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Mostow strong rigidity and quasi-
isometry rigidity 

Volume entropy rigidity

Katok’s rigidity conjecture

Applications of measures on the bdy - 
equidistribution of orbits

Gromov hyperbolic spaces

measures on the boundary

CAT(-1), CAT(0) spaces



Mostow strong rigidity

X1 X2   ,    : hyperbolic manifolds (                    ) Xi = Hn/π1(Xi)

If                   are isomorphic, 
                 then          are isometric. 

π1(X1), π1(X2)
X1, X2

(n ≥ 3)

Idea of proof. (for compact case)

                       acts on      discretely, 
cocompactly, isometrically.
G = π1(X1) ∼= π1(X2) Hn

-> conformal action on the boundary ∂Hn

quasi-equivariant quasi-isometry f : Hn → Hn

∂f : ∂Hn → ∂Hnquasi-conformal homeomorphism



Quasi-isometry rigidity

Any quasi-isometry              is at bounded distance 
from a unique isometry   :

Pansu     :quaternionic hyperbolic space
            or Cayley hyperbolic plane 

Bourdon-Pajot      : Fuchsian buildings

Both follow Mostow’s idea, using boundary of 
Gromov hyperbolic space!

d(f, f ′) = sup d(f(x), f ′(x)) <∞

f : X → X

f ′

X

X

Definition (blackboard)



Volume entropy rigidity : what is volume entropy?

growth of balls!volume• exponential

      :  vol(B(r)) poly of r  => entropy = 0Rn

      :  vol(B(r))             => entropy = n-1Hn ∼ e(n−1)r

Manifold : take its universal cover

Def  (volume entropy)  

hvol = lim
r→∞

1
r log vol(B(x, r))

B(x,r) ⊂ M̃

M closed Riem. mnfd

where



•            iff          is of exponential growth

Def  (volume entropy)  

hvol = lim
r→∞

1
r log vol(B(x, r))
B(x,r) ⊂ M̃

π1(M)hvol > 0 (Milnor)

Bπ1(M) = {γ ∈ π1(M) : d(x, γx) < r}

δ(π1(M)) = lim
r→∞

1
r

log #Bπ1(M)(x, r),

where

• equal to critical exponent (for compact mnfds)

• It captures the part of the fastest growth.

• equal to Hausdorff dim of limit set on boundary 

(Eskin-McMullen, Dalbo-Peigne-Picaud-Sambusetti)



• equal to topological entropy of the geodesic 
flow
=“exponential growth of # of   -separated 
geodesic segments in    ” (Manning)

ε

M̃

htop = lim
ε→0

lim
r→∞

1
r

log #S(ε, r)

where

S(ε, r) = {g : g(0) ∈ F, "(g) < r, d(g(t), g′(t)) > ε, ∀0 ≤ t ≤ r}

 • equal to the exponential growth rate of # of 
closed geodesics in M (Margulis)



• Cheeger Isoperimetric constant

related to

(Brooks)
(Ledrappier)

(Cheeger)

where N separates M into disjoint A and B. 

Ch(M) ≤ hvol :

V ol(B(x, r)) ! ehvolr ! eCh(M)r

Area(S(x, r))
V ol(B(x, r))

=
V ol(B(x, r))′

V ol(B(x, r))
≥ Ch(M)

• smallest eigenvalue of the Laplacian

λ1(M) ≥ Ch(M)2

4 (Gromov)

• Gromov’s simplicial volume ||M || ≤ C(n)hn
vol(M)

Ch(M) = inf
N

Area(N)
min{V ol(A), V ol(B)} ,



[Katok] Surfaces
[Besson-Courtois-Gallot] Rank-1 symmetric 
spaces

higher rk : still open!

Entropy rigidity
Gromov Conjecture  Among all volume 1 
Riemannian metrics on a closed manifold of 
non-positive curvature, of dimension   2, the 
locally symmetric metric minimizes the volume 
entropy. 

≥

[Connell-Farb] lattices in products of 
rank-1 symmetric spaces



Besson-Courtois-Gallot

: continuous map of deg

X, Y : compact connected orientable n-dim mnfds

f : Y → X != 0

V ol(X, g0) = V ol(Y, g) = 1

g0 : locally symmetric metric

of negative curv.

hn
vol(Y, g) ≥ | deg f |hn

vol(X, g0)Then

= holds iff g locally symm

n ≥ 3

Coro (Mostow strong rigidity)

, f local isometry



Idea of proof. : continuous map f : Y → X

Y −→ X

↑ ↓
f

Patterson-
Sullivan measure

Barycenter map

!

!

Patterson-Sullivan measure : family of measures
-invariant conformal density of dimension   :  δπ1(Y )

dµy′

dµy
(ξ) = e−δβξ(y′,y) γ∗µy = µγy,

βξ(y′, y) = lim
t→∞

{d(y′, ξt)− d(y, ξt)}where

M(∂Ỹ )→M(∂X̃)
∂f∗



Bowen-Margulis measure : measure on the space 
of geodesics 

where

It is the unique measure of maximal 
measure-theoretic entropy.

dm(u) =
dµx(ξ)dµx(η)ds

dx(ξ, η)2δ

= eδβξ(x,u)+δβη(x,u)dµx(ξ)dµx(η)ds

(ξ, η, s) = (g−∞u, g∞u, βg−∞u(u, o))

Variational principle : hvol = sup
µ:g−inv

{hµ}

Rmk: PS, BM measures can be defined on CAT(-1)-sp!

g : geodesic flow

G(X̃)

(Roblin)



Katok’s Rigidity Conjecture   For a closed 
Riemannian manifold of negative curvature,

Liouville measure             the metric is locally 
symmetric.Bowen-Margulis m

Two natural    -invariant measures on          

• Bowen-Margulis measure: of maximal measure-
theoretic entropy
• Liouville measure : “volume times angular measure”

• [Katok] surfaces
• Still open for higher dimension 

iff

G(X̃)g



∆
∆

Thm  [Ledrappier-L, 09] 

: regular hyperbolic building

 X : A compact quotient of    , with a hyp. metric

Liouville measure      Bowen-Margulis measure!=

Rmk Contrast to Katok’s conjecture.



Why buildings?

1. Non-archimedean analogue of symm. spaces.

G = SL3(Fq((t)))

K = SL3(F[[t]]) −→ SL3(Fq)

B(Fq)

Θ

I = Θ−1(B(Fq))
Θ−→

: G/I : affine flag variety

2. We want to start with a singular space
with a large group of isometries. 

Examples
dimension 1: locally finite (uniform) trees

-> compact quotients are graphs

keynote:/Users/slim/Desktop/Research/My%20talks/KAIST_Dec2008_slide.key?id=BGSlide-1
keynote:/Users/slim/Desktop/Research/My%20talks/KAIST_Dec2008_slide.key?id=BGSlide-1


E.g. in dimension 2 : product of two trees

: Euclidean building

E.g. in dimension 1: locally finite regular trees

two axioms of buildings (blackboard)



dim 2 : Right-angled Fuchsian building

Each apartment 

looks like this.



dim 2 : Right-angled Fuchsian building

p1

p2p3

p4

p5 p6

Each apartment 

edge.

looks like this.

Text
Attach    more pi

hexagons to each



2 3



2 3



2 3

Lk( ): complete 
bipartite graph

gen. 2-gon : diameter 2,
length of shortest cycle 4

Apartments : tessellations of         
Chambers   : polygons

Hn



fixed apartment

building  

retraction



Description of entropy of the building

Thm [Ledrappier-L] The entropy of any regular 
building can be separated into the growth of an 
apartment and the growth coming from tree-like 
branching.

Assume that the quotient is one polygon.

Idea of proof.

     = exp. growth of geodesic segmentshvol

= exp. growth of geodesics in
  multiplied by # of preimages
  under the retraction: 

H2



fixed apartment

building  

retraction

# of preimages : p1 · · · pn



p1 · · · pn = elog p1+···+log pn

1 =
∫ l

0

1
l
dt log p =

∫ l

0

log p

l
dt

v p(v)
l(v)

=
∫

log p(gt(v))
l(gt(v))

dt

= exp

(∫ T

0

log p

l
(gt(v))dt

)



Idea of proof (continued).

hvol = exp. growth of geodesics in
  multiplied by # of preimages under 
  the retraction map 

= exp. growth of geodesics in

  multiplied by 
H2

exp
∫ T

0

log p

l
(gt(v))dt

Thm 2 [Ledrappier-L]     : Euclidean or hyperbolic  
regular building 

∆

topological pressure of geodesic flow

(of          )
log p

l

H2

hvol(∆) = PA
(

log p

l

)



Thm 2 [Ledrappier-L]     : Bourdon’s building ∆

hvol(∆) = PH2

(
log p

l

)

= sup
µ

{
hµ +

∫
log q

l
dµ

}
Variational Principle

Now let’s take some special measure   , namely the 
Liouville measure on     . 

µ

flow invariant

H2



Now take      = Liouville measure:µ0

hvol ≥ hµ0 +
∫

log p

l
dµ0

= 1 +
1
π2

∑
log pil(ei)

(Santalo’s formula)

Coro X :     branching at edge    , with a hyperbolic 
metric. Then 

ei

h(X) > 1 +
1
π2

∑
log pil(ei)

pi



Thm (Ruelle) 
If        and       have the same
equilibrium measure, then   and    are 
cohomologous up to a constant:

P(f) P(g)
f g

f = g + h− h ◦ σ + c

We know that              is attained by
the Liouville measure, thus if          is also 
attained by the Liouville measure, then               
should not depend on    

htop = P(0)

P(
log p

l
) ∫

log p

l
dm

m.

Construct a family of measures !





Applications to equidistribution of orbits :

|{γ ∈ Γ : yγ ∈ Sx(Ω1) ∩BT (x), bγ−1 ∈ Ω2}| =?

∼ mx(Ω1)mx(Ω2)
vol(BT (x))
vol(X/Γ)

x, y ∈ X, b ∈ X(∞), Sx(Ω1) : sector, Ω2 ⊂ X(∞)

Q.

[Margulis, Gorodnik-Oh, Oh-Shah, Roblin]

    :geometrically finite   Γ

-> asymptotic formula involves BM-measure & PS-
measure.


