}^{p,q}$$

satisfying

• $F' = \bigoplus_{p \ge r} E^{p,q}$ is a holomorphic subbundle of $E_{\mathbb{C}}$ relative to the holomorphic structure D''

•
$$Ds \in \mathcal{F}^{r-1} \otimes \Omega^1_M$$
 for $s \in \mathcal{F}^r$

Variation of Hodge structure

Definition

A real variation of Hodge structure of a weight k over a Riemann surface M is a flat real vector bundle (E, D) together with a smooth direct sum decomposition

$$\mathsf{E}_{\mathbb{C}} = \mathsf{E} \otimes \mathbb{C} = \bigoplus_{p+q=k} \mathsf{E}^{p,q}$$

satisfying

- F^r = ⊕_{p≥r} E^{p,q} is a holomorphic subbundle of E_C relative to the holomorphic structure D"
- $Ds \in \mathcal{F}^{r-1} \otimes \Omega^1_M$ for $s \in \mathcal{F}^r$

Variation of Hodge structure

Definition

A real variation of Hodge structure of a weight k over a Riemann surface M is a flat real vector bundle (E, D) together with a smooth direct sum decomposition

$$\mathsf{E}_{\mathbb{C}} = \mathsf{E} \otimes \mathbb{C} = \bigoplus_{p+q=k} \mathsf{E}^{p,q}$$

satisfying

F^r = ⊕_{p≥r} E^{p,q} is a holomorphic subbundle of E_C relative to the holomorphic structure D"

•
$$Ds \in \mathcal{F}^{r-1} \otimes \Omega^1_M$$
 for $s \in \mathcal{F}^r$

Variation of Hodge structure

Definition

A real variation of Hodge structure of a weight k over a Riemann surface M is a flat real vector bundle (E, D) together with a smooth direct sum decomposition

$$\mathsf{E}_{\mathbb{C}} = \mathsf{E} \otimes \mathbb{C} = \bigoplus_{p+q=k} \mathsf{E}^{p,q}$$

satisfying

F^r = ⊕_{p≥r} E^{p,q} is a holomorphic subbundle of E_C relative to the holomorphic structure D"

•
$$Ds \in \mathcal{F}^{r-1} \otimes \Omega^1_M$$
 for $s \in \mathcal{F}'$

By taking the Hodge structures of a smooth family $\{X_m\}$ of algebraic varieties over M, we may define a map $\widetilde{\Pi} : M \to \mathfrak{D}$ where \mathfrak{D} is a period domain. But $\widetilde{\Pi}$ is not well-defined. Up to monodromy $\rho : \pi_1(M) \to \Gamma \subset \operatorname{Aut}(H_{\mathbb{Z}})$, we may define a period mapping

 $\Pi: M \to \mathfrak{D}/\Gamma.$

It is well-known that if there exists a smooth family $\{X_m\}$ of algebraic varieties over M then Π is a variation of Hodge structure (E, D).

By taking the Hodge structures of a smooth family $\{X_m\}$ of algebraic varieties over M, we may define a map $\widetilde{\Pi} : M \to \mathfrak{D}$ where \mathfrak{D} is a period domain. But $\widetilde{\Pi}$ is not well-defined. Up to monodromy $\rho : \pi_1(M) \to \Gamma \subset \operatorname{Aut}(H_{\mathbb{Z}})$, we may define a period mapping

 $\Pi: M \to \mathfrak{D}/\Gamma.$

It is well-known that if there exists a smooth family $\{X_m\}$ of algebraic varieties over M then Π is a variation of Hodge structure (E, D).

Appendix

Real variation of Hodge structure

<u>Ubiquity of variations of Hodge structure</u>

Theorem (Simpson)

Let G be a reductive group. The fixed points of S^1 -action on Hom (π_1, G) are the monodromy representations arising from variations of Hodge structure over M.

<u>Ubiquity of variations of Hodge structure</u>

Theorem (Simpson)

Let G be a reductive group. The fixed points of S^1 -action on Hom (π_1, G) are the monodromy representations arising from variations of Hodge structure over M.

The ubiquity of variation of Hodge structure by C. Simpson.

Corollary (Simpson)

Let $\rho \in \text{Hom}(\pi_1, G)$. Then for $z \in \mathbb{C}^*$, $\lim_{z\to 0} z\rho$ exists in Hom (π_1, G) , *i.e.*, any homomorphism $\pi_1 \rightarrow G$ can be deformed to the monodromy representation of a variation of Hodge structure.

Further application

Hitchin-Teichmüller components

- The number of components of Hom(π₁, PSL(2, ℝ))/PSL(2, ℝ) is 4g − 3.
- One of them is homeomorphic to \mathbb{R}^{6g-6} , Teichmüller space.

Theorem (Hitchin)

Let M be a compact oriented surface of genus ≥ 2 and let $G^{\mathbb{R}}$ be the adjoint group of the split real form of a complex simple Lie group $G^{\mathbb{C}}$. Let $\operatorname{Hom}^+(\pi_1, G^{\mathbb{R}})$ denote the space of representations which act completely reducibly on the Lie algebra of $G^{\mathbb{R}}$. Then $\operatorname{Hom}(\pi_1, G^{\mathbb{R}})^+/G^{\mathbb{R}}$ has a connected component homeomorphic to a Euclidean space of dimension $(2g - 2) \dim G^{\mathbb{R}}$.

Further application

Hitchin-Teichmüller components

- The number of components of Hom(π₁, PSL(2, ℝ))/PSL(2, ℝ) is 4g − 3.
- One of them is homeomorphic to \mathbb{R}^{6g-6} , Teichmüller space.

Theorem (Hitchin)

Let M be a compact oriented surface of genus ≥ 2 and let $G^{\mathbb{R}}$ be the adjoint group of the split real form of a complex simple Lie group $G^{\mathbb{C}}$. Let $\operatorname{Hom}^+(\pi_1, G^{\mathbb{R}})$ denote the space of representations which act completely reducibly on the Lie algebra of $G^{\mathbb{R}}$. Then $\operatorname{Hom}(\pi_1, G^{\mathbb{R}})^+/G^{\mathbb{R}}$ has a connected component homeomorphic to a Euclidean space of dimension $(2g - 2) \dim G^{\mathbb{R}}$.

Further application

Hitchin-Teichmüller components

- The number of components of Hom(π₁, PSL(2, ℝ))/PSL(2, ℝ) is 4g − 3.
- One of them is homeomorphic to \mathbb{R}^{6g-6} , Teichmüller space.

Theorem (Hitchin)

Let M be a compact oriented surface of genus ≥ 2 and let $G^{\mathbb{R}}$ be the adjoint group of the split real form of a complex simple Lie group $G^{\mathbb{C}}$. Let $\operatorname{Hom}^+(\pi_1, G^{\mathbb{R}})$ denote the space of representations which act completely reducibly on the Lie algebra of $G^{\mathbb{R}}$. Then $\operatorname{Hom}(\pi_1, G^{\mathbb{R}})^+/G^{\mathbb{R}}$ has a connected component homeomorphic to a Euclidean space of dimension $(2g - 2) \dim G^{\mathbb{R}}$.

Definition

The above component is called a Hitchin-Teichmüller component.

Theorem (Choi,Goldman)

The Hitchin-Teichmüller component of $Hom(\pi_1, PSL(3, \mathbb{R}))^+/PSL(3, \mathbb{R})$ is the deformation space of marked convex \mathbb{RP}^2 -structures.

When n ≥ 4 for Hom(π₁, PSL(n, ℝ))⁺/PSL(n, ℝ), widely open (?)

Definition

The above component is called a Hitchin-Teichmüller component.

Theorem (Choi,Goldman)

The Hitchin-Teichmüller component of $Hom(\pi_1, PSL(3, \mathbb{R}))^+/PSL(3, \mathbb{R})$ is the deformation space of marked convex \mathbb{RP}^2 -structures.

When n ≥ 4 for Hom(π₁, PSL(n, ℝ))⁺/PSL(n, ℝ), widely open (?)

Definition

The above component is called a Hitchin-Teichmüller component.

Theorem (Choi, Goldman)

The Hitchin-Teichmüller component of $Hom(\pi_1, PSL(3, \mathbb{R}))^+/PSL(3, \mathbb{R})$ is the deformation space of marked convex \mathbb{RP}^2 -structures.

When n ≥ 4 for Hom(π₁, PSL(n, ℝ))⁺/PSL(n, ℝ), widely open (?)

Definition

The above component is called a Hitchin-Teichmüller component.

Theorem (Choi, Goldman)

The Hitchin-Teichmüller component of $Hom(\pi_1, PSL(3, \mathbb{R}))^+/PSL(3, \mathbb{R})$ is the deformation space of marked convex \mathbb{RP}^2 -structures.

When n ≥ 4 for Hom(π₁, PSL(n, ℝ))⁺/PSL(n, ℝ), widely open (?)

Rank 1 case

 \bullet The fixed point set of $\iota_{\mathbb{R}}$ is

★ロト ★課 ト ★注 ト ★注 ト 一注

28/28

• Hom $(\pi_1, \mathbb{R}^+) \cong \mathbb{R}^{2g}$ is the identity component of $\operatorname{Jac}_2(M) \times \operatorname{H}^{1,0}(M)$.