Equicovering Subgraphs of Graphs and Hypergraphs

ILKYOO CHOI, Jaehoon Kim, Amelia Tebbe, Douglas B. West

University of Illinois at Urbana-Champaign

May 11, 2012
Outline

1. Definitions
2. The 2-EUP and 2-EVP of Graphs
3. The t-EVP of Graphs
4. The t-EVP of Hypergraphs
5. Open Questions
1 Definitions

2 The 2-EUP and 2-EVP of Graphs

3 The t-EVP of Graphs

4 The t-EVP of Hypergraphs

5 Open Questions
A hypergraph H has the \textit{t-Equal Union Property} (t-EUP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e$ for $1 \leq i < j \leq t$
A hypergraph H has the **t-Equal Union Property** (t-EUP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e$ for $1 \leq i < j \leq t$
A hypergraph H has the **t-Equal Union Property (t-EUP)** if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e$ for $1 \leq i < j \leq t$
A hypergraph H has the **t-Equal Union Property** (t-EUP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e$ for $1 \leq i < j \leq t$

Has 2-EUP
A hypergraph H has the **t-Equal Union Property (t-EUP)** if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e$ for $1 \leq i < j \leq t$

The hypergraph on the left has 2-EUP.
t-Equal Union Property

A hypergraph H has the t-Equal Union Property (t-EUP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e$ for $1 \leq i < j \leq t$

Has 2-EUP
t-Equal Union Property

A hypergraph H has the **t-Equal Union Property** (t-EUP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that:

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e$ for $1 \leq i < j \leq t$

![Diagram showing Has 2-EUP](image_url)
A hypergraph H has the \textit{t-Equal Union Property} (t-EUP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e$ for $1 \leq i < j \leq t$

Has 2-EUP
A hypergraph \(H \) has the \textit{t-Equal Union Property} (t-EUP) if there are \(t \) distinct subhypergraphs \(H_1, \ldots, H_t \) of \(H \) such that

1. \(E(H_i) \cap E(H_j) = \emptyset \) for \(1 \leq i < j \leq t \)
2. \(\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e \) for \(1 \leq i < j \leq t \)

Has 2-EUP
A hypergraph H has the \textit{t-Equal Union Property (t-EUP)} if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e$ for $1 \leq i < j \leq t$
t-Equal Union Property

A hypergraph H has the *t-Equal Union Property* (t-EUP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $\bigcup_{e \in E(H_i)} e = \bigcup_{e \in E(H_j)} e$ for $1 \leq i < j \leq t$

Theorem (Lindström (1972))

If a hypergraph H has more than $(t - 1)n$ edges, then H has the t-EUP.
t-Equal Valence Property

A hypergraph H has the **t-Equal Valence Property** (t-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $d_{H_i}(v) = d_{H_j}(v)$ for $v \in V(H)$ and $1 \leq i < j \leq t$

Note that the t-EVP is a stronger property than t-EUP.
t-Equal Valence Property

A hypergraph H has the **t-Equal Valence Property** (t-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $d_{H_i}(v) = d_{H_j}(v)$ for $v \in V(H)$ and $1 \leq i < j \leq t$

Note that the t-EVP is a stronger property than t-EUP.
A hypergraph H has the **t-Equal Valence Property** (t-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that:

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $d_{H_i}(v) = d_{H_j}(v)$ for $v \in V(H)$ and $1 \leq i < j \leq t$

Note that the t-EVP is a stronger property than t-EUP.
A hypergraph H has the \textit{t-Equal Valence Property} (t-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $d_{H_i}(v) = d_{H_j}(v)$ for $v \in V(H)$ and $1 \leq i < j \leq t$

Note that the t-EVP is a stronger property than t-EUP.

Has 2-EVP.
A hypergraph H has the \textit{t-Equal Valence Property} (t-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $d_{H_i}(v) = d_{H_j}(v)$ for $v \in V(H)$ and $1 \leq i < j \leq t$

Note that the t-EVP is a stronger property than t-EUP.

Has 2-EVP.
t-Equal Valence Property

A hypergraph H has the *t-Equal Valence Property* (*t-EVP*) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $d_{H_i}(v) = d_{H_j}(v)$ for $v \in V(H)$ and $1 \leq i < j \leq t$

Note that the *t-EVP* is a stronger property than *t-EUP*.

Has 2-EVP.
A hypergraph H has the **t-Equal Valence Property (t-EVP)** if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $d_{H_i}(v) = d_{H_j}(v)$ for $v \in V(H)$ and $1 \leq i < j \leq t$

Note that the t-EVP is a stronger property than t-EUP.

![Diagram](image-url)
t-Equal Valence Property

A hypergraph H has the t-Equal Valence Property (t-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $d_{H_i}(v) = d_{H_j}(v)$ for $v \in V(H)$ and $1 \leq i < j \leq t$

Note that the t-EVP is a stronger property than t-EUP.

Has 2-EVP.
A hypergraph H has the *t-Equal Valence Property* (t-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $d_{H_i}(v) = d_{H_j}(v)$ for $v \in V(H)$ and $1 \leq i < j \leq t$

Note that the t-EVP is a stronger property than t-EUP.

Has 2-EVP.

No 2-EVP.
A hypergraph H has the *t-Equal Valence Property* (t-EVP) if there are t distinct subhypergraphs H_1, \ldots, H_t of H such that

1. $E(H_i) \cap E(H_j) = \emptyset$ for $1 \leq i < j \leq t$
2. $d_{H_i}(v) = d_{H_j}(v)$ for $v \in V(H)$ and $1 \leq i < j \leq t$

Note that the t-EVP is a stronger property than t-EUP.
Theorem (Lindström (1972))

If a hypergraph H has more than $(t - 1)n$ edges, then H has the t-EUP.
Theorem (Lindström (1972))

If a hypergraph \(H \) has more than \((t - 1)n \) edges, then \(H \) has the \(t \)-EUP.

Maximum number of edges \(\mathbb{U}(n, t) \) in a hypergraph without the \(t \)-EUP.
Maximum number of edges \(\mathbb{V}(n, t) \) in a hypergraph without the \(t \)-EVP.
Equicovering Subgraphs of Graphs and Hypergraphs

Notation

Theorem (Lindström (1972))

\[\mathcal{U}(n, t) \leq (t - 1)n \]

Maximum number of edges \(\mathcal{U}(n, t) \) in a hypergraph without the \(t \)-EUP. Maximum number of edges \(\mathcal{V}(n, t) \) in a hypergraph without the \(t \)-EVP.
Theorem (Lindström (1972))

\[\mathcal{U}(n, t) \leq (t - 1)n \]

Maximum number of edges \(\mathcal{U}(n, t) \) in a hypergraph without the \(t \)-EUP.
Maximum number of edges \(\mathcal{V}(n, t) \) in a hypergraph without the \(t \)-EVP.

<table>
<thead>
<tr>
<th>(n)-vertex graphs</th>
<th>(t)-EUP</th>
<th>(t)-EVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{U}_2(n, t))</td>
<td>(\mathcal{V}_2(n, t))</td>
<td></td>
</tr>
<tr>
<td>(\mathcal{U}_k(n, t))</td>
<td>(\mathcal{V}_k(n, t))</td>
<td></td>
</tr>
<tr>
<td>(\mathcal{U}(n, t))</td>
<td>(\mathcal{V}(n, t))</td>
<td></td>
</tr>
</tbody>
</table>

Note that \(A(n, t) \geq A_k(n, t) \) for \(A \in \{ \mathcal{U}, \mathcal{V} \} \).
1 Definitions

2 The 2-EUP and 2-EVP of Graphs

3 The t-EVP of Graphs

4 The t-EVP of Hypergraphs

5 Open Questions
Characterization of Graphs with the 2-EUP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Corollary

$$\mathbb{U}_2(n, 2) = n$$

Equality holds only for either connected graphs with only one odd cycle or the disjoint union of odd cycles.
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\iff)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\iff)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Leftarrow)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Theorem

A graph \(G \) has the 2-EUP if and only if \(G \) has an even cycle or has two odd cycles in the same component.

Proof. \(\Rightarrow \)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Characterization of Graphs with the 2-EUP: the Proof

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Proof. (\Rightarrow)
Characterization of Graphs with the 2-EVP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.
Characterization of Graphs with the 2-EVP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.
Characterization of Graphs with the 2-EVP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

A graph is an *odd-cycle-forest* if it can be obtained in this fashion:
Characterization of Graphs with the 2-EVP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

A graph is an odd-cycle-forest if it can be obtained in this fashion:
Characterization of Graphs with the 2-EVP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

A graph is an *odd-cycle-forest* if it can be obtained in this fashion:
Characterization of Graphs with the 2-EVP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

A graph is an odd-cycle-forest if it can be obtained in this fashion:
Characterization of Graphs with the 2-EVP

Theorem

A graph \(G \) has the 2-EUP if and only if \(G \) has an even cycle or has two odd cycles in the same component.

Theorem

A graph \(G \) has the 2-EVP if and only if \(G \) has an even circuit.

A graph is an **odd-cycle-forest** if it can be obtained in this fashion:
Characterization of Graphs with the 2-EVP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

A graph is an *odd-cycle-forest* if it can be obtained in this fashion:
Characterization of Graphs with the 2-EVP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

A graph is an *odd-cycle-forest* if it can be obtained in this fashion:
Characterization of Graphs with the 2-EVP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

A graph is an odd-cycle-forest if it can be obtained in this fashion:
Characterization of Graphs with the 2-EVP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

A graph is an *odd-cycle-forest* if it can be obtained in this fashion:
Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.
Characterization of Graphs with the 2-EVP

Theorem

A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem

A graph G has the 2-EVP if and only if G has an even circuit.

Theorem

A graph G does not have the 2-EVP if any only if G is an odd-cycle-forest.
Characterization of Graphs with the 2-EVP

Theorem
A graph G has the 2-EUP if and only if G has an even cycle or has two odd cycles in the same component.

Theorem
A graph G has the 2-EVP if and only if G has an even circuit.

Theorem
A graph G does not have the 2-EVP if any only if G is an odd-cycle-forest.

Corollary
\[V_2(n, 2) = \left\lfloor \frac{4}{3} n \right\rfloor - 1 \]

Equality holds only for odd-cycle-trees obtained by replacing all vertices in a tree by triangles.
1 Definitions

2 The 2-EUP and 2-EVP of Graphs

3 The t-EVP of Graphs

4 The t-EVP of Hypergraphs

5 Open Questions
The t-EVP of Graphs: Upper Bound

Theorem

For $t \in \mathbb{N}$,

$$V_2(n, t) \leq 4(t-1)n$$

Proof.

Let G have $4(t-1)n + 1$ edges.

\Rightarrow a bipartite $H \subseteq G$ has $2(t-1)n + 1$ edges

\Rightarrow a subgraph $H' \subseteq H$ has $(q-1)n + 1$ edges for prime $t \leq q < 2t$

\Rightarrow a q-divisible subgraph $Q \subseteq H'$

A graph Q is a q-divisible graph if the degree of each vertex in Q is a multiple of an integer q.

Lemma

If Q is a q-divisible bipartite graph, then Q has the q-EVP.
The t-EVP of Graphs: Upper Bound

Theorem

For $t \in \mathbb{N}$,

$$V_2(n, t) \leq 4(t - 1)n$$
The t-EVP of Graphs: Upper Bound

Theorem

For $t \in \mathbb{N}$,

$$\mathbb{V}_2(n, t) \leq 4(t - 1)n$$

Proof. Let G have $4(t - 1)n + 1$ edges.
The t-EVP of Graphs: Upper Bound

Theorem

For $t \in \mathbb{N}$, \[\nabla_2(n, t) \leq 4(t - 1)n \]

Proof. Let G have $4(t - 1)n + 1$ edges.

\Rightarrow a bipartite $H \subseteq G$ has $2(t - 1)n + 1$ edges
The t-EVP of Graphs: Upper Bound

Theorem

For $t \in \mathbb{N}$,

$$\mathcal{V}_2(n, t) \leq 4(t - 1)n$$

Proof. Let G have $4(t - 1)n + 1$ edges.

\Rightarrow a bipartite $H \subseteq G$ has $2(t - 1)n + 1$ edges

\Rightarrow a subgraph $H' \subseteq H$ has $(q - 1)n + 1$ edges for prime $t \leq q < 2t$
The t-EVP of Graphs: Upper Bound

Theorem

For $t \in \mathbb{N}$,

$$\forall_2(n, t) \leq 4(t - 1)n$$

Proof. Let G have $4(t - 1)n + 1$ edges.

⇒ a bipartite $H \subseteq G$ has $2(t - 1)n + 1$ edges

⇒ a subgraph $H' \subseteq H$ has $(q - 1)n + 1$ edges for prime $t \leq q < 2t$

⇒ a q-divisible subgraph $Q \subseteq H'$
The t-EVP of Graphs: Upper Bound

Theorem

For $t \in \mathbb{N}$,

$$\forall_2(n, t) \leq 4(t - 1)n$$

Proof. Let G have $4(t - 1)n + 1$ edges.

\Rightarrow a bipartite $H \subseteq G$ has $2(t - 1)n + 1$ edges

\Rightarrow a subgraph $H' \subseteq H$ has $(q - 1)n + 1$ edges for prime $t \leq q < 2t$

\Rightarrow a q-divisible subgraph $Q \subseteq H'$

A graph Q is a **q-divisible graph** if the degree of each vertex in Q is a multiple of an integer q.

Lemma

If Q is a q-divisible bipartite graph, then Q has the q-EVP.
Every \((t-1)\)-degenerate graph does not have the \(t\)-EVP. This gives
\[
\forall_2(n, t) \geq (t - 1)n
\]
Every \((t - 1)\)-degenerate graph does not have the \(t\)-EVP. This gives

\[
\mathcal{V}_2(n, t) \geq (t - 1)n
\]

Construct \(G_t^a\) in the following manner:

Let \(W_t = \overline{K_{t-2}} \lor C_{t+1}\). For \(a\) copies of \(W_t\), do:
Every \((t - 1)\)-degenerate graph does not have the \(t\)-EVP. This gives

\[
\forall_{2}(n, t) \geq (t - 1)n
\]

Construct \(G_t^a\) in the following manner:

Let \(W_t = K_{t-2} \lor C_{t+1}\). For a copies of \(W_t\), do:
Every \((t - 1)\)-degenerate graph does not have the \(t\)-EVP. This gives
\[
\forall 2(n, t) \geq (t - 1)n
\]

Construct \(G_t^a\) in the following manner:

Let \(W_t = K_{t-2} \lor C_{t+1}\). For \(a\) copies of \(W_t\), do:

\[\text{Diagram:}\]

\[\text{Diagram:}\]
Every \((t - 1)\)-degenerate graph does not have the \(t\)-EVP. This gives

\[
\nabla_2(n, t) \geq (t - 1)n
\]

Construct \(G^a_t\) in the following manner:

Let \(W_t = \overline{K_{t-2}} \lor C_{t+1}\). For \(a\) copies of \(W_t\), do:
Every \((t - 1)\)-degenerate graph does not have the \(t\)-EVP. This gives

\[\forall_2(n, t) \geq (t - 1)n \]

Construct \(G^a_t\) in the following manner:

Let \(W_t = K_{t-2} \lor C_{t+1}\). For \(a\) copies of \(W_t\), do:
Every \((t - 1)\)-degenerate graph does not have the \(t\)-EVP. This gives

\[\forall_2(n, t) \geq (t - 1)n \]

Construct \(G^a_t\) in the following manner:

Let \(W_t = \overline{K_{t-2}} \lor C_{t+1}\). For \(a\) copies of \(W_t\), do:
Every \((t - 1)\)-degenerate graph does not have the \(t\)-EVP. This gives

\[\nabla_2(n, t) \geq (t - 1)n \]

Construct \(G^a_t\) in the following manner:

Let \(W_t = K_{t-2} \lor C_{t+1}\). For \(a\) copies of \(W_t\), do:
The t-EVP of Graphs: Lower Bound

Lemma

G^a_t does not have the t-EVP.
The t-EVP of Graphs: Lower Bound

Lemma

G_t^a does not have the t-EVP.
The t-EVP of Graphs: Lower Bound

Lemma

G_t^a does not have the t-EVP.

Let $H_{t,k}^a$ be a k-uniform hypergraph such that $V(H_{t,k}^a) = V(G_t^a) \cup S$ and $E(H_{t,k}^a) = \{e \cup S : e \in E(G_t^a)\}$. Then $H_{t,k}^a$ does not have the t-EVP.
The t-EVP of Graphs: Lower Bound

Lemma

G^a_t does not have the t-EVP.

Let $H^a_{t,k}$ be a k-uniform hypergraph such that $V(H^a_{t,k}) = V(G^a_t) \cup S$ and $E(H^a_{t,k}) = \{e \cup S : e \in E(G^a_t)\}$. Then $H^a_{t,k}$ does not have the t-EVP.

Theorem

For some polynomial $f_k(t)$ with degree at most 2,

$$\forall_k(n, t) \geq \left(t - 1 + \frac{1}{2(t-1)}\right)n - f_k(t)$$
1. Definitions

2. The 2-EUP and 2-EVP of Graphs

3. The t-EVP of Graphs

4. The t-EVP of Hypergraphs

5. Open Questions
The 2-EVP of Hypergraphs: Proof

Theorem

For an n-vertex k-uniform hypergraph with $k \geq 3$,

$$\nabla_k(n, 2) < (\log_2 k + (1 + \varepsilon_k) \log_2 \log_2 k)n$$

for some $\varepsilon_k > 0$, where $\varepsilon_k \to 0$ as $k \to \infty$.
The 2-EVP of Hypergraphs: Proof

Theorem

For an n-vertex k-uniform hypergraph with $k \geq 3$,

$$\nabla_k(n, 2) < (\log_2 k + (1 + \varepsilon_k) \log_2 \log_2 k) n$$

for some $\varepsilon_k > 0$, where $\varepsilon_k \to 0$ as $k \to \infty$.

Proof.
The 2-EVP of Hypergraphs: Proof

Theorem

For an n-vertex k-uniform hypergraph with $k \geq 3$,

$$\forall_k(n, 2) < (\log_2 k + (1 + \varepsilon_k) \log_2 \log_2 k)n$$

for some $\varepsilon_k > 0$, where $\varepsilon_k \to 0$ as $k \to \infty$.

Proof. H with $m = (\log k + (1 + \varepsilon_k) \log \log k)n$ edges has 2^m subgraphs. Let (d_1, \ldots, d_n) be the degree list of H. Since $\sum_{i=1}^{n} d_i = km$, there exists at most $\prod_{i=1}^{n}(d_i + 1) \leq \left(\frac{km}{n} + 1\right)^n$ degree lists for subhypergraphs.
The 2-EVP of Hypergraphs: Proof

Theorem

For an n-vertex k-uniform hypergraph with $k \geq 3$,

$$\forall_k(n, 2) < (\log_2 k + (1 + \varepsilon_k) \log_2 \log_2 k)n$$

for some $\varepsilon_k > 0$, where $\varepsilon_k \to 0$ as $k \to \infty$.

Proof. Let H with $m = (\log k + (1 + \varepsilon_k) \log \log k)n$ edges has 2^m subgraphs. Let (d_1, \ldots, d_n) be the degree list of H. Since $\sum_{i=1}^n d_i = km$, there exists at most $\prod_{i=1}^n (d_i + 1) \leq \left(\frac{km}{n} + 1\right)^n$ degree lists for subhypergraphs.

If H does not have 2-EVP \Rightarrow subhypergraphs must have different lists.

$$2^m \leq \left(\frac{km}{n} + 1\right)^n \Rightarrow (k(\log_2 k)^{1+\varepsilon_k})^n \leq (k \log_2 k + (1+\varepsilon_k)k \log_2 \log_2 k+1)^n$$

With appropriate ε_k, contradiction. Hence, H has the 2-EVP. \Box
The 2-EVP of Hypergraphs

Theorem

For an n-vertex k-uniform hypergraph with $k \geq 3$,

$$\nabla_k(n, 2) < (\log_2 k + (1 + \varepsilon_k) \log_2 \log_2 k)n$$

for some $\varepsilon_k > 0$, where $\varepsilon_k \to 0$ as $k \to \infty$.

ε_k must be greater than a root of

$$(\log_2 k)^{1+\varepsilon_k} - \log_2 k - (1 + \varepsilon_k) \log_2 \log_2 k - \frac{1}{k} = 0$$

As k increases, $\varepsilon_k \to 0$, but at a very slow rate.

When $k = 10^{42}$ the constant ε_k still needs to be larger than 0.01.

Corollary

$$\nabla_3(n, 2) < 3.5377n$$
The t-EVP of Hypergraphs

By refining the previous argument using known results about r-Δ-systems, we prove the following theorems.

Theorem

Let $t \in \mathbb{N}_{\geq 3}$ and $\varepsilon > 0$. There exists $N = N(t, \varepsilon)$ such that for $n \geq N$,

$$ V(n, t) < (4 + \varepsilon)n^2 \left(\frac{\log n}{\log \log \log n} \right)^2 $$

Theorem

Let $t \in \mathbb{N}_{\geq 3}, k \in \mathbb{N}_{\geq 2}$, and $\varepsilon > 0$. There exists $N = N(t, k, \varepsilon)$ such that for $n \geq N$,

$$ V_k(n, t) < (1 + \varepsilon)n^2 \left(\frac{\log n}{\log \log \log n} \right)^2 $$
Equicovering Subgraphs of Graphs and Hypergraphs

Open Questions

1. Definitions

2. The 2-EUP and 2-EVP of Graphs

3. The t-EVP of Graphs

4. The t-EVP of Hypergraphs

5. Open Questions
We know $\mathcal{U}_2(n, 2) = n$ and $\mathcal{V}_2(n, 2) = \lfloor \frac{4}{3} n \rfloor - 1$.

Equality holds only for adding an edge to an odd-cycle-tree obtained by replacing all vertices in a tree by triangles.

What about other exact values for graphs? In particular, $\mathcal{V}_2(n, 3)$?

We know $\left(t - 1 + \frac{1}{2} (t - 1) \right) n - f_k(t) \leq \mathcal{V}_2(n, t) \leq 4(t - 1) n$ for some function $f_k(t)$ of degree at most two. Close the gap?

Better lower bounds?
We know $U_2(n, 2) = n$ and $V_2(n, 2) = \lfloor \frac{4}{3} n \rfloor - 1$.

Theorem

$$V_2'(n, 3) = \left\lfloor \frac{4}{3} n \right\rfloor$$

Equality holds only for adding an edge to an odd-cycle-tree obtained by replacing all vertices in a tree by triangles.
We know \(\mathcal{U}_2(n, 2) = n \) and \(\mathcal{V}_2(n, 2) = \lfloor \frac{4}{3} n \rfloor - 1 \).

Theorem

\[
\mathcal{V}'_2(n, 3) = \left\lfloor \frac{4}{3} n \right\rfloor
\]

Equality holds only for adding an edge to an odd-cycle-tree obtained by replacing all vertices in a tree by triangles.

What about other exact values for graphs? In particular, \(\mathcal{V}_2(n, 3) \)?
1. We know $U_2(n, 2) = n$ and $V_2(n, 2) = \left\lfloor \frac{4}{3} n \right\rfloor - 1$.

Theorem

$$V'_2(n, 3) = \left\lfloor \frac{4}{3} n \right\rfloor$$

Equality holds only for adding an edge to an odd-cycle-tree obtained by replacing all vertices in a tree by triangles.

What about other exact values for graphs? In particular, $V_2(n, 3)$?

2. We know $\left(t - 1 + \frac{1}{2(t-1)}\right) n - f_k(t) \leq V_2(n, t) \leq 4(t - 1)n$ for some function $f_k(t)$ of degree at most two. Close the gap?
1. We know $\mathcal{U}_2(n, 2) = n$ and $\mathcal{V}_2(n, 2) = \left\lfloor \frac{4}{3} n \right\rfloor - 1$.

Theorem

$$\mathcal{V}_2(n, 3) = \left\lfloor \frac{4}{3} n \right\rfloor$$

Equality holds only for adding an edge to an odd-cycle-tree obtained by replacing all vertices in a tree by triangles.

What about other exact values for graphs? In particular, $\mathcal{V}_2(n, 3)$?

2. We know $\left(t - 1 + \frac{1}{2(t-1)} \right) n - f_k(t) \leq \mathcal{V}_2(n, t) \leq 4(t-1)n$ for some function $f_k(t)$ of degree at most two. Close the gap?

3. Better lower bounds?
Thank you!