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Invariants for 3-manifolds

The following crucial theorem shows that the

geometry of a hyperbolic manifold is a topo-

logical invariant in dimensions 3 and above.

Mostow-Prasad Rigidity Theorem

IfM1,M2 are hyperbolic manifolds of finite vol-

ume, of dimension≥ 3, and π1(M1) ∼= π1(M2),

then M1 and M2 are isometric.

Hence all geometric invariants of the hyper-

bolic structure (e.g. volume, the set of lengths

of closed geodesics) are actually topological

invariants.



Analytic invariants such as the set of eigenval-

ues of the Laplacian are also topological in-

variants.

Further, if M = H3/Γ where Γ ⊂ PSL2(C),

then the group Γ is unique up to conjugation

in PSL2(C). Hence algebraic invariants of Γ

are topological invariants of M , e.g.

the trace field Q({trγ : γ ∈ Γ}),

the invariant trace field Q({tr2γ : γ ∈ Γ})

In fact, these are both algebraic number fields

(i.e. finite degree extensions of Q). The invari-

ant trace field is a commensurability invariant

(i.e. invariant under finite sheeted covers).



Hyperbolic volume

The volume is very good way of distinguish-

ing hyperbolic 3-manifolds, and is an excellent

measure of the complexity of a manifold. It

is not a complete invariant, but there are only

finitely many manifolds of any given volume.

Theorem [Thurston and Jørgensen]

Let H be the set of isometry classes of com-

plete orientable hyperbolic 3-manifolds of finite

volume. The volume function vol : H → R is

finite to one, and its image is well-ordered (i.e.

each subset has a smallest element), closed,

and of order type ωω.



Thus, the set of volumes is ordered as follows:

0 < v0 < v1 < . . . < vω < vω+1 < . . .

< v2ω < . . . < v3ω < . . . < vω2 < . . . .

The general index is a polynomial in ω with

coefficients in {0,1,2,3, . . .}.

Here v0 is the smallest volume of any orientable

hyperbolic 3-manifold, v1 is the next lowest

volume, etc. vω is the first limit volume, and

represents the volume of the smallest cusped

hyperbolic 3-manifold Mω. Performing Dehn

filling on Mω produces a collection of closed

hyperbolic manifolds of volumes less than vω

but whose limit is vω.



A few of the lowest volumes are known. Cao

and Meyerhoff have shown that vω = 2.02988 . . ..

This is the volume of the figure eight knot com-

plement (and another closely related manifold).

Finding v0 was an outstanding problem for nearly

30 years. Very recently, Gabai-Milley-Meyerhoff

have proved that

v0 = 0.9427 . . . ,

where the right hand side represents the vol-

ume of the “Weeks manifold”, obtained by

(5,-1), (5,2) surgery on the Whithead link.



The Thurston-Jørgensen Theorem follows from

the hyperbolic Dehn surgery theorem, and the

following:

Theorem For any bound V > 0 there is a fi-

nite collection of hyperbolic 3-manifolds such

that every hyperbolic 3-manifold of volume ≤

V results from Dehn surgery on a member of

this collection.

Making this result more explicit should eventu-

ally lead to a reasonable classification of hy-

perbolic 3-manifolds, e.g. a list of the lowest

volume manifolds.



Recent work by Gabai-Meyerhoff-Milley, using

their “Mom technology” has made great progress

in this direction:

Theorem [Gabai, Meyerhoff, Milley]

Let N be a one-cusped orientable hyperbolic

3-manifold with V ol(N) ≤ 2.848. Then N

can be obtained by Dehn filling one of 21 (known)

cusped hyperbolic 3-manifolds.

This leads to the proof that the Weeks mani-

fold is the unique closed orientable hyperbolic

3-manifold of lowest volume. (This is an arith-

metic manifold!)



More on hyperbolic Dehn Filling

Let M be a 1-cusped hyperbolic 3-manifold,

M = intM whereM is a compact 3-manifold

with ∂M = T = torus.

Fx a basis for π1(T ) ∼= Z× Z.

For any pair of relatively prime integers (p, q),

let M(p, q) =(p, q)-Dehn filling on M .

Let γp,q denote the core geodesic in M(p, q),

i.e. the geodesic homotopic to the core circle

of the added solid torus.



Hyperbolic Dehn Filling Theorem (Thurston)

M(p, q) is hyperbolic whenever |p|+|q| is suf-

ficently large.

Furthermore, as |p|+ |q| → ∞,

(i)The manifolds M(p, q) converge geometri-

cally to M (Gromov-Hausdorff convergence),

(ii) V ol(M(p, q)) converges to V ol(M) from

below,

(iii) length(γp,q)→ 0.

There are also precise estimates on change

in volume and length of core geodesic during

Dehn filling.



Let M be a 1-cusped hyperbolic 3-manifold,

T a horospherical torus cusp cross-section,

L(γ) the length of the Euclidean geodesic on

T homotopic to the surgery curve γ, and

L̂ = L̂(γ) =
L(γ)√

Area(T )
the normalised geodesic length of γ.

Neumann-Zagier (asymptotic behaviour):

As L̂→∞,

• the decrease in volume is ∆V ∼ π2

L̂2

• the geodesic core length ` ∼ (2π)
L̂2 .

Hodgson-Kerckhoff give upper and lower bounds.



Question: How do arithmetic invariants behave

during Dehn filling?

Here is one result on invariant trace fields:

Theorem (H.) LetM be a finite volume 1-cusped

hyperbolic 3-manifold, and let kp,q denote the

invariant trace field for M(p, q). Then

The degree of kp,q →∞ as |p|+ |q| → ∞.



Computing hyperbolic structures

on 3-orbifolds

Recall: A 3-orbifold is a space locally mod-

elled on R3 modulo finite groups of diffeomor-

phisms.

An orientable 3-orbifold is determined by its

underlying space Q which is an orientable 3-

manifold and singular locus Σ which is a triva-

lent graph (possibly disconnected or empty)

with each edge or circle labelled by an integer

n ≥ 2.



For example:
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A hyperbolic structure on such an orbifold is

a singular hyperbolic metric with cone angles

2π/n along each edge labelled n.

At a trivalent vertex we allow:

angle sum > 2π giving a finite vertex,

angle sum = 2π giving a cusp,

angle sum< 2π giving a totally geodesic bound-

ary component.



Method for computing hyperbolic structures

•Decompose the manifold or orbifold into tetra-

hedra.

• Find geometric shapes for tetrahedra in H3

(dihedral angles, edge lengths) so that:

1. faces are glued by isometries

2. sum of dihedral angles around each edge

is 2π (or the desired cone angle).

(Also need completeness conditions if the space

is non-compact.)



Generalized hyperbolic tetrahedra

In hyperbolic geometry can use tetrahedra with

• finite vertices (inside H3),

• ideal vertices (on the sphere at infinity), or

• hyperinfinite vertices (beyond the sphere at

infinity)!

This is easiest to see in the projective model

for H3:

v

v⊥

Hyperinfinite vertices are truncated as shown.

Interiors of edges must meet H3.



Orb by Damian Heard

Uses generalized hyperbolic tetrahedra with

finite, ideal and hyperinfinite vertices. (Can

pass continuously between these and allow flat

and negatively oriented tetrahedra.)

Can deal with orbifolds and cone-manifolds

where the cone angle around an edge is not

necessarily 2π.

Can start with a projection of a graph in S3

and try to find hyperbolic structures with pre-

scribed cone angles around all the edges



How Orb works

Suppose we have an orbifold in S3 whose sin-

gular locus is a graph Σ with integer labels on

the edges. (For this talk, I’ll generally assume

all vertices are finite.)

Step 1. Finding triangulations

Given a projection of Σ, find a triangulation

of S3 with Σ contained in the 1-skeleton by

extending the approach of W. Thurston and

J. Weeks. Can also retriangulate to change

and simplify the triangulation, using 2-3 and

3-2 moves etc.



Step 2. Finding hyperbolic structures

For the case of tetrahedra with finite vertices,

Orb uses one parameter for each edge of the

triangulation: cosh(length).

From these we can calculate the dihedral an-

gles of each tetrahedron. Moreover, faces paired

by gluing maps will be automatically isometric.

This gives one equation for each edge:

• the sum of dihedral angles around each edge

is the desired cone angle.

These can be solved using Newton’s method,

starting with suitable regular generalized tetra-

hedra as the initial guess.



By Mostow-Prasad rigidity the hyperbolic struc-

ture on the 3-orbifold is unique if it exists. Hence

geometric invariants are actually topological in-

variants.

Using Orb we can find: volume (using formu-

las of A. Ushijima), matrix generators, Dirich-

let domains, lengths of closed geodesics, pre-

sentations of π1, homology groups, covering

spaces, ...

For hyperbolic manifolds with geodesic bound-

ary we can also compute the canonical cell

decomposition (defined by Kojima). This al-

lows us to decide if such manifolds are homeo-

morphic and compute their symmetry groups.



Application 1: Enumeration and classifica-

tion of knotted graphs in S3

(Hodgson, Heard; J. Saunderson, N. Sheri-

dan, M. Chiodo)

Much work in knot theory has been motivated

by attempts to build up knot tables (e.g. Tait,

Conway, Hoste-Thistlethwaite-Weeks). A very

natural generalization is to study knotted graphs

in S3, say up to isotopy. There has been much

less work on the tabulation of knotted graphs.

In 1989, Rick Litherland produced a table of

90 prime knotted theta curves up to 7 cross-

ings, using an Alexander polynomial invariant

to distinguish graphs.



H. Moriuchi has recently verified these tables

by using Conway’s approach and the Yamada

polynomial invariant.

We have shown that these knotted graphs can

be distinguished by hyperbolic invariants com-

puted using Orb. In fact there is a complete

invariant: We compute the hyperbolic struc-

ture with geodesic boundary consisting of 3-

punctured spheres, such that all meridian curves

are parabolic. (This is a limit of hyperbolic

orbifolds where all labels → ∞, i.e. all cone

angles → 0). Kojima’s canonical decompo-

sition then determines the graph completely.

This also allows us to determine the symme-

try group of all these graphs.



Example:

The simplest hyperbolic handcuff graph can

be obtained from one tetrahedron with the two

front faces folded together and the two back

faces folded together giving triangulation of S3

with the graph contained in the 1-skeleton:

A hyperbolic structure with parabolic meridi-

ans is obtained by taking a limit of truncated

hyperbolic tetrahedra as edge lengths → 0.

The result is a regular ideal octahedron!



(4 faces are glued in pairs, the other 4 free

faces form two totally geodesic 3-punctured

spheres.)

This graph has hyperbolic volume 3.663862377...,

and is the smallest volume for trivalent graphs

by the work of [Miyamoto-Kojima].



Start of Litherland’s table of θ graphs

For each graph we give volume of hyperbolic structure

with meridians parabolic, symmetry group, reversibility.

5.333489566898 7.706911802810
D2 r D2 r

10.396867320885 8.929317823097
D3 n D2 r



Building up tables of knotted graphs

We have also extended these tables to enu-

merate and classify all prime knotted trivalent

graphs in S3 with 2 or 4 trivalent vertices, and

up to 7 crossings. Here prime means there

is no 2-sphere meeting the graph in at most 3

points dividing the graph into non-trivial pieces.

Our method is based on Conway’s approach:

First we enumerate basic prime polyhedra

with vertices of degree 3 and 4, using the pro-

gram plantri of B. McKay and G. Brinkmann.



Then replace degree 4 vertices by algebraic

tangles to obtain projections of knotted graphs.

Next, we remove repeated projections by find-

ing a canonical description for each one using

the ideas behind plantri.



Finally we distinguish the graphs using hyper-

bolic invariants computed using Orb, e.g.

volumes of associated orbifolds and Kojima’s

canonical decomposition.

Other recent work with D. Heard, B. Martelli,

C. Petronio looks at enumeration and classi-

fication of knotted trivalent graphs in general

closed 3-manifolds.

The following table summarizes the

prime trivalent graphs in S3:

up to 4 vertices and 7 crossings.



basic graph no. of circle components
0 1 2

90 50 4

48 9 0

810 143 3

554 121 3

529 29 0

60 3 0

57 0 0

8 0 0

8 0 0



Application 2: enumeration of low volume
hyperbolic 3-orbifolds

By varying the labels on the knotted graphs

obtained above we can start generating hyper-

bolic orbifolds with underlying space S3. This

work is just beginning; currently we are looking

at orbifolds with connected graphs as singular

locus.

The following table shows a few of the lowest

volume orbifolds. The first orbifolds on our list

are all arithmetic!

(All edges are labelled 2 except where other-

wise indicated.)



3

5

3

3
Vol: 0.03905 Vol: 0.04089

(the two smallest orbifolds: [Martin-Marshall])

3

3
3

Vol: 0.05265 Vol: 0.065965



3
4

5 3

4

Vol: 0.06619 Vol: 0.071770

6

3

3
Vol: 0.0845785 Vol: 0.117838
smallest cusped smallest 2 vertex

orbifold [Meyerhoff] orbifold found



Some Open Problems

1. Extend the current results to give lists of

the lowest volume hyperbolic 3-manifolds and

3-orbifolds of various types, e.g.

• closed orientable manifolds

• closed orientable orbifolds

• manifolds with totallly geodesic boundary

• closed non-rorientable manifolds

The ideas of Gabai-Meyerhoff-Milley (Mom tech-

nology and rigorous computation techniques)

could be very useful here.



2. Extend the capabilities of Orb to produce

exact hyperbolic structures and arithmetic in-

variants for hyperbolic 3-orbifolds.

(Currently can take an approximate represen-

tation produced by Orb, then use Snap to pro-

duce a high precision representation, then guess

exact values of traces using the LLL algorithm.

But the process not automated.)


