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Geometric structures on 3-manifolds

Thurston’s idea: We would like to find geo-

metric structures (or metrics) on 3-manifolds

which are locally homogeneous: any two points

have isometric neighbourhoods.

Our spaces should also be complete as metric

spaces.

There are 8 kinds of geometry needed: three

constant curvature geometries, five products

or twisted products.

The most important and most commonly oc-

curring is hyperbolic geometry.



• This has constant negative curvature −1.

• It is completely symmetric: looks the same

near every point and in every direction.

• Angle sums in triangles are less than π.

In fact, angle sum = π − area.

•Can have ideal polygons (and polyhedra) with

vertices at infinity, but finite area (volume).

• Geodesics (lines) diverge exponentially fast.



(from Not Knot video, Geometry Center, Minneapolis)



Hyperbolic 3-manifolds

A hyperbolic 3-manifold M is a space locally

modelled on H3, i.e. a Riemannian 3-manifold

of constant curvature −1. If M is complete

as a metric space, then the universal cover of

M is isometric to H3 and M = H3/Γ where

Γ ∼= π1(M) is a subgroup of Isom(H3).

If M is orientable then we can regard Γ as a

discrete, torsion free subgroup of PSL2(C).

A discrete subgroup Γ of PSL2(C) is called a

Kleinian group. In general, the quotient H3/Γ

is a hyperbolic 3-orbifold.



Example: Seifert-Weber dodecahedral space

This is a closed 3-manifold obtained from a

dodecahedron by identifying each pentagonal

face to the opposite face by a 3/10 rotation.

Here we find the edges are identified in 6 groups

of 5. By a continuity argument there is a reg-

ular dodecahedron in H3 with all dihedral an-

gles 360/5 = 72 degrees. (Exercise!) Glu-

ing together the faces by isometries gives a

complete hyperbolic structure.



Example: The figure eight knot complement
The figure eight knot K in S3 = R3 ∪ {∞} is

shown below.

The complement S3 −K can be represented

as the union of the two ideal tetrahedra (i.e.

compact tetrahedra with the vertices removed).
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To see this, we can span the knot by a 2-complex

consisting of K, two extra edges and four 2-

cells A, B, C, D as shown below.

A D BC

Cutting along this 2-complex divides S3 into

two open 3-balls. By looking carefully at the

pattern of faces on the boundary of the balls,

and removing the edges along the knot we ob-

tain the topological description given above.



Now the edges of the two tetrahedra fit to-

gether in two groups of 6. Consider a regu-

lar ideal tetrahedron in H3, with all its vertices

on the sphere at infinity. This has all dihedral

angles 60 degrees.

Taking two regular ideal tetrahedra and gluing

their faces together by isometries gives a hy-

perbolic structure on X (complete, finite vol-

ume).



The Geometrization Theorem

Assume all manifolds are compact and orientable.

Geometrization Theorem (Thurston, Perelman)

LetM be a compact, orientable, prime 3-manifold.

Then there is a finite collection of disjoint, em-

bedded incompressible tori in M (given by the

Jaco-Shalen, Johannson torus decomposition),

so that each component of the complement

admits a geometric structure modelled on one

of Thurston’s eight geometries.



Application: knot complements

Let K be a knot in S3 = R3 ∪ ∞. Then K

is called a torus knot if it can be placed on the

surface of a standard torus.

A knot K′ is called a satellite knot if it is ob-

tained by taking a non-trivial embedding of a

circle in a small solid torus neighbourhood of

a knot K.



Corollary (Thurston) Let K be a knot in S3.

Then S3−K has a geometric structure if and

only ifK is not a satellite knot. Further, S3−K

has a hyperbolic structure if and only if K is

not a satellite knot or a torus knot.

Thus, “most” knot complements are hyperbolic.

Similarly, “most” link complements are hyper-

bolic.



The next result shows that closed hyperbolic

3-manifolds are very abundant. First note that

an orientable hyperbolic 3-manifold which has

finite volume but is non-compact is homeomor-

phic to the interior of a compact 3-manifold M

with boundary ∂M̄ consisting of tori. We then

call M a cusped hyperbolic manifold.

(Example: the figure eight knot complement.)

We can then form many closed manifolds by

Dehn filling: attaching solid tori to ∂M̄ , e.g.

Glue solid torus
to knot exterior



Hyperbolic Dehn Surgery Theorem [Thurston]

If M is a cusped hyperbolic 3-manifold, then

“almost all” manifolds obtained fromM by Dehn

filling are hyperbolic. (A finite number of surg-

eries must be excluded for each cusp.)

Since every closed 3-manifold can be obtained

by Dehn filling from a hyperbolic link comple-

ment, this shows that in some sense “most”

closed 3-manifolds are hyperbolic!

Problem: How to compute and understand

these hyperbolic structures.



Method for computing hyperbolic structures

(W. Thurston, J. Weeks)

Let M be the interior of a compact manifold

with boundary consisting of tori. Decompose

the manifold topologically into ideal tetrahedra

with faces glued together in pairs.

Find shapes of ideal tetrahedra in H3 satisfy-

ing:

(1) Edge conditions: at each edge

(a) sum of dihedral angles = 2π

(b) there’s no translation along edge

(⇔ cross section orthogonal to edge isometric

to disc in H2)



We can always glue faces together by isome-

tries (any two ideal triangles are congruent),

giving a hyperbolic structure onM\{1−skeleton}.

(1)⇒ get (possibly incomplete) hyperbolic struc-

ture on M .

(2) Completeness conditions:

horospherical triangles (in link of each ideal

vertex) must fit together to give a closed Eu-

clidean surface.



Paremetrizing ideal tetrahedra in H3

In the upper half space model, we can move

the four ideal vertices to 0,1, z,∞ ∈ C∪{∞}
by a hyperbolic isometry. Then the complex

parameter z ∈ C \ {0,1} describes the shape

of the tetrahedron.
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The parameter z is associated with the edge

from 0 to ∞; the other edges have complex

parameters

z, z′ =
z − 1

z
, z′′ =

1

1− z
.

�
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Note that these satisfy

zz′z′′ = −1.



Edge conditions
Given n ideal tetrahedra with complex edge

parameters z(e), we want Euclidean triangles

to fit together around each edge:

z(e1)z(e2)

z(e3) z(ek).....

This gives

z(e1)z(e2) · · · z(ek) = 1

and

arg z(e1)+arg z(e2)+. . .+arg z(ek) = 2π

(so the angle sum is 2π, not 4π,6π, . . . ...).



Example: The figure eight knot complement
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The edge equations are:

z2z′w2w′ = 1, z′(z′′)2w′(w′′)2 = 1

which simplify to

zw(1− z)(1− w) = 1

z−1w−1(1− z)−1(1− w)−1 = 1.



These equations are equivalent (since zz′z′′ =

ww′w′′ = 1), so there is a 1-complex dimen-

sional solution space, giving possibly incom-

plete hyperbolic structures.

Completeness

We look at the developing map for a cusp cross

section. First cut off corners of tetrahedra:
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These give a triangulation of the cusp torus.



Now map these corners to horospherical trian-

gles:
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Can read off the “holonomies” of the standard

longitude and the meridian: these are expan-

sions by complex numbers

h(l) = z2(1− z)2

h(m) = w(1− z).



For a complete hyperbolic structure,

h(l) = h(m) = 1.

This gives a unique solution with Im(z) and

Im(w) > 0:

z = w = eπi/3

i.e. both regular ideal tetrahedra.

(Note that we expect uniqueness by Mostow-

Prasad Rigidity!)



Hyperbolic Dehn filling

Thurston showed that many of the incomplete

solutions also have topological significance: their

completions give hyperbolic structures on the

closed manifolds obtained by Dehn filling.

For (p, q)-Dehn filling (so that pm+ql bounds

a disc in the added solid torus) need to solve:

edge conditions: as before

and

holonomy condition:

the holonomy of (p, q) curve is rotation by 2π,

or h(m)ph(l)q = 1

This is another polynomial equation in the com-

plex edge parameters.



Some computer programs

SnapPea by Jeff Weeks

Uses ideal triangulations to find hyperbolic

structures on cusped hyperbolic 3-manifolds

(finite volume, non-compact) and closed man-

ifolds obtained from these by Dehn filling.

Can start by drawing a projection of a knot

or link, and find hyperbolic structures on the

link complement and on manifolds obtained by

Dehn surgery.



Given a cusped 3-manifold M , SnapPea will:

• Find an ideal triangulation of M

• Simplify the triangulation (e.g. by 3 to 2, and

2 to 3 moves)

• Solve Thuston’s gluing equations numerically

using Newton’s method (all regular tetrahedra

as initial guess)

• Can also do hyperbolic Dehn surgery.

Given the hyperbolic structure SnapPea can:

• calculate many geometric invariants (e.g. vol-

ume, lengths of closed geodesics

• test for isometry between manifolds using

the “canonical cell decomposition” of Epstein-

Penner.



Open Problem:

Prove that there are efficient algorithms for com-

puting hyperbolic structures on 3-manifolds and

3-orbifolds.

Algorithms exist [Casson, J. Manning], but not

efficient.

In practice SnapPea seems to work extremely

well — explain why!



Snap by Oliver Goodman

(working with W. Neumann, C.Hodgson)

An exact version of SnapPea: describes hy-

perbolic structures via algebraic numbers, and

computes associated arithmetic invariants.

Snap is based on SnapPea and the number

theory package Pari.

Note: Mostow-Prasad Rigidity implies that the

complex edge parameters corresponding to the

complete hyperbolic structure are algebraic num-

bers. (They lie in a 0-dimensional algebraic

variety of solutions to Thurston’s gluing equa-

tions: a system of polynomial equations with

integer coefficients.)



Step 1. Compute hyperbolic structure numer-

ically to high precision (e.g. 100-200 digits),

using SnaPea’s solution as a starting point.

From this we try to find exact solutions de-

scribed as algebraic numbers!

Idea:

Step 2. Given an accurate numerical approx-

imation to an algebraic number z try to guess

the minimal polynomial for z.

Step 3. After doing this for all simplex pa-

rameters zi, verify the guess by checking that

Thurston’s gluing equations are satisfied by ex-

act computation in a suitable algebraic number

field.



To guess minimal polynomials, use the LLL

algorithm [Lenstra-Lenstra-Lovasz, 1982] for

finding short vectors in an integer lattice with

a given inner product:

If z approximates an algebraic number τ , we

look for an integer polynomial of degree ≤ m

with coefficients not too big, which is very small

at z.

More precisely, we look at the quadratic form

(a0, a1, . . . , am) 7→ a2
0 + a2

1 + . . .+ a2
m +

N |a0 + a1z + . . .+ anm|2

whereN is large, sayN ≈ 101.5d if z is given

to d decimal places.



If LLL finds a short integer vector (a0, . . . am)

then it is likely that

a0 + a1τ + . . .+ amτm = 0.

By factoring this, we guess the minimal poly-

nomial for τ !

Similarly, we use LLL to find an algebraic num-

ber field containing all simplex parameters.

If this process succeeds, we obtain a rigorous

proof that M is hyperbolic, and an exact de-

scription of its hyperbolic structure.

From this we can then compute many powerful

arithmetic invariants, e.g. invariant trace field,

invariant quaternion algebra, and decide if M

is arithmetic or not.
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