Hyperbolic Structures

from

Ideal Triangulations

Craig Hodgson

University of Melbourne

Geometric structures on 3-manifolds

Thurston's idea: We would like to find geometric structures (or metrics) on 3-manifolds which are locally homogeneous: any two points have isometric neighbourhoods.

Our spaces should also be complete as metric spaces.

There are 8 kinds of geometry needed: three constant curvature geometries, five products or twisted products.

The most important and most commonly occurring is hyperbolic geometry.

- This has constant negative curvature -1 .
- It is completely symmetric: looks the same near every point and in every direction.
- Angle sums in triangles are less than π. In fact, angle sum $=\pi$-area.
- Can have ideal polygons (and polyhedra) with vertices at infinity, but finite area (volume).
- Geodesics (lines) diverge exponentially fast.

(from Not Knot video, Geometry Center, Minneapolis)

Hyperbolic 3-manifolds

A hyperbolic 3-manifold M is a space locally modelled on \mathbb{H}^{3}, i.e. a Riemannian 3-manifold of constant curvature -1 . If M is complete as a metric space, then the universal cover of M is isometric to \mathbb{H}^{3} and $M=\mathbb{H}^{3} / \Gamma$ where $\Gamma \cong \pi_{1}(M)$ is a subgroup of $\operatorname{Isom}\left(\mathbb{H}^{3}\right)$.
If M is orientable then we can regard Γ as a discrete, torsion free subgroup of $P S L_{2}(\mathbb{C})$.

A discrete subgroup Γ of $P S L_{2}(\mathbb{C})$ is called a Kleinian group. In general, the quotient \mathbb{H}^{3} / Γ is a hyperbolic 3-orbifold.

Example: Seifert-Weber dodecahedral space This is a closed 3-manifold obtained from a dodecahedron by identifying each pentagonal face to the opposite face by a $3 / 10$ rotation.

Here we find the edges are identified in 6 groups of 5 . By a continuity argument there is a regular dodecahedron in \mathbb{H}^{3} with all dihedral angles 360/5 $=72$ degrees. (Exercise!) Gluing together the faces by isometries gives a complete hyperbolic structure.

Example: The figure eight knot complement The figure eight knot K in $S^{3}=\mathbb{R}^{3} \cup\{\infty\}$ is shown below.

The complement $S^{3}-K$ can be represented as the union of the two ideal tetrahedra (i.e. compact tetrahedra with the vertices removed).

To see this, we can span the knot by a 2-complex consisting of K, two extra edges and four 2cells A, B, C, D as shown below.

Cutting along this 2 -complex divides S^{3} into two open 3-balls. By looking carefully at the pattern of faces on the boundary of the balls, and removing the edges along the knot we obtain the topological description given above.

Now the edges of the two tetrahedra fit together in two groups of 6. Consider a regular ideal tetrahedron in \mathbb{H}^{3}, with all its vertices on the sphere at infinity. This has all dihedral angles 60 degrees.

Taking two regular ideal tetrahedra and gluing their faces together by isometries gives a hyperbolic structure on X (complete, finite volume).

The Geometrization Theorem

Assume all manifolds are compact and orientable.

Geometrization Theorem (Thurston, Perelman)
Let M be a compact, orientable, prime 3-manifold.
Then there is a finite collection of disjoint, embedded incompressible tori in M (given by the Jaco-Shalen, Johannson torus decomposition), so that each component of the complement admits a geometric structure modelled on one of Thurston's eight geometries.

Application: knot complements

Let K be a knot in $S^{3}=\mathbb{R}^{3} \cup \infty$. Then K is called a torus knot if it can be placed on the surface of a standard torus.

A knot K^{\prime} is called a satellite knot if it is obtained by taking a non-trivial embedding of a circle in a small solid torus neighbourhood of a knot K.

Corollary (Thurston) Let K be a knot in S^{3}. Then $S^{3}-K$ has a geometric structure if and only if K is not a satellite knot. Further, $S^{3}-K$ has a hyperbolic structure if and only if K is not a satellite knot or a torus knot.

Thus, "most" knot complements are hyperbolic. Similarly, "most" link complements are hyperbolic.

The next result shows that closed hyperbolic 3 -manifolds are very abundant. First note that an orientable hyperbolic 3-manifold which has finite volume but is non-compact is homeomorphic to the interior of a compact 3-manifold \bar{M} with boundary $\partial \bar{M}$ consisting of tori. We then call M a cusped hyperbolic manifold.
(Example: the figure eight knot complement.)

We can then form many closed manifolds by Dehn filling: attaching solid tori to $\partial \bar{M}$, e.g.

Glue solid torus to knot exterior

Hyperbolic Dehn Surgery Theorem [Thurston]
If M is a cusped hyperbolic 3-manifold, then "almost all" manifolds obtained from M by Dehn filling are hyperbolic. (A finite number of surgeries must be excluded for each cusp.)

Since every closed 3-manifold can be obtained by Dehn filling from a hyperbolic link complement, this shows that in some sense "most" closed 3-manifolds are hyperbolic!

Problem: How to compute and understand these hyperbolic structures.

Method for computing hyperbolic structures

 (W. Thurston, J. Weeks)Let M be the interior of a compact manifold with boundary consisting of tori. Decompose the manifold topologically into ideal tetrahedra with faces glued together in pairs.

Find shapes of ideal tetrahedra in \mathbb{H}^{3} satisfying:
(1) Edge conditions: at each edge
(a) sum of dihedral angles $=2 \pi$
(b) there's no translation along edge
(\Leftrightarrow cross section orthogonal to edge isometric to disc in H^{2})

We can always glue faces together by isometries (any two ideal triangles are congruent), giving a hyperbolic structure on $M \backslash\{1-$ skeleton $\}$.
(1) \Rightarrow get (possibly incomplete) hyperbolic structure on M.
(2) Completeness conditions:
horospherical triangles (in link of each ideal vertex) must fit together to give a closed Euclidean surface.

Paremetrizing ideal tetrahedra in \mathbb{H}^{3}

In the upper half space model, we can move the four ideal vertices to $0,1, z, \infty \in \mathbb{C} \cup\{\infty\}$ by a hyperbolic isometry. Then the complex parameter $z \in \mathbb{C} \backslash\{0,1\}$ describes the shape of the tetrahedron.

The parameter z is associated with the edge from 0 to ∞; the other edges have complex parameters

$$
z, \quad z^{\prime}=\frac{z-1}{z}, \quad z^{\prime \prime}=\frac{1}{1-z}
$$

Note that these satisfy

$$
z z^{\prime} z^{\prime \prime}=-1
$$

Edge conditions

Given n ideal tetrahedra with complex edge parameters $z(e)$, we want Euclidean triangles to fit together around each edge:

This gives

$$
z\left(e_{1}\right) z\left(e_{2}\right) \cdots z\left(e_{k}\right)=1
$$

and
$\arg z\left(e_{1}\right)+\arg z\left(e_{2}\right)+\ldots+\arg z\left(e_{k}\right)=2 \pi$
(so the angle sum is 2π, not $4 \pi, 6 \pi, \ldots \ldots$).

Example: The figure eight knot complement

The edge equations are:

$$
z^{2} z^{\prime} w^{2} w^{\prime}=1, \quad z^{\prime}\left(z^{\prime \prime}\right)^{2} w^{\prime}\left(w^{\prime \prime}\right)^{2}=1
$$

which simplify to

$$
\begin{array}{r}
z w(1-z)(1-w)=1 \\
z^{-1} w^{-1}(1-z)^{-1}(1-w)^{-1}=1
\end{array}
$$

These equations are equivalent (since $z z^{\prime} z^{\prime \prime}=$ $w w^{\prime} w^{\prime \prime}=1$), so there is a 1-complex dimensional solution space, giving possibly incomplete hyperbolic structures.

Completeness

We look at the developing map for a cusp cross section. First cut off corners of tetrahedra:

These give a triangulation of the cusp torus.

Now map these corners to horospherical triangles:

Can read off the "holonomies" of the standard longitude and the meridian: these are expansions by complex numbers

$$
\begin{aligned}
h(l) & =z^{2}(1-z)^{2} \\
h(m) & =w(1-z)
\end{aligned}
$$

For a complete hyperbolic structure,

$$
h(l)=h(m)=1
$$

This gives a unique solution with $\operatorname{Im}(z)$ and $\operatorname{Im}(w)>0$:

$$
z=w=e^{\pi i / 3}
$$

i.e. both regular ideal tetrahedra.
(Note that we expect uniqueness by MostowPrasad Rigidity!)

Hyperbolic Dehn filling
Thurston showed that many of the incomplete solutions also have topological significance: their completions give hyperbolic structures on the closed manifolds obtained by Dehn filling.

For (p, q)-Dehn filling (so that $p m+q l$ bounds a disc in the added solid torus) need to solve: edge conditions: as before and

holonomy condition:

the holonomy of (p, q) curve is rotation by 2π,

$$
\text { or } h(m)^{p} h(l)^{q}=1
$$

This is another polynomial equation in the complex edge parameters.

Some computer programs

SnapPea by Jeff Weeks
Uses ideal triangulations to find hyperbolic structures on cusped hyperbolic 3-manifolds (finite volume, non-compact) and closed manifolds obtained from these by Dehn filling.

Can start by drawing a projection of a knot or link, and find hyperbolic structures on the link complement and on manifolds obtained by Dehn surgery.

Given a cusped 3-manifold M, SnapPea will:

- Find an ideal triangulation of M
- Simplify the triangulation (e.g. by 3 to 2, and 2 to 3 moves)
- Solve Thuston's gluing equations numerically using Newton's method (all regular tetrahedra as initial guess)
- Can also do hyperbolic Dehn surgery.

Given the hyperbolic structure SnapPea can:

- calculate many geometric invariants (e.g. volume, lengths of closed geodesics
- test for isometry between manifolds using the "canonical cell decomposition" of EpsteinPenner.

Open Problem:

Prove that there are efficient algorithms for computing hyperbolic structures on 3-manifolds and 3 -orbifolds.

Algorithms exist [Casson, J. Manning], but not efficient.

In practice SnapPea seems to work extremely well - explain why!

Snap by Oliver Goodman (working with W. Neumann, C.Hodgson)
An exact version of SnapPea: describes hyperbolic structures via algebraic numbers, and computes associated arithmetic invariants.

Snap is based on SnapPea and the number theory package Pari.

Note: Mostow-Prasad Rigidity implies that the complex edge parameters corresponding to the complete hyperbolic structure are algebraic numbers. (They lie in a 0-dimensional algebraic variety of solutions to Thurston's gluing equations: a system of polynomial equations with integer coefficients.)

Step 1. Compute hyperbolic structure numerically to high precision (e.g. 100-200 digits), using SnaPea's solution as a starting point.

From this we try to find exact solutions described as algebraic numbers!

Idea:

Step 2. Given an accurate numerical approximation to an algebraic number z try to guess the minimal polynomial for z.
Step 3. After doing this for all simplex parameters z_{i}, verify the guess by checking that Thurston's gluing equations are satisfied by exact computation in a suitable algebraic number field.

To guess minimal polynomials, use the LLL algorithm [Lenstra-Lenstra-Lovasz, 1982] for finding short vectors in an integer lattice with a given inner product:

If z approximates an algebraic number τ, we look for an integer polynomial of degree $\leq m$ with coefficients not too big, which is very small at z.

More precisely, we look at the quadratic form

$$
\begin{aligned}
\left(a_{0}, a_{1}, \ldots, a_{m}\right) \mapsto & a_{0}^{2}+a_{1}^{2}+\ldots+a_{m}^{2}+ \\
& N\left|a_{0}+a_{1} z+\ldots+a_{m}^{n}\right|^{2}
\end{aligned}
$$

where N is large, say $N \approx 10^{1.5 d}$ if z is given to d decimal places.

If LLL finds a short integer vector $\left(a_{0}, \ldots a_{m}\right)$ then it is likely that
$a_{0}+a_{1} \tau+\ldots+a_{m} \tau^{m}=0$.
By factoring this, we guess the minimal polynomial for τ !

Similarly, we use LLL to find an algebraic number field containing all simplex parameters.

If this process succeeds, we obtain a rigorous proof that M is hyperbolic, and an exact description of its hyperbolic structure.

From this we can then compute many powerful arithmetic invariants, e.g. invariant trace field, invariant quaternion algebra, and decide if M is arithmetic or not.

Some References

W. Thurston, Geometry and topology of 3-manifolds, Lecture Notes, Princeton University (1979), http://www.msri.org/publications/books/gt3m/
W. Thurston, Three-dimensional Geometry \& Topology, Princeton Univ. Press, 1997.
W. Neumann and D. Zagier, Volumes of hyperbolic threemanifolds, Topology 24 (1985), 307-332.
D. Coulson, O. Goodman, C. Hodgson and W. Neumann, Computing arithmetic invariants of 3-manifolds, Experimental Math. 9 (2000),127-152.
J. Weeks, SnapPea, a program for studying hyperbolic 3-manifolds, http://www.geometrygames.org/SnapPea/.
O. Goodman, Snap, http://www.ms.unimelb.edu.au/ snap/ and http://sourceforge.net/projects/snap-pari/
M. Culler and N. Dunfield, SnapPy, http://www.math.uic.edu/~t3m/

