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In this paper, I want to talk about harmonic function, especially strong maximum prin-
ciple for it. We can prove strong maximum principle with mean-value property, however
we can also do with weak maximum principle without mean-value property. So, let me
introduce about harmonic function first, then continue some theorems and lemmas for
approaching strong maximum property. Before we start, denote Ω ⊆ Rn be an open and
connected set whose closure Ω̄ is compact.

Definition 1. A function u ∈ C2(Ω) ∩ C(Ω̄) is called

1. subharmonic if ∇2u ≥ 0 for all u ∈ Ω (If equality is never satisfied, it is called
strictly subharmonic)

2. superharmonic if ∇2u ≤ 0 for all u ∈ Ω (If equality is never satisfied, it is called
strictly superharmonic)

3. harmonic if ∇2u = 0 for all u ∈ Ω

Now, we prove the following theorems and lemma about a function u, mentioned above.

Theorem 1. If u ∈ C2(Ω) ∩ C(Ω̄) is strictly subharmonic, there is no x0 ∈ Ω such that
u(x0) ≥ u(x) for all x ∈ Ω. Similarly, if u ∈ C2(Ω) ∩ C(Ω̄) is strictly superharmonic,
there is no x0 ∈ Ω such that u(x0) ≤ u(x) for all x ∈ Ω.

Proof. Suppose that u ∈ C2(Ω) ∩ C(Ω̄) is subharmonic. Then, for any x0 ∈ Ω, there
exists a neighborhood U ⊆ Ω of x0. Now, without loss of generality, we can assume
∂2u
∂2x1

> 0 because ∇2u is positive at x0. Then in U , there exists x′ = x + he1 such that
u(x0) < u(x) because concave upward function cannot have its maximum unless it is a
boundary point of the domain, yet x0 is not at the boundary of Ω ∩ {π1(x0)} × Rn−1.
Therfore, x0 is not a maximum point for any x0 ∈ Ω. Modifying the proof slightly would
work for strictly superharmonic function. Q.E.D.
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The purpose of this paper is proving strong maximum principle for harmonic function
with weak maximum priniple. So, we prove the weak maximum principle for harmonic
function.

Theorem 2. Weak maximum principle. If u ∈ C2(Ω) ∩ C(Ω̄) is harmonic, then
max
x∈Ω

u ≤ max
x∈∂Ω

u.

Proof. Suppose not, where max
x∈Ω

u = u(x0), x0 ∈ Ω. Now, denote ε = max
x∈Ω

u− max
x∈∂Ω

u.

Cause Ω̄ is compact, there exists L such that π1(x) < L for all x ∈ Ω. So we can define
w(x) = u(x)+(ε/2)eπ1(x)−L. Then, ∇2w = ∇2u+(ε/2)eπ1(x)−L > 0 and for any x ∈ ∂Ω,
w(x0)− w(x) = u(x0)− u(x) + (ε/2)(eπ1(x0)−L − eπ1(x)−L) > ε− (ε/2) = ε/2. Now, we
can know that a maximum of w on Ω̄ is not achieved in ∂Ω cause w(x0) > w(x) for
all x ∈ ∂Ω. Thus, it is achieved in Ω. However, this violates Theorem 1. Therefore,
max
x∈Ω

u ≤ max
x∈∂Ω

u. Q.E.D.

Now, we are very close to the final goal. Before we begin, I wonder if the readers have
grasped the motivation of the previous proof. Why should we take such w? The key of the
roof was that adding a ”very thin” strictly subharmonic function on the given function
so that there is not that much difference but the function becomes stirctly subharmonic.

However, the previous proof requires max
x∈Ω

u > u(x) for all x ∈ ∂Ω. However, this is

very strong assumption; what if we want to target only a small partion of ∂Ω? Then we
should modify the ”very thin” function much more delicately. This is the difficult one. I
would proceed the proof with some lemmas.

Lemma 1. Suppose u ∈ C2(Ω) ∩ C(Ω̄) is harmonic and x0 ∈ Ω. Now, if there exists an
w0 ∈ Rn \ Ω̄ such that u(x) < u(x0) for all x ∈ {x ∈ ∂Ω | ‖x−w0‖ ≤ ‖x0−w0‖}, then
u(x0) 6= max

x∈Ω̄
u(x).

Proof. Suppose that u(x0) = max
x∈Ω̄

u(x) = M . Cause S = {x ∈ ∂Ω | ‖x − w0‖ ≤

‖x0 − w0‖} is compact by Heine - Borel theorem, u, a continuous function, has an
maximum max

x∈S
u(x) < M . Denote k = M −max

x∈S
u(x). Moreover, cause 1

‖x−w0‖2 is also

a continuous function on S, we can denote max
x∈S

1
‖x−w0‖2 = k′. then, define a function

w(x) = ε
‖x−w0‖2 on Ω̄, where

ε =
k

k′ − 1
‖x−w0‖2

.

Moreover, u(x0) + w(x0) > u(x) + w(x) for all x ∈ ∂Ω, and u(x) + w(x) is a har-
monicfunction on Ω cause w(x) is a harmonic function on Rn \ {w0}. It makes con-
tradiction with the Weak maximum principle of harmonic functions. Therefore,
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u(x0) 6= max
x∈Ω̄

u(x). Q.E.D.

By previous lemma tells us we can know whether a harmonic function u ∈ C2(Ω)∩C(Ω̄)
can’t have the maximum at the given point in the region just by comparing u at the
given point and specific partition of boundary of region decided by the specific point
outside of the region. It is seemed to be difficult to apply. However, we can prove very
critical lemma for final goal with the previous lemma.

Lemma 2. Suppose u ∈ C2(Ω)∩C(Ω̄) is harmonic and B3r(x0) ⊆ Ω. If u does not attain
its max

x∈Ω̄
u(x) on B̄r(x0), then neither does on B̄2r(x0).

Proof. Cause Ω is open, we can suppose u is a harmonic function on Ω and B3r(x0) ⊆
Ω. Also, suppose u does not attain its max

x∈Ω̄
u(x) on B̄r(x0). Denote x ∈ ∂B2r(x0), then

also denote z = (5/8)x0 + (3/8)x, w = (9/16)x0 + (7/16)x, and y = (−1/4)x0 + (5/4)x.
Furthermore, it is trivial that there exists a unique (n− 2)− sphere Sn−2 = ∂Br(x0) ∩
∂B‖x−z‖(z).

Note that every open ball in Eucledian space is convex. It means that there ex-
ists a line segment in B̄r(x0) ∩ B̄‖x−z‖(z) whose endpoints are w and each point of
Sn−2 = ∂Br(x0) ∩ ∂B‖x−z‖(z). So, we can define S1 = {p | p = tq + (1 − t)w, t ∈
[0, 1], q ∈ Sn−2 = ∂Br(x0) ∩ ∂B‖x−z‖(z)}. Also, there is a unique (n − 1) − sphere
Sn−1 ⊂ B3r(x0) such that Sn−2 ∪ {y} ⊂ Sn−1 where Sn−2 = ∂Br(x0) ∩ ∂B‖x−z‖(z).
Then it can divided by two parts by Sn−2 = ∂Br(x0) ∩ ∂B‖x−z‖(z). Denote S2 be an
one of those two divided parts such that y ∈ S2. Now, we can construct an open and
connected set S ⊆ B3r(x0) uniquely as ∂S = S1∪S2. Then, S contains x, but its closure
doesn’t contain z. Moreover, S1 = B̄r(x0) ∩ ∂S = B̄‖x−z‖(z) ∩ ∂S.

Now, if u(x) > max
k∈S1

u(k), then u(x) 6= max
k∈S̄

u(k) by Lemma 1. Therefore, u(x) 6=

max
k∈Ω̄

u(k). If not, u(x) 6= max
k∈Ω̄

u(k) cause max
k∈S1

u(k) 6= max
k∈Ω̄

u(k). Cause it is satisfying

for all x ∈ ∂B2r(x0), there is no x ∈ B̄2r(x0) such that u(x) = max
k∈Ω̄

u(k) by Weak

maximum principle. Q.E.D.

It’s time to achieve the final goal, proving the strong maximum principle for harmonic
function without mean-value property. Cause u is a continuous function on Ω̄, it suffices
to prove that a set of point whose value of u is maximum on Ω̄ is dense in Ω̄ if at least one
of them is in Ω. With previous theorems and lemmas, we can prove it. After proving the
strong maximum principle for harmonic function, you can realize that strong maximum
principle is not only for harmonic function. However, maybe you can’t realize that if you
prove the strong maximum principle for harmonic function with mean-value property.
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Theorem 3. Strong maximum principle. If u ∈ C2(Ω) ∩ C(Ω̄) is harmonic with
u(x0) = max

x∈Ω̄
u(x) where x0 ∈ Ω, then u is constant on Ω̄.

Proof. Let Ω0 = {x ∈ Ω̄ | u(x) = max
Ω̄

u} and x0 ∈ Ω ∩ Ω0. For arbitrary open

set x0 /∈ D ⊂ Ω, choose one point z0 ∈ D. Cause Ω is path-connected, there exists a
one-to-one path Γ : [0, 1] → Ω such that Γ(0) = z0 and Γ(1) = x0. Cause Γ([0, 1]) is
compact, we can denote ε = d(Γ([0, 1]), ∂Ω), where d(A,B) is distance between two sets
A and B.

Now, suppose u(z0) 6= max
x∈Ω̄

u(x). Cause u is continuous, there exists ε > δ > 0 such

that max
x∈B̄δ(z0)

u(x) 6= max
x∈Ω̄

u(x). Denote zn = ∂Bδ(zn−1) ∩ Γ([0, 1]) for n ∈ N, where

Γ−1(zn) > Γ−1(zn−1) with the closest Γ−1(zn) to Γ−1(zn−1). Then, there exists M ∈ N

such that Γ([0, 1]) ⊂
M⋃
i=0

Bδ(zi) ⊂ Ω, cause Γ([0, 1]) is compact.

By Lemma 2, max⋃M
i=0 B̄δ(zi)

u 6= max
Ω̄

u. It contradicts to Γ(1) = x0 ∈ Ω0. So,

u(z0) = max
x∈Ω̄

u(x), thus z0 ∈ Ω0. Therefore, Ω0 is dense in Ω, it means Ω0 = Ω̄. Namely,

u is constant on Ω̄, if max
Ω

u = max
Ω̄

u. Q.E.D.

Now, we achieved the final goal. This proof without mean-value property give us pos-
siblity of existence of strong maximum principle not only for harmonic function, but also
for other functions who have weak maximum principle although it don’t have mean-value
property.

Actually, this proof of strong maximum principle obviously means that a function

u ∈ C2(Ω)∩C(Ω̄) satisfying
n⋃

ı=1
ai(x)∂

2u
∂x2i

= 0 for ai(x) ≥ 0 must have the strong maximum

principle.
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