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Throughout this talk:

M = compact, orientable 3-manifold with
∂M = incompressible tori, ∂M 6= ∅.

Theorem (Thurston): M irreducible, atoroidal, acylindrical =⇒
int M has a complete hyperbolic structure of finite volume.

Mostow-Prasad Rigidity: This hyperbolic structure is unique up
to isometry. (So geometric invariants are topological invariants).

Problem: How to compute such hyperbolic structures?



Powerful technique (Thurston, Weeks)

Use “ideal triangulations” of M:

• decompose int M topologically into ideal tetrahedra:

• try to find shapes for ideal tetrahedra in hyperbolic space H3

which fit together correctly to give a hyperbolic structure for
M.

In practice, this works extremely well
– see Jeff Weeks’ program SnapPea!



Open questions:

Assume M complete hyperbolic (as above).

Q1. Is there an ideal triangulation T of M by positively oriented
ideal hyperbolic tetrahedra?

Yes, if we allow some flat ideal tetrahedra with vertices contained
in H2 ⊂ H3: subdivide the “canonical” idea cell decomposition
[Epstein-Penner], dual to the Ford complex.

Yes, if we replace M by a finite sheeted cover
[Luo-Schleimer-Tillmann].

Q1’. If so, construct such a T algorithmically from a topological
description of M.



Q2. Given a topological ideal triangulation T of M, can T be
realized geometrically (i.e. by postively oriented ideal hyperbolic
tetrahedra)?

This implies, for example, that the edges of T are isotopic to
geodesics in M.

Today, we describe an approach to Q2 by maximizing volume in a
space of singular hyperbolic structures on M.

This uses ideas of Rivin [Ann. of Math, 1994] for studying convex
ideal polyhedra in H3 with prescribed dihedral angles.



Shapes of ideal tetrahedra in H3

are described by 3 dihedral angles α, β, γ such that

α + β + γ = π.

Opposite edges have the same dihedral angle.

(Choosing horospherical cross sections around vertices gives
Euclidean triangles with angles α, β, γ.)

Thus, the shapes are parametrized by

∆ := {(α, β, γ) : 0 < α, β, γ < π, α + β + γ = π} ⊂ R3



Consider M as above (∂M = tori) with a topological ideal
triangulation T .

Let
n = # tetrahedra in T .

Then n = # edges in T , since χ(M) = 0.

Choosing shapes for the ideal tetrahedra gives a point in

∆n = ∆× . . .×∆ ⊂ R3n.

The faces (ideal triangles in H3) can always be glued by isometries
to give a hyperbolic structure on

M − { edges in T }.



For a complete hyperbolic structure on M we need:

(1) sum of dihedral angles = 2π around each edge,

(2) no translational singularities (“shearing”) along each edge,

(3) completeness at each “cusp” (i.e. near each torus in ∂M).

Condition (1) is easy to understand.

Condition (2) means we can choose horospherical triangles fitting
together around each edge.

Condition (3) is similar: there must be a horospherical torus at
each cusp.



To solve these equations, we break the problem into two parts.
Step 1. Solve the linear angle sum equations (1).

This is a linear programming problem — solve linear equations and
inequalities to obtain a convex polytope

A(T ) = { “angle structures” on T }
⊂ ∆n ⊂ R3n,

with compact closure A(T ) ⊂ ∆
n
.

These angle structures were introduced by Casson and Rivin, and
have been used by Lackenby, Guéritaud, Futer and others.



Geometrically, these give hyperbolic structures with “shearing”
type singularities along the edges of T .



Example: The figure eight knot complement
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The edge equations are:

z2z ′w2w ′ = 1, z ′(z ′′)2w ′(w ′′)2 = 1

or

2 log(z) + log(z ′) + log(w) + 2 log(w ′) = 2πi ,

log(z ′) + 2 log(z ′′) + log(w ′) + 2 log(w ′′) = 2πi .

Taking the imaginary part gives the equations for angle structures.



Write

α1 = arg(z), β1 = arg(z ′), γ1 = arg(z ′′),

α2 = arg(w), β2 = arg(w ′), γ2 = arg(w ′′).

Then angle structures satisfy the equations

2α1 + β1 + 2α2 + β2 = 2π

β1 + 2γ1 + β2 + 2γ2 = 2π

α1 + β1 + γ1 = π

α2 + β2 + γ2 = π

and inequalities

αi > 0, β1 > 0, γi > 0 for i = 1, 2.



Casson, Rivin: Existence of an angle structure on M implies that
∂M consists of tori and Klein bottles, and that M is irreducible
and atoroidal.

Duality results for linear programming imply that angle structures
can also be characterized in terms of normal surfaces in the
triangulation T [Luo-Tillmann].

Angle structures can be computed using Ben Burton’s program
“Regina”.



Step 2: Solve the non-linear equations (2) and (3).

We define a volume function

V : A(T )→ R

by adding up the hyperbolic volumes of the ideal tetrahedra in H3

given by a point in A(T ).
For an ideal tetrahedron in H3 with dihedral angles α, β, γ we have:

Vol = Λ(α) + Λ(β) + Λ(γ),

where

Λ(α) = −
∫ α

0
log(2 sin t) dt

is the “Lobachevsky function”. (See [Milnor].)
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Graph of Lobachevsky function for −π ≤ α ≤ π



Exercise: Prove that the regular ideal tetrahedron is the unique
tetrahedra in H3 of maximal volume (≈ 1.0149...).

Hint: Need to maximize

Λ(α) + Λ(β) + Λ(γ)

subject to the constraint

α + β + γ = π.



Then V : A(T )→ R satisfies:

1. V is a continuous function on the compact set A(T ), so
attains a maximum on A(T ).

2. V is strictly concave down on A(T ) [Rivin], so this maximum
is unique if it occurs in A(T ).

3. Theorem [Rivin, Chan-Hodgson]
If V attains its maximum at a point in A(T ), then this gives
the (unique) complete hyperbolic structure on M.



So if we can find an ideal triangulation T of M such that

1. A(T ) 6= ∅, and

2. V has no maximum on the boundary ∂A(T ) ⊂ A(T ),

then M has a complete hyperbolic structure where T consists of
positively oriented ideal hyperbolic tetrahedra.

This program has been carried out very successfully for
once-punctured torus bundles and for 2-bridge knot complements
in remarkable work of Guéritaud and Futer.

Conjecture (Rivin?) M irreducible, atoroidal, acylindrical =⇒
there exists T such that A(T ) 6= ∅.



Outline of Proof of Theorem:

Write A = A(T ), and let n = # tetrahedra = # edges in T .

Angle sums around edges give a linear function

g : ∆n ⊂ R3n → Rn

such that A = g−1(∗), ∗ = (2π, . . . , 2π).

Notation:

• Identify each tangent space Tx∆n with a 2n-dimensional
subspace W of R3n with its induced Euclidean inner product.

• Regard each derivative dgx as a linear map

g∗ : W → Rn

with adjoint g∗ : Rn →W .



Step 1: Use Lagrange multipliers.
Hyperbolic volume gives V : ∆n → R.
The restriction V

∣∣A has a critical point at x

=⇒ grad V ⊥ A at x

=⇒ grad V ∈ (TxA)⊥

= (ker g∗)
⊥ = Im g∗.

So
grad V = g∗(λ)

for some λ ∈ Rn. (These are the Lagrange multipliers!)



Step 2: Use the sine law to rewrite the no translation conditions
in terms of dihedral angles, then in terms of grad V .

The developing map around an edge gives:

Sine Law ⇒ `i
`i−1

=
sinβi

sin γi



So the translation distance along the edge is

t = log

(
`m
`0

)
=

∑
i

log(`i )− log(`i−1)

=
∑

i around edge

log(2 sinβi )− log(2 sin γi )

=
∑

i around edge

(
−∂V

∂βi
+
∂V

∂γi

)
,

since the volume V is a sum of Lobachevsky functions

Λ(θ) = −
∫ θ

0
log(2 sin t) dt

with derivative
Λ′(θ) = − log(2 sin θ).



Conclusion: The translational holonomies around the edges are

g∗J(grad V ) ∈ Rn

where J : W = Tx∆n →W satisfies J2 = −3I .

Explicitly,

J =

 0 −1 1
1 0 −1
−1 1 0


restricted to each Tx∆ ⊂ R3.



Step 3: Use the results of Neumann and Zagier [Topology ’85] on
combinatorics of ideal triangulations to conclude that the “no
translation” conditions hold.

From steps 1 and 2, the translational holonomies at the edges are

g∗J(grad V ) = g∗Jg∗(λ) = 0,

since
g∗Jg∗ = 0

by Neumann-Zagier.

The completeness conditions are proved similarly.



Remarks:

1. This argument gives an elementary proof of a version of
Mostow-Prasad Rigidity, provided M has a positively oriented
ideal hyperbolic triangulation T .

2. There’s also a converse:
Theorem (Schlenker) If an angle structure A ∈ A(T ) realizes
the complete hyperbolic structure on M, then A is a critical
point of V on A(T ).

3. Hyperbolic structures for Dehn fillings on M can be obtained
by a similar volume maximization procedure: maximize V on
the slice of A where the rotational part of the holonomy is 2π
for each surgery curve [Chan-Hodgson].



Some Open Problems

1. Find topological conditions on an ideal triangulation
guaranteeing existence of a hyperbolic structure with all the
tetrahedra positively oriented (or flat).

The canonical cell decomposition of a cusped hyperbolic
3-manifold gives this.

Do minimal triangulations always have this property? If not, add
extra conditions.



2. Find a practical algorithm for testing commensurability and
finding commensurators of closed hyperbolic 3-manifolds and
orbifolds.

Number theory gives powerful invariants (e.g. invariant trace field,
quaternion algebras), but not complete except for arithmetic
manifolds.

Snap has algorithms for cusped manifolds, using canonical cell
decompositions. [Goodman, Heard, Hodgson, Exper. Math. 17
(2008)]

Naive algorithms (finding all coverings up to some index) not
practical.



3. Show that every closed hyperbolic 3-manifold contains infinitely
many simple closed geodesics.

S. Kuhlmann showed this is true for orientable cusped hyperbolic
3-manifolds [Alg. Geom Top. 6 (2006)]

It is also is known for many closed manifolds (e.g. Kuhlmann
[Geom. Dedicata 131 (2008)], Chinburg-Reid).
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