Introduction to arithmetic groups

Dave Witte Morris

University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca
KAIST Geometric Topology Fair (January 11-13, 2010)
Abstract. Arithmetic groups are fundamental groups of locally symmetric spaces. We will see how they are constructed, and discuss some of their important properties. For example, although the \mathbb{Q}-rank of an arithmetic group is usually defined in purbut the geometry and topology of the corresponding locally symmetric space, Algebraic technicalities will be pushed to the background as much as possible. technicalities will be pushed to the background as much as possible.

Example (Tetrahedron)

This is rigid (cannot be deformed)

2. Group-theoretic superrigidity

Group homomorphism $\phi: \mathbb{Z} \rightarrow \mathbb{R}^{d}$
(i.e., $\phi(m+n)=\phi(m)+\phi(n)$
$\Rightarrow \phi$ extends to a homomorphism $\hat{\phi}: \mathbb{R} \rightarrow \mathbb{R}^{d}$. Namely, define $\hat{\phi}(x)=x \cdot \phi(1)$.
Check:

- $\hat{\phi}(n)=\phi(n)$
- $\hat{\phi}(x+y)=\hat{\phi}(x)+\hat{\phi}(y)$
- $\hat{\phi}$ is continuous
(only allow continuous homomorphisms)

Introduction to Arithmetic Groups 1

What is a superrigid subgroup?
(1) rigidity of linkages
(2) group-theoretic superrigidity
(3) the analogy
(4) examples of superrigid subgroups
(5) why superrigidity implies arithmeticity
(6) some geometric consequences of superrigidity - Mostow Rigidity Theorem

- vanishing of the first Betti number

For further reading, see the references in [D.W.Morris, What is a superrigid subgroup?, in Timothy Y. Chow and Daniel C. Isaksen, eds.: Communicating Mathematics. American Mathematical Society, Providence, R.I., 2009, pp. 189-206. http://arxiv.org/abs/0712.2299].

Example (add a small tetrahedron)

This is rigid
However, it is not superrigid:
if it is taken apart, it can be reassembled incorrectly.

Group homomorphism $\phi: \mathbb{Z}^{k} \rightarrow \mathbb{R}^{d}$
$\Rightarrow \phi$ extends to a homomorphism $\hat{\phi}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{d}$.

Proof.

Use standard basis $\left\{e_{1}, \ldots, e_{k}\right\}$ of \mathbb{R}^{k}.
Define $\phi\left(x_{1}, \ldots, x_{k}\right)=\sum x_{i} \phi\left(e_{i}\right)$,
("linear trans can do anything to a basis")
Linear transformation
\Rightarrow homomorphism of additive groups

Group Representation Theory:

study homomorphisms into Matrix Groups.
GL $(d, \mathbb{C})=d \times d$ matrices over \mathbb{C}
with nonzero determinant.
This is a group under multiplication.

1. Rigidity of linkages

Example (two joined triangles)

This is not rigid.
I.e., it can be deformed (a "hinge").

A tetrahedron is superrigid: the combinatorial description determines the geometric structure.

Combinatorial superrigidity

Make a copy of the object,
according to the combinatorial rules.
The copy is the exact same shape as the original.
This talk: analogue in group theory

Group homomorphism $\phi: \mathbb{Z} \rightarrow \mathrm{GL}(d, \mathbb{R})$

$$
\text { (i.e., } \phi(m+n)=\phi(m) \cdot \phi(n))
$$

\nRightarrow extends to homomorphism $\hat{\phi}: \mathbb{R} \rightarrow \mathrm{GL}(d, \mathbb{R})$.
(Only allow continuous homos.)

Proof by contradiction.

Spse \exists homo $\hat{\phi}: \mathbb{R} \rightarrow \operatorname{GL}(d, \mathbb{R})$
with $\hat{\phi}(n)=\phi(n)$ for all $n \in \mathbb{Z}$.
$\hat{\phi}(0)=\operatorname{Id} \quad \Rightarrow \operatorname{det}(\hat{\phi}(0))=\operatorname{det}(\mathrm{Id})=1>0$
\mathbb{R} connected $\Rightarrow \hat{\phi}(\mathbb{R})$ connected
$\Rightarrow \operatorname{det}(\hat{\phi}(\mathbb{R}))$ connected in $\mathbb{R}^{\times}=\mathbb{R}-\{0\}$
$\Rightarrow \operatorname{det}(\hat{\phi}(\mathbb{R}))>0$
$\Rightarrow \operatorname{det}(\phi(1))>0$
Maybe $\operatorname{det}(\phi(1))<0$.

Group homomorphism $\phi: \mathbb{Z} \rightarrow \mathrm{GL}(d, \mathbb{R})$
\nRightarrow extends to homomorphism $\hat{\phi}: \mathbb{R} \rightarrow \mathrm{GL}(d, \mathbb{R})$.
Because: maybe $\operatorname{det}(\phi(1))<0$.
$\operatorname{det}(\phi(2))=\operatorname{det}(\phi(1+1))=(\operatorname{det}(\phi(1)))^{2}>0$.
In fact, $\operatorname{det}(\phi($ even $))>0$.
May have to ignore odd numbers: restrict attention to even numbers.

Proposition (" \mathbb{Z}^{k} is superrigid in \mathbb{R}^{k} ")
Group homomorphism $\phi: \mathbb{Z}^{k} \rightarrow \mathrm{GL}(d, \mathbb{R})$
$\Rightarrow \phi$ "almost" extends to homo $\hat{\phi}: \mathbb{R}^{k} \rightarrow \mathrm{GL}(d, \mathbb{R})$ such that $\quad \hat{\phi}\left(\mathbb{R}^{k}\right) \subset \overline{\phi\left(\mathbb{Z}^{k}\right)} . \quad$ ("Zariski closure")
$\hat{\phi}\left(\mathbb{R}^{k}\right) \subset \overline{\phi\left(\mathbb{Z}^{k}\right)}$: image of ϕ controls image of $\hat{\phi}$. Good properties of $\phi(\mathbb{Z})$ carry over to $\hat{\phi}(\mathbb{R})$.

Example: If all matrices in $\phi(\mathbb{Z})$ commute, then all matrices in $\hat{\phi}(\mathbb{R})$ commute.

Example: If all matrices in $\phi(\mathbb{Z})$ fix a vector v, then all matrices in $\hat{\phi}(\mathbb{R})$ fix v.

Generalize to nonabelian groups.

4. Superrigid subgroups

Example. \mathbb{Z}^{k} is superrigid in \mathbb{R}^{k}. Generalize to nonabelian groups.
\mathbb{Z}^{k} is a (cocompact) lattice in \mathbb{R}^{k}. I.e.,

- \mathbb{R}^{k} is a (simply) connected group ("Lie group")
- \mathbb{Z}^{k} is a discrete subgroup
- all of \mathbb{R}^{k} is within a bounded distance of \mathbb{Z}^{k} $\exists C, \forall x \in \mathbb{R}^{k}, \exists m \in \mathbb{Z}^{k}, \quad d(x, m)<C$.

If can replace \mathbb{Z}^{k} with Γ and \mathbb{R}^{k} with G, then Γ is a (cocompact) lattice in G.

May have to ignore odd numbers: restrict attention to even numbers.

Analogously, may need to restrict to multiples of 3 (or 4 or 5 or ...)
Restrict attention to multiples of N.
$\{$ multiples of $N\}$ is a subgroup of \mathbb{Z}
"Restrict attention to a finite-index subgroup"

Proposition

Group homomorphism $\phi: \mathbb{Z}^{k} \rightarrow \mathrm{GL}(d, \mathbb{R})$
$\Rightarrow \phi$ "almost" extends to homo $\hat{\phi}: \mathbb{R}^{k} \rightarrow \mathrm{GL}(d, \mathbb{R})$ such that $\quad \hat{\phi}\left(\mathbb{R}^{k}\right) \subset \overline{\phi\left(\mathbb{Z}^{k}\right)} . \quad$ ("Zariski closure")

This means \mathbb{Z}^{k} is superrigid in \mathbb{R}^{k}.

3. The analogy

Combinatorial superrigidity

Make copy of object, obeying combinatorial rules. The copy is the exact same shape as the original.

Maybe not exactly the same object:
may be rotated from the original position;
may be translated from original position.
These are trivial modifications:
rotations and translations are symmetries of the whole universe (Euclidean space \mathbb{R}^{3}).

Same result can be obtained with the original object by moving the whole universe to a new position.

Lie groups are of three types:

- solvable (many normal subgrps, e.g., abelian)
- simple ("no" normal subgroups, e.g., $\mathrm{SL}(k, \mathbb{R})$)
- combination (e.g., $\left.G=\mathbb{R}^{k} \times \operatorname{SL}(k, \mathbb{R})\right)$

More or less: $\Gamma=\mathbb{Z}^{k} \times \operatorname{SL}(k, \mathbb{Z})$
(Γ has a solvable part and a simple part)
Today: we consider solvable groups.

Lagrange interpolation

\exists polynomial curve
$y=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ through any $n+1$ points.

Idea: Zariski closure is like convex hull.

Combinatorial superrigidity

"If the object can be moved somewhere,
then the whole universe can be moved there."
Γ is a superrigid subgroup of the group G means: homomorphism $\phi: \Gamma \rightarrow \operatorname{GL}(d, \mathbb{R})$ extends to homomorphism $\hat{\phi}: G \rightarrow G L(d, \mathbb{R})$

Group-theoretic superrigidity

Make a copy of Γ as a group of matrices.
The same copy of Γ can be obtained by moving all of G into a group of matrices.

Definition

A connected subgroup G of $\operatorname{GL}(d, \mathbb{C})$ is solvable if it is upper triangular

$$
G \subset\left[\begin{array}{ccc}
\mathbb{C}^{x} & \mathbb{C} & \mathbb{C} \\
0 & \mathbb{C}^{x} & \mathbb{C} \\
0 & 0 & \mathbb{C}^{x}
\end{array}\right]
$$

(or is after a change of basis).

Example

All abelian groups are solvable.

Proof.

Every matrix can be triangularized over \mathbb{C}.
Pairwise commuting matrices can be
simultaneously triangularized.

Examples of lattices

$G=\left[\begin{array}{llll}1 & \mathbb{R} & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} & \mathbb{R} \\ 0 & 0 & 1 & \mathbb{R} \\ 0 & 0 & 0 & 1\end{array}\right] \quad \Gamma=\left[\begin{array}{llll}1 & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 0 & 1 & \mathbb{Z} \\ 0 & 0 & 0 & 1\end{array}\right]$
$\bar{\Gamma}=G \quad$ superrigid

$$
\begin{aligned}
G= & {\left[\begin{array}{ccc}
\mathbb{R}^{+} & 0 & 0 \\
0 & \mathbb{R}^{+} & 0 \\
0 & 0 & \mathbb{R}^{+}
\end{array}\right] \quad \Gamma=\left[\begin{array}{ccc}
2^{\mathbb{Z}} & 0 & 0 \\
0 & 2^{\mathbb{Z}} & 0 \\
0 & 0 & 2^{\mathbb{Z}}
\end{array}\right] } \\
& \bar{\Gamma}=G \quad \text { superrigid }
\end{aligned}
$$

Corollary

A lattice Γ in a Lie group G is "superrigid" iff

- $\bar{\Gamma}=\bar{G} \quad(\bmod \overline{Z(G)} \cdot($ cpct ss normal subgrp) $)$
- and simple part of Γ is "superrigid."

Theorem (Margulis Superrigidity Theorem)
All lattices in $\operatorname{SL}(n, \mathbb{R})$ are "superrigid" if $n \geq 3$.
Similar for other simple Lie groups, $\mathbb{B}-\mathrm{rank} \geq 2$.
Corollary (Margulis Arithmeticity Theorem)
Every lattice in $\mathrm{SL}(n, \mathbb{R})$ is "arithmetic" if $n \geq 3$. (like $\operatorname{SL}(n, \mathbb{Z})$)
Only way to make a lattice: take integer points (and minor modifications)
Γ is a superrigid lattice in $\operatorname{SL}(n, \mathbb{R})$
and every matrix entry is a rational number.
Show each prime occurs to bdd power in denoms.
This is the conclusion of p-adic superrigidity:

Theorem (Margulis)

If Γ is a lattice in $\operatorname{SL}(n, \mathbb{R})$, with $n \geq 3$,
and $\phi: \Gamma \rightarrow \operatorname{SL}\left(k, \mathbb{Q}_{p}\right)$ is a group homomrphism, then $\phi(\Gamma)$ has compact closure.
I.e., $\exists k$, no matrix in $\phi(\Gamma)$ has p^{k} in denom.

Summary of proof:

(1) \mathbb{R}-superrigidity \Rightarrow matrix entries "rational"
(2) \mathbb{Q}_{p}-superrigidity \Rightarrow matrix entries $\in \mathbb{Z}$

5. Why superrigidity implies arithmeticity

Let Γ be a superrigid lattice in $\operatorname{SL}(n, \mathbb{R})$.
We wish to show $\Gamma \subset \operatorname{SL}(n, \mathbb{Z})$,
i.e., want every matrix entry to be an integer.

First, let us show they are algebraic numbers.
Suppose some $\gamma_{i, j}$ is transcendental.
Then \exists field auto ϕ of \mathbb{C} with $\phi\left(\gamma_{i, j}\right)=$???.
Define $\quad \tilde{\phi}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}\phi(a) & \phi(b) \\ \phi(c) & \phi(d)\end{array}\right]$.
So $\tilde{\phi}: \Gamma \rightarrow \operatorname{GL}(n, \mathbb{C})$ is a group homo.
Superrigidity: $\tilde{\phi}$ extends to $\hat{\phi}: \operatorname{SL}(n, \mathbb{R}) \rightarrow \operatorname{GL}(n, \mathbb{C})$.
There are uncountably many different ϕ 's,
but $\operatorname{SL}(n, \mathbb{R})$ has only finitely many n-dim'l rep'ns.

Some consequences of superrigidity

Let Γ be the fundamental group of a locally
symmetric space M that has finite volume.
We always assume $\widetilde{\widetilde{M}}$ has no compact or flat factors, and is complete. Also assume M is irreducible: $M \neq M_{1} \times M_{2}$.
Assume Γ is superrigid.
Topology of M determines its geometry:
Corollary (Mostow Rigidity Theorem)
If $\Gamma \cong$ fund group Γ^{\prime} of finite-vol loc symm space M^{\prime}, then M is isometric to $M^{\prime} \quad$ (up to normalizing constant).

More generally, if $\Gamma \hookrightarrow \Gamma^{\prime}$, then $M \hookrightarrow M^{\prime}$ as a totally geodesic subspace (up to finite covers).

Proposition

Г superrigid in $G \Rightarrow \bar{\Gamma}=\bar{G} \quad(\bmod \overline{Z(G)})$.

Proof.

The inclusion $\Gamma \rightarrow G L(d, \mathbb{R}))$
must extend to $G \hookrightarrow \mathrm{GL}(d, \mathbb{R})$ with $G \subset \bar{\Gamma}$.

Theorem (converse)

Lattice Γ in solv $\operatorname{grp} G$ is superrig iff $\bar{\Gamma}=\bar{G}(\bmod \overline{Z(G))}$.
$\bar{\Gamma} \neq \overline{G^{\prime}}$: some of the rotations associated to G^{\prime} do not come from rotations associated to Γ.

$$
\operatorname{rot}\left[\begin{array}{ll}
\alpha & * \\
0 & \beta
\end{array}\right]=\left[\begin{array}{cc}
\frac{\alpha}{|\alpha|} & 0 \\
0 & \frac{\beta}{|\beta|}
\end{array}\right]
$$

Γ is a superrigid lattice in $\operatorname{SL}(n, \mathbb{R})$ and every matrix entry is an algebraic number.

Second, show matrix entries are rational. Fact. Γ is generated by finitely many matrices.
Entries of these matrices generate a field extension of \mathbb{Q} of finite degree. "algebraic number field" So $\Gamma \subset \operatorname{SL}(n, F)$. For simplicity, assume $\Gamma \subset \operatorname{SL}(n, \mathbb{Q})$.

Third, show matrix entries have no denominators.
Actually, show denominators are bounded.
(Then finite-index subgrp has no denoms.)
Since Γ is generated by finitely many matrices,
only finitely many primes appear in denoms.
So suffices to show each prime occurs to bdd power.
Γ = superrig fund grp of fin-vol loc symm space M.

Corollary

The first Betti number of M vanishes: $H^{1}(M ; \mathbb{R})=0$.

Remark

It is conjectured [Thurston] that if M is a
finite-volume hyperbolic manifold, then
$H^{1}(\widehat{M} ; \mathbb{R}) \neq 0$, for some finite cover \widehat{M}.
So it is believed that the fundamental group of a hyperbolic manifold is never superrigid (although most hyperbolic mflds are Mostow rigid).

Introduction to Arithmetic Groups 2

- examples
- relation to locally symmetric spaces $M=X / \Gamma$
- compactness criterion (two versions)
- basic group-theoretic properties
- congruence subgroups
- residually finite
- virtually torsion free (Selberg's Lemma) - finitely presented

For further reading, see D. W. Morris, Introduction to Arithmetic Groups. http://people.uleth.ca/~dave.morris/books/IntroArithGroups.html More advanced:
M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer, 1972.
V.Platonov and A. Rapinchuk, Algebraic Groups and Number Theory Academic Press, 1993.
symmetric space $X=G / K, \quad K$ compact

Definition

M is a locally symmetric space (complete): universal cover of M is a symmetric space.
I.e., $M=\Gamma \backslash X, \quad \Gamma \subset \operatorname{Isom}(M)$ discrete (\& torsion-free).

Example

$G=\operatorname{Isom}\left(\mathbb{R}^{n}\right)^{\circ}=\mathbb{R}^{n} \rtimes \operatorname{SO}(n), K=\operatorname{SO}(n)$

$$
\Rightarrow X=\mathbb{R}^{n}
$$

Let $\Gamma=\mathbb{Z}^{n} \subset G$, so $M=\mathbb{Z}^{n} \backslash \mathbb{R}^{n}=\mathbb{T}^{n}$.
Example
$G=\operatorname{SO}(1, n)^{\circ}, \quad K=\operatorname{SO}(n) \quad \Longrightarrow X=\mathbf{H}^{n}$.
Let $\Gamma=\mathrm{SO}(1, n ; \mathbb{Z})$, so $M=\Gamma \backslash \mathbf{H}^{n}=$ hyperbolic mfld.

Theorem (Mostow Rigidity Theorem)

Suppose M_{1} and M_{2} are finite-volume locally symm. Assume

- $\operatorname{dim} M_{1}>2$, and
- M_{1} is irreducible: $M_{1} \neq M^{\prime} \times M^{\prime \prime}$ (up to finite covers).

If $\Gamma_{1} \cong \Gamma_{2}$, then $M_{1} \cong M_{2}$ (modulo a normalizing constant).

- Every aspect of the geometric structure of M is reflected as an algebraic property of the fundamental group Γ.
- The geometric category of irreducible locally symmetric spaces with dim >2 is equivalent to the algebraic category of "irreducible" lattices in appropriate semisimple Lie groups.

Examples of arithmetic groups

Let Γ be an arithmetic group:
$\Gamma=\underset{(\text { or subgroup }}{\mathrm{SL}}(3, \mathbb{Z})=\{3 \times 3$ integer matrices of det 1$\}$ (or subgroup of finite index)
$\begin{aligned} \text { or } \Gamma & \doteq \operatorname{SO}(1,3 ; \mathbb{Z})=\mathrm{SO}(1,3) \cap \operatorname{SL}(4, \mathbb{Z}) \\ & =\left\{\boldsymbol{g} \in \operatorname{SL}(4, \mathbb{Z}) \mid \boldsymbol{g} I_{1,3} g^{T}=I_{1,3}\right\} \quad I_{1,3}=\left[{ }^{1}{ }^{-1}{ }^{-1}{ }_{-1}\right]\end{aligned}$
or ...
$\Gamma=G_{\mathbb{Z}}:=G \cap \operatorname{SL}(n, \mathbb{Z}) \quad$ for suitable $G \subset \operatorname{SL}(n, \mathbb{R})$.
Theorem ("Reduction Theory")
For suitable $G \subset \operatorname{SL}(n, \mathbb{R}), \Gamma$ is a lattice in G :
(1) Γ is discrete, and
(2) $\Gamma \backslash G$ has finite volume (maybe compact).
locally symmetric space $M=\Gamma \backslash X, X=G / K$
Best mflds are compact. Next best: finite volume.

Recall

Γ is a lattice in G : Γ is discrete, and $\Gamma \backslash G$ has finite volume.

Proposition

Γ is a torsion-free lattice in $G, \quad X=G / K$
$\Rightarrow M=\Gamma \backslash X$ is locally symmetric of finite volume.
So lattices are the fundamental groups
of finite-volume locally symmetric spaces.
And arithmetic groups are the lattices
that are easy to construct.

Compactness criterion

Observation

For $M=\Gamma \backslash X$ with $X=G / K$:
M is compact iff $\Gamma \backslash G$ is compact.
(Because $M=\Gamma \backslash G / K$ and K is compact.)
Say Γ is a cocompact lattice in G.

Proposition

$\Gamma \backslash G$ is not compact iff
$\exists g_{1}, g_{2}, g_{3}, \ldots \in G$ and
$\exists \gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots \in \Gamma^{\times}=\Gamma-\{e\}$, such that $g_{i}^{-1} \gamma_{i} g_{i} \rightarrow e$.

Relation to locally symmetric spaces
 Recall

$X=\mathbb{R}^{n}$ is a symmetric space.
(1) X is homogeneous: $\operatorname{Isom}(X)$ is transitive on X
(2) $\exists \phi \in \operatorname{Isom}(X), \phi$ has an isolated fixed point: $\phi(x)=-x \quad$ fixes only 0.

Example

$X=\mathbf{H}^{n}$ is also a symmetric space.
$\left(\operatorname{Isom}\left(\mathbf{H}^{n}\right) \approx \operatorname{SO}(1, n)\right)$

Exercise

$X=$ symmetric space (connected), $G=\operatorname{Isom}(X)^{\circ}$
$\Rightarrow X=G / K, \quad K$ compact.

$$
M=\Gamma \backslash X, X=G / K, \Gamma \text { a lattice in } G
$$

Henceforth, assume X has:

- no flat factors: $X \neq X_{1} \times \mathbb{R}^{n}$
- no compact factors: $X \neq X_{1} \times$ compact

Then G is semisimple with no compact factors and trivial center.
Fundamental grp provides topological info about any space. For locally symmetric spaces, it does much more: usually completely determines all of the topology and geometry.

> Mostow Rigidity Theorem

$$
\Gamma \backslash G \text { not compact iff } \exists g_{i}, \gamma_{i}, g_{i}^{-1} \gamma_{i} g_{i} \rightarrow e
$$

Proof (\Leftarrow).

Suppose $\Gamma \backslash G$ is compact.
For $a, b \in G$, let $a^{b}=a^{-1} b a$ ("conjugation of b by a "). Since $\Gamma \backslash G$ is compact, \exists cpct C with $\Gamma C=G$.
C is compact and Γ^{\times}is discrete, hence closed, so $\left(\Gamma^{\times}\right)^{C}$ is closed.
Therefore

$$
\begin{aligned}
& e \in \overline{g_{i}^{-1} \gamma_{i} g_{i}} \subset \overline{\left(\Gamma^{\times}\right)^{G}}=\overline{\left(\Gamma^{\times}\right)^{\Gamma C}} \\
& \quad=\overline{\left(\left(\Gamma^{\times}\right)^{\Gamma}\right)^{C}}=\overline{\left(\Gamma^{\times}\right)^{C}}=\left(\Gamma^{\times}\right)^{C} \nexists e . \quad \rightarrow \leftarrow
\end{aligned}
$$

$\Gamma \backslash G$ not compact iff $\exists g_{i}, \gamma_{i}, g_{i}^{-1} \gamma_{i} g_{i} \rightarrow e$

Corollary

$\mathrm{SL}(2, \mathbb{Z}) \backslash \mathrm{SL}(2, \mathbb{R})$ is not compact.
Proof.
Let $g_{i}=\left[\begin{array}{ll}i & \\ & 1 / i\end{array}\right]$ and $\gamma_{i}=\left[\begin{array}{ll}1 & 1 \\ & 1\end{array}\right]$. Then

$$
\begin{aligned}
g_{i}^{-1} \gamma_{i} g_{i} & =\left[\begin{array}{ll}
1 / i & \\
& i
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]\left[\begin{array}{ll}
i & \\
& 1 / i
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 1 / i^{2} \\
& 1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
& 1
\end{array}\right]=e .
\end{aligned}
$$

Similarly, $\operatorname{SL}(n, \mathbb{Z}) \backslash \operatorname{SL}(n, \mathbb{R})$ is not compact (if $n \geq 2$).

Corollary (Godement Criterion)

$\Gamma \backslash G$ not cpct iff Γ has nontrivial unipotent elements.
The proof of the other direction (\Leftarrow) depends on a fundamental fact from Lie theory:
Theorem (Jacobson-Morosov Lemma)
If u is any unipotent element of G
(connected semisimple Lie group in $\operatorname{SL}(n, \mathbb{R})$) then there is a continuous homomorphism

$$
\rho: \operatorname{SL}(2, \mathbb{R}) \rightarrow G \text { with } \rho\left(\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]\right)=u \text {. }
$$

Proof of
dement (\Leftrightarrow) Let $\gamma_{i}=u \in \Gamma$ and $g_{i}=\rho\left(\left[\begin{array}{ll}i & \\ & 1 / i\end{array}\right]\right)$.

Proposition (Selberg's Lemma)

Γ is virtually torsion-free:
\exists finite-index subgrp $H<\Gamma, \quad H$ is torsion-free. (no nontrivial elements of finite order)

Proof.
Define $\rho_{3}: \Gamma \rightarrow \operatorname{SL}\left(n, \mathbb{Z}_{3}\right)$ and let $H=\operatorname{ker}\left(\rho_{3}\right)$. It suffices to show H is torsion-free.
Let $h \in H$, write $h=\operatorname{Id}+3^{k} T, T \not \equiv 0(\bmod 3)$.

$$
\begin{aligned}
h^{m} & =\left(\operatorname{Id}+3^{k} T\right)^{m} \\
& =\operatorname{Id}+m\left(3^{k} T\right)+\binom{m}{2} 3^{2 k} T^{2}+\cdots \\
& \equiv \operatorname{Id}+3^{k} m T\left(\bmod 3^{k+\ell+1}\right) \quad \text { if } 3^{\ell} \mid m \\
& \equiv \operatorname{Id}\left(\bmod 3^{k+\ell+1}\right) \quad \text { if } 3^{\ell+1} \nmid m .
\end{aligned}
$$

$\Gamma \backslash G$ not compact iff $\exists g_{i}, \gamma_{i}, g_{i}^{-1} \gamma_{i} g_{i} \rightarrow e$

Corollary (Godement Criterion)

$\Gamma \backslash G$ is compact iff Γ has no unipotent elements.

Definition

$u \in \operatorname{SL}(n, \mathbb{R})$ is unipotent: $\quad(u-\mathrm{Id})^{n}=0$.
Equivalently, 1 is the only eigenvalue of u, so

$$
u \text { is conjugate to }\left[\begin{array}{llll}
1 & & * \\
& \ddots & \\
0 & & 1
\end{array}\right]
$$

Congruence Subgroups

We will use a construction known as

> "congruence subgroups"
to prove two basic properties of arithmetic groups.
(1) Γ is residually finite
Γ is virtually torsion-free

Finite presentation

Proposition

Γ is finitely presented:
$\Gamma=\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m} \mid w_{1}, w_{2}, \ldots, w_{r}\right\rangle$.

Proof of finite generation.

Fund grp of any compact mfld is finitely generated:

$$
\pi: \widetilde{M} \rightarrow M, \quad \exists \operatorname{cpct} C \subset \widetilde{M}, \pi(C)=M
$$

Let $S=\{\gamma \in \Gamma \mid \gamma C \cap C \neq \varnothing\}$. (Γ prop disc, so S finite!)
Then $\Gamma=\langle S\rangle$:
Given $\gamma \in \Gamma$. Since M is connected, \exists chain
$C, \gamma_{1} C, \gamma_{2} C, \ldots, \gamma_{n} C=\gamma C$, with $\gamma_{k} C \cap \gamma_{k+1} C \neq \varnothing$.
So $\gamma_{1} \in S, \gamma_{1}^{-1} \gamma_{2} \in S, \ldots, \gamma_{n}^{-1} \gamma \in S$.
Therefore $\gamma=\gamma_{1}\left(\gamma_{1}^{-1} \gamma_{2}\right) \cdots\left(\gamma_{n}^{-1} \gamma\right) \in\langle S\rangle$.

Corollary (Godement Criterion)

$\Gamma \backslash G$ not cpct iff Γ has nontrivial unipotent elements.

Proof (\Rightarrow).

$\exists g_{i} \in G$ and $\gamma_{i} \in \Gamma^{\times}$with $g_{i}^{-1} \gamma_{i} g_{i} \rightarrow \mathrm{Id}$.
(1) Char poly of Id is $\operatorname{det}(\lambda-\mathrm{Id})=(\lambda-1)^{n}$.
(2) $\gamma_{i} \in \operatorname{SL}(n, \mathbb{Z}) \Longrightarrow$ char poly of γ_{i} has \mathbb{Z} coeffs.
(3) Similar matrices have same characteristic poly, so the char poly of $g_{i}^{-1} \gamma_{i} g_{i}$ also has \mathbb{Z} coeffs.
(4) char poly of $g_{i}^{-1} \gamma_{i} g_{i} \rightarrow$ char poly of Id and both have \mathbb{Z} coefficients.
So the two char polys are equal (if i is large).
(5) Therefore, the char poly of γ_{i} is $(\lambda-1)^{n}$.

So the only eigenvalue of γ_{i} is 1 .

Proposition

Γ is residually finite:
$\forall \gamma \in \Gamma^{\times}, \exists$ finite-index subgrp $H<\Gamma, \quad \gamma \notin H$.
Proof.
$\gamma-\operatorname{Id} \neq 0$, so $\exists(\gamma-\mathrm{Id})_{i j} \neq 0$.
Choose $N \nmid(\gamma-\mathrm{Id})_{i j}=\gamma_{i j}-\operatorname{Id}_{i j}$.
Ring homo $\mathbb{Z} \rightarrow \mathbb{Z}_{N}$ yields $\operatorname{SL}(n, \mathbb{Z}) \rightarrow \operatorname{SL}\left(n, \mathbb{Z}_{N}\right)$. Let $\rho_{N}: \Gamma \rightarrow \operatorname{SL}\left(n, \mathbb{Z}_{N}\right)$ be the restriction to Γ. Since \mathbb{Z}_{N} finite, obvious that $\operatorname{SL}\left(n, \mathbb{Z}_{N}\right)$ is finite.
Let $H=\operatorname{ker} \rho_{N}$. Then $\Gamma / H \cong \operatorname{img}\left(\rho_{N}\right)$ is finite. So H is a finite-index subgroup.
By choice of $N, \rho_{N}(\gamma)_{i j} \neq \rho_{N}(\mathrm{Id})_{i j}$, so $\rho_{N}(\gamma) \neq \mathrm{Id}$. So $\gamma \notin \operatorname{ker}\left(\rho_{N}\right)=H$.
Terminology: $\operatorname{ker}\left(\rho_{N}\right)$ is a (principal) congruence subgroup of Γ.,
Γ is finitely generated (if M is compact) because $S=\{\gamma \in \Gamma \mid \gamma C \cap C \neq \varnothing\}$ is finite.

For noncompact case, can construct a nice
fundamental domain for Γ in X :
$\Gamma C=X,\{\gamma \in \Gamma \mid \gamma C \cap C \neq \varnothing\}$ is finite.
Furthermore, C is open.

- Finite generation follows from above argument.
- Finite presentation follows from
a more sophisticated argument (since X is connected, locally connected, and simply connected)
[Platonov-Rapinchuk, Thm. 4.2, p. 195]

Introduction to Arithmetic Groups 3

- noncompactness via isotropic vectors
- \mathbb{Q}-rank and the asymptotic cone
- cocompact arithmetic subgroups of $\mathrm{SO}(1, n)$ (restriction of scalars)

For further reading, see D. W. Morris, Introduction to Arithmetic Groups. http://people.uleth.ca/~dave.morris/books/IntroArithGroups.html More advanced:
V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, 1993.
C. Maclachlan and A. Reid, The Arithmetic of Hyperbolic 3-Manifolds, Springer, 2002.
\qquad
$G=\operatorname{SO}(Q)$ and $\Gamma=\operatorname{SO}(Q ; \mathbb{Z})$.
$\Gamma \backslash G$ is not compact $\Longleftrightarrow \exists v \in\left(\mathbb{Q}^{n}\right)^{\times}, Q(v)=0$.

Example

$\Gamma=\mathrm{SO}(1,3 ; \mathbb{Z}) \Rightarrow \Gamma \backslash \mathbf{H}^{3}$ is not compact.
Proof: $Q\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}$,
so $Q(1,1,0,0)=1^{1}-1^{2}-0^{2}-0^{2}=0$.

Example

Let $Q(\vec{x})=7 x_{0}^{2}--x_{1}^{2} x_{2}^{2}-x_{3}^{2}$ and $\Gamma=\operatorname{SO}(Q ; \mathbb{Z})$.
Then $\Gamma \backslash \mathbf{H}^{3}$ is compact.
Proof: 7 is not a sum of 3 squares (in \mathbb{Q}), so Q has no isotropic vectors.

Example

Suppose $\mathbb{Q}-\operatorname{rank}(\Gamma)=0$. Then \nexists isotropic \mathbb{Q}-vector. so $M=\Gamma \backslash X$ is compact.
Look at $\Gamma \backslash X$ from a large distance.

$\Gamma \backslash X$ compact \Rightarrow limit is a point.

$$
\therefore \text { dimension of limit }=0=\mathbb{Q}-\operatorname{rank}(\Gamma) .
$$

Definition

asymptotic cone of metric space (M, d)
$=\lim _{t \rightarrow \infty}\left(\left(M, \frac{1}{t} d\right), m_{0}\right)$.

Noncompactness via isotropic vectors

Example

$\Gamma=S O(1,3 ; \mathbb{Z})$ is an arithmetic subgroup of $\mathrm{SO}(1,3)$. (provides hyperbolic 3-manifold $M=\Gamma \backslash \mathbf{H}^{3}$)

$$
\text { Is } M \text { compact? }
$$

Proposition

Spse $Q(\vec{x})$ is a (nondegenerate) quadratic form over \mathbb{Z}
(e.g., $\left.Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-3 x_{2}^{2}-7 x_{3}^{2}\right)$

Let $G=\operatorname{SO}(Q)$ and $\Gamma=\operatorname{SO}(Q ; \mathbb{Z})$.
Then $\Gamma \backslash G$ is not compact \Leftrightarrow
\exists isotropic \mathbb{Q}-vectors: $Q(v)=0$ with $v \neq 0$.

Example

Let $Q(\vec{x})=7 x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}$ and $\Gamma=\operatorname{SO}(Q ; \mathbb{Z})$.
Then $\Gamma \backslash \mathbf{H}^{3}$ is compact. (bcs 7 is not a sum of 3 squares)
Recall: Every positive integer is a sum of 4 squares. So this method will not construct
compact hyperbolic n-manifolds for $n>3$.

Fact from Number Theory

If $Q\left(x_{1}, \ldots, x_{n}\right)$ is a quadratic form over \mathbb{Z},
with $n \geq 5$, and Q is isotropic over \mathbb{R}, then Q is isotropic.

Need to do something more sophisticated.
(Return to this later: "restriction of scalars")

Example

Spse $\Gamma \subset \operatorname{SO}(1, n)$, and $\Gamma \backslash \mathbf{H}^{n}$ not compact.
$\Gamma \backslash \mathbf{H}^{n}$ has finitely many cusps.

Limit = "star" of finitely many rays. \therefore dimension of limit $=1=\mathbb{Q}-\operatorname{rank}(\Gamma)$.

Theorem (Hattori)

Asymptotic cone of $\Gamma \backslash X$ is a simplicial complex whose dimension is $\mathbb{Q}-\operatorname{rank}(\Gamma)$.
$G=\mathrm{SO}(Q)$ and $\Gamma=\mathrm{SO}(Q ; \mathbb{Z})$.
$\Gamma \backslash G$ is not compact $\Longleftrightarrow \exists v \in\left(\mathbb{Q}^{n}\right)^{\times}, Q(v)=0$.

Proof (\Rightarrow).

Godement Criterion: \exists unipotent $u \in \Gamma$.
Jacobson-Morosov (over \mathbb{Q}):

$$
\begin{aligned}
& \exists \rho: \operatorname{SL}(2, \mathbb{Q}) \rightarrow G_{\mathbb{Q}} \text { with } \rho\left(\left[\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right]\right)=u . \\
& \text { Let } a=\rho\left(\left[\begin{array}{ll}
2 & \\
& 1 / 2
\end{array}\right]\right) .
\end{aligned}
$$

Algebraic Group Thry: a is diagonalizable over \mathbb{Q}, so a has eigenvector $v \in \mathbb{Q}^{n}$ with eigenval $\lambda \neq \pm 1$.
Then $Q(v)=Q\left(a^{k} v\right)=Q\left(\lambda^{k} v\right)=\lambda^{2 k} Q(v) \rightarrow 0$.
So $Q(v)=0$.

\mathbb{Q}-rank and the asymptotic cone

$G=\mathrm{SO}(Q)$ and $\Gamma=\mathrm{SO}(Q ; \mathbb{Z})$.
$\Gamma \backslash G$ is not compact $\Longleftrightarrow \exists v \in\left(\mathbb{Q}^{n}\right)^{\times}, Q(v)=0$.

Definition

Let $\Gamma=\operatorname{SO}(Q ; \mathbb{Z})$.

- $V \subset \mathbb{Q}^{n}$ is totally isotropic if $Q(V)=0$.
- \mathbb{Q}-rank $(\Gamma)=\max \operatorname{dim}$ tot isotrop \mathbb{Q}-subspace.

Example

Suppose $\mathbb{Q}-\operatorname{rank}(\Gamma)=0$. Then \nexists isotropic \mathbb{Q}-vector. so $M=\Gamma \backslash X$ is compact.

Theorem (Hattori)

Asymptotic cone of $\Gamma \backslash X$ is a simplicial complex whose dimension is $\mathbb{Q}-\operatorname{rank}(\Gamma)$.

More precisely, the asymptotic cone of $\Gamma \backslash X$ is equal to the cone on the "Tits building" of parabolic \mathbb{Q}-subgroups of G.

Remark

$\Gamma \backslash X$ is quasi-isometric to its asymptotic cone.

Remark

Another important application of \mathbb{Q}-rank: cohomological dimension of $\Gamma=\operatorname{dim} X-\mathbb{Q}-\operatorname{rank}(\Gamma)$ (if Γ is torsion-free)

Cocompact lattices in $\mathrm{SO}(1, n)$

Example

Let

- $\alpha=\sqrt{2}$,
- $Q(\vec{x})=x_{0}^{2}-\alpha x_{1}^{2}-\alpha x_{2}^{2}-\cdots-\alpha x_{n}^{2}$,
- $G=\operatorname{SO}(Q) \cong \operatorname{SO}(1, n)$,
- $\Gamma=G_{\mathbb{Z}[\alpha]}=G \cap \operatorname{SL}(n+1, \mathbb{Z}[\alpha])$.

Then Γ is a cocompact arithmetic subgroup of G.
Later: why Γ is an arithmetic subgroup.
Key observation for compactness
Q has no isotropic $\mathbb{Q}(\alpha)$-vectors.

Definition of arithmeticity

Recall
Arithmetic subgroup:
$\Gamma=G_{\mathbb{Z}}:=G \cap \operatorname{SL}(n, \mathbb{Z}) \quad$ for suitable $G \subset \operatorname{SL}(n, \mathbb{R})$.
We always assume G is semisimple, connected.

Theorem

G is (almost) Zariski closed
(defined by polynomial functions on $\operatorname{Mat}_{n \times n}(\mathbb{R})$)

Example

$\operatorname{SL}(2, \mathbb{R})=\left\{A \in \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \mid \operatorname{det} A=1\right\}$ and $\operatorname{det} A=a_{1,1} a_{2,2}-a_{1,2} a_{2,1}$ is a polynomial.

Restriction of scalars

Recall

$\alpha=\sqrt{2}, Q(\vec{x})=x_{0}^{2}-\alpha x_{1}^{2}-\alpha x_{2}^{2}-\cdots-\alpha x_{n}^{2}$,
$G=\operatorname{SO}(Q ; \mathbb{R}), \Gamma=\operatorname{SO}(Q ; \mathbb{Z}[\alpha])$.
Want to show Γ is an arithmetic subgroup of G.
As an warm-up, let us show $\operatorname{SL}(2, \mathbb{Z}[\alpha])$ is \cong an arithmetic subgroup of $\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})$.
$\alpha=\sqrt{2}, Q(\vec{x})=x_{0}^{2}-\alpha x_{1}^{2}-\alpha x_{2}^{2}-\cdots-\alpha x_{n}^{2}$

Key observation for compactness

Q has no isotropic $\mathbb{Q}(\alpha)$-vectors.

Proof.

Suppose $Q(v)=0$.
Galois auto of $\mathbb{Q}(\alpha):(a+b \alpha)^{\sigma}=a-b \alpha$.

$$
Q^{\sigma}(\vec{x})=x_{0}^{2}+\alpha x_{1}^{2}+\alpha x_{2}^{2}+\cdots+\alpha x_{n}^{2} .
$$

$0=Q(v)^{\sigma}$
$=\left(v_{0}^{\sigma}\right)^{2}+\alpha\left(v_{1}^{\sigma}\right)^{2}+\cdots+\alpha\left(v_{n}^{\sigma}\right)^{2}$
$=Q^{\sigma}\left(v^{\sigma}\right)$.
Since all coefficients of Q^{σ} are positive, must have $v^{\sigma}=0$.
So $v=0$.

Definition

G is defined over \mathbb{Q} :
G is defined by polynomial funcs with coeffs in \mathbb{Q}.

Example

- $\operatorname{SL}(n, \mathbb{R})$ is defined over \mathbb{Q}.
- $\operatorname{SO}(1, n)$ is defined over \mathbb{Q}.
- Let $\alpha=\sqrt{2}$ and $Q(\vec{x})=x_{0}^{2}-\alpha x_{1}^{2}-\alpha x_{2}^{2}$

Then $G=\operatorname{SO}(Q)$ is not defined over \mathbb{Q}.
(It is defined over $\mathbb{Q}[\alpha]$.)
Definition (starting point)
$G_{\mathbb{Z}}$ is an arithmetic subgroup of G
if G is defined over \mathbb{Q}.

Example

- $\Gamma=\operatorname{SL}(2, \mathbb{Z}[\alpha])$, with $\alpha=\sqrt{2}$,
- $G=\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})$,
- $\sigma=$ Galois automorphism of $\mathbb{Q}[\alpha]$,
- $\Delta: \Gamma \rightarrow G: \gamma \mapsto\left(\gamma, \gamma^{\sigma}\right)$.

Then Γ^{Δ} is an arithmetic subgroup of G.

Outline of proof.

Since $\left\{1^{\Delta}, \alpha^{\Delta}\right\}=\{(1,1),(\alpha,-\alpha)\}$ is linearly indep, $\exists T \in \mathrm{GL}(2, \mathbb{R})$ with $T\left(\mathbb{Z}[\alpha]^{\Delta}\right)=\mathbb{Z}^{2}$.
$\widehat{T}=T \oplus T \in \mathrm{GL}(4, \mathbb{R})$ has $\hat{T}\left(\mathbb{Z}[\alpha]^{\Delta}\right)^{2}=\left(\mathbb{Z}^{2}\right)^{2}=\mathbb{Z}^{4}$. So $\left(\hat{T} \Gamma^{\Delta} \hat{T}^{-1}\right)\left(\mathbb{Z}^{4}\right)=\mathbb{Z}^{4}$, so $\hat{T} \Gamma^{\Delta} \hat{T}^{-1} \subset \mathrm{SL}(4, \mathbb{Z})$.
In fact, $\hat{T} \Gamma^{\Delta} \hat{T}^{-1}=\operatorname{SL}(4, \mathbb{Z}) \cap \hat{T} G \hat{T}^{-1}$, and $\hat{T} G \hat{T}^{-1}$ is So Γ^{Δ} is an arithmetic subgroup of G.

More general

- $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ algebraic integers, s.t. - $\alpha_{0}>0$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}<0$
- \forall Galois aut σ of $\mathbb{Q}\left(\alpha_{0}, \ldots, \alpha_{n}\right)$,
$\alpha_{0}^{\sigma}, \ldots, \alpha_{n}^{\sigma}$ all have the same sign
Then (all positive or all negative)
- $G=\operatorname{SO}\left(\alpha_{0} x_{0}^{2}+\cdots+\alpha_{n} x_{n}^{2} ; \mathbb{R}\right) \cong \operatorname{SO}(1, n)$,
- $\Gamma=G_{\mathbb{Z}\left[\alpha_{0}, \ldots, \alpha_{n}\right]}$ is a cocpct arith subgrp of G.

If n is even, this construction provides all of the cocompact arithmetic subgroups of $\mathrm{SO}(1, n)$.

For n odd, also need $\mathrm{SO}(Q$; quaternion algebra) (And $n=7$ has additional "triality" subgroups.)

Definition (starting point)

$G_{\mathbb{Z}}$ is an arithmetic subgroup of G if G is defined over \mathbb{Q}.

Complete definition is more general; it ignores:

- compact factors of G, and
- differences by only a finite group.

Definition

Spse $G \times K \rightarrow \operatorname{SL}(n, \mathbb{R})$, defined over \mathbb{Q}, with K cpct. Let $\Gamma^{\prime}=$ image of $(G \times K)_{\mathbb{Z}}$ in G.
Any subgroup Γ of G that is commensurable with Γ^{\prime} ($\Gamma \cap \Gamma^{\prime}$ has finite index in both Γ and Γ^{\prime})
is an arithmetic subgroup of G.
$\alpha=\sqrt{2}, Q(\vec{x})=x_{0}^{2}-\alpha x_{1}^{2}-\alpha x_{2}^{2}-\cdots-\alpha x_{n}^{2}$,
$G=\operatorname{SO}(Q ; \mathbb{R}), \Gamma=\operatorname{SO}(Q ; \mathbb{Z}[\alpha])$.

Want to show Γ is an arithmetic subgroup of G.

Idea of proof.

Galois aut of $\mathbb{Q}(\alpha):(a+b \alpha)^{\sigma}=a-b \alpha$.

$$
G^{\sigma}=\operatorname{SO}\left(x_{1}^{2}+x_{2}^{2}+\alpha x_{3}^{2}+\alpha x_{4}^{2}+\alpha x_{5}^{2}\right) \cong \mathrm{SO}(5) .
$$

Map $\Delta: z \mapsto\left(z, z^{\sigma}\right)$ gives $\Gamma^{\Delta} \subset G \times G^{\sigma}$.
After change of basis (mapping $\left(\mathbb{Z}[\alpha]^{\Delta}\right)^{n}$ to $\mathbb{Z}^{2 n}$),
we have $\Gamma^{\Delta}=\operatorname{SL}(n, \mathbb{Z}) \cap\left(G \times G^{\sigma}\right)$
so Γ^{Δ} is an arithmetic subgroup of $G \times G^{\sigma}$.
Can mod out the compact group G^{σ},
so Γ is arithmetic subgroup of G.

Restriction of scalars

Suppose

- G is defined over $\mathbb{Q}(\alpha) \quad$ (algebraic number field),
- $\sigma_{1}, \ldots, \sigma_{n}: \mathbb{Q}(\alpha) \rightarrow \mathbb{C}$ are the $\begin{gathered}\text { noncon- } \\ \text { jugate }\end{gathered}$ embeddings.

Then

- $G^{*}=G^{\sigma_{1}} \times G^{\sigma_{2}} \times \cdots \times G^{\sigma_{n}}$ is defined over \mathbb{Q}, and
- $G_{\mathbb{Z}[\alpha]}$ is isomorphic to $\left(G^{*}\right)_{\mathbb{Z}}$
via the map $\Delta: \gamma \mapsto\left(\gamma^{\sigma_{1}}, \gamma^{\sigma_{2}}, \ldots, \gamma^{\sigma_{n}}\right)$.
We assume here that $\mathbb{Z}[\alpha]$ is the entire ring of integers of $\mathbb{Q}(\alpha)$
Example: If $Q(\vec{x})$ has coefficients in $\mathbb{Q}(\alpha)$, then $\operatorname{SO}(Q ; \mathbb{Z}[\alpha])$ is an arithmetic subgroup of a product of orthogonal groups.

