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Introduction

Classical Geometries

geometry curvature space form

Spherical geometry 1 Γ\Sn = Γ\SO(n + 1)/SO(n)

Euclidean geometry 0 Γ\En = Γ\E(n)/O(n)

Hyperbolic geometry −1 Γ\Hn = Γ\SO(1, n)0/SO(n)

In general, for a connected Lie group G and a closed subgroup H, we say
that a smooth manifold M is Clifford-Klein space form of G/H if it admits
a complete (G/H,G )-structure.
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Introduction

It is not even obvious whether a given homogeneous manifold G/H admits
nontrivial Clifford-Klein form.

Question

Is there a nontrivial Clifford-Klein form of a homogeneous manifold G/H?
Is there a nontrivial discrete subgroup of G that acts properly
discontinuously and freely on G/H?

Calabi and Markus showed that only a finite group can act properly
discontinuously on the Lorentz space SO(n, 1)0/SO(n − 1, 1)0, n ≥ 3.

Kobayashi found the equivalent condition that π1(Γ\G/H) is always
finite, when G/H is a reductive type homogeneous manifold.
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Introduction

In this talk, we answer the following question:

Question

Under what conditions, does SO(p, q)/SO(p − i , q − j)× SO(i , j) admit
proper discontinuous action of a surface group?

Remark

SO(p, q)/SO(p − i , q − j)× SO(i , j) is interesting pseudo-Riemannian
manifold because it generalizes many geometric spaces

Sp,q = SO(p + 1, q)/SO(p, q), the pseudo-Riemannian manifold of
signature (p, q) with constant sectional curvature 1.

Hp,q = SO(p, q + 1)/SO(p, q), the pseudo-Riemannian manifold of
signature (p, q) with constatn sectional curvature −1.
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Introduction

Question

Under what conditions, does SO(p, q)/SO(p − i , q − j)× SO(i , j) admit
proper discontinuous action of a surface group?

Our approach is:

1 Surface group Γ can be embedded as a discrete subgroup of SL(2,R).

2 Γ acts properly discontinuously on G/H if SL(2,R) does.

3 Find the conjugacy classes of SL(2,R) in G . If two subgroups are
conjugate then one acts properly on G/H if and only if the other does.

4 Show that each conjugacy class contains “good representative” and
apply the Kobayashi theory.
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Introduction

The main theorem of this talk is (terms will be defined)

Theorem

Let g = so(p, q), p ≥ q > 0. Let l be an sl2-subalgebra of g of type
(d1, · · · , de ; de+1, · · · , de+l). Let h = so(p − i , q − j)⊕ so(i , j). Let G ,H
and L be the corresponding Lie groups for g, h and l respectively. Then,
(g, h, l) satisfies the Kobayashi’s criterion (i.e., L acts on G/H properly) if
and only if

min{i , j}+ min{p − i , q − j} < dd1e+ · · ·+ dde+le.
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Preliminaries

Definition

Let G be a Lie group, X a smooth manifold where G acts smoothly.
We say that G acts on X properly when {g ∈ G | gK ∩ K 6= ∅} is
compact in G for all compact set K ⊂ X .

We say that G acts on X properly discontinuously if, in addition, G is
discrete.

Remark

Let Γ be a discrete subgroup of a Lie group L. Then Γ acts properly
discontinuously on a space X if L acts properly on X .

Theorem

Every closed surface Σ of genus > 1 admits a complete hyperbolic
structure. The associated holonomy representation π1(Σ)→ PSL(2,R)
can be lifted to SL(2,R) with discrete image.
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Conjugacy Classes of SL(2,R) in SO(p, q)

Following theorem connects Lie group representations and Lie algebra
representations.

Theorem

There is a 1-1 correspondence between Lie algebra representations
sl(2,R)→ gl(n,R) and Lie group representations SL(2,R)→ GL(n,R).
Moreover, the correspondence preserves irreducibility.

Therefore, studying conjugacy classes of SL(2,R) in SO(p, q) amounts to
studying conjugacy classes of sl(2,R) in so(p, q).
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Conjugacy Classes of SL(2,R) in SO(p, q)

The following theorem is well known for sl(2,C) case. But we can get the
same result for sl(2,R).

Theorem

Let π : sl(2,R)→ gl(V ) be an n-dimensional irreducible representation on
a R-vector space V . Then there is a basis {v0, · · · , vn−1} for V satisfying
following properties

π(H)(vk) = (d − k)vk

π(X )(vk) =
√

1
2k(2d − k + 1)vk−1

π(Y )(vk) =
√

1
2(k + 1)(2d − k)vk+1.

for k = 0, 1, · · · , n − 1. Here, n = 2d + 1 and v−1 = vn = 0 and

H =
1

2

(
1 0
0 −1

)
, X =

1√
2

(
0 1
0 0

)
, Y =

1√
2

(
0 0
1 0

)
.
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Conjugacy Classes of SL(2,R) in SO(p, q)

Definition

Let g be a linear Lie algebra. By an sl2-subalgebra in g, we mean any
subalgebra of g isomorphic to sl(2,R).

sl2-subalgebra l is of type (d1, · · · , de ; de+1, · · · , de+l) if irreducible
components of the inclusion l ↪→ g (regarded as an Lie algebra
representation) have dimension 2d1 + 1, · · · , 2de+l + 1. We assume
that d1, · · · , de are half-integers and de+1, · · · , de+l are integers.

Remark

sl(2,R) is semisimple. Thus, Weyl theorem guarantees that the
representation l→ g is completely reducible.

Types are well defined up to ordering.
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Conjugacy Classes of SL(2,R) in SO(p, q)

Proposition

Let l be an sl2-subalgebra in so(p, q) of type (d1, · · · , de ; de+1, · · · , de+l).

d1, · · · , de are nonnegative half-integers and de+1, · · · , de+l are
nonnegative integers. At least one of di is nonzero.

nE := 2(d1 + · · ·+ de) + e is divisible by 4.

There is an nonnegative integer r ≤ l such that
p − nE/2 = de+1 + · · ·+ de+l + r ,
q − nE/2 = de+1 + · · ·+ de+l + l − r .

de+1 + · · ·+ de+l ≤ min{p, q} − nE/2.

Proof.

We interpret so(p, q) in terms of invariant nondegenerate symmetric
bilinear form. Using standard representation of sl(2,R), one can show that
such form exists if and only if d1, · · · , de must occur in pairs.
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Conjugacy Classes of SL(2,R) in SO(p, q)

Proposition

There is an one-to-one correspondence between conjugacy classes of
sl2-subalgebras in so(p, q) and e + l tuples (d1, · · · , de ; de+1, · · · , de+l)
such that

d1, · · · , de are half integers and de+1, · · · , de+l are integers with
d1 ≤ d2 ≤ · · · ≤ de , de+1 ≤ · · · de+l .

e is even and d1 = d2, d3 = d4, · · · , de−1 = de .

p − nE/2 = de+1 + · · ·+ de+l + r ,
q − nE/2 = de+1 + · · ·+ de+l + l − r for some nonnegative s ≤ l .

Proof.

Forward correspondence is due to the previous proposition. Converse
correspondence follows by direct construction.
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Proper SL(2,R) actions

Let G be a semisimple Lie group with finitely many connected component.
Let H, L be reductive subgroups of G . Denote their Lie algebra by g, h
and l repectively.

Let θ be any Cartan involution of g. Let a be a maximal abelian
subspace of g corresponding to θ.

Let F = h or l. There is a Cartan involution θF : g→ g whose
restriction on F is a Cartan involution of F.

Let aF be a maximal split abelian subspace of F. Since all Cartan
involutions are conjugate, there are gF such that Ad(gF)aF ⊂ a.
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Proper SL(2,R) actions

In our case,

θ is the minus of transpose, i.e., θ(X ) = −XT .

a maximal split abelian subspace a (with respect to θ) of
g = so(p, q), p ≥ q > 0, p + q ≥ 3 is of the form

0p×p


0 0 · · · a1
0 · · · a2 0

0 . .
.

0 0
aq 0 · · · 0


0(p−q)×q

0 0 · · · aq
0 · · · aq−1 0

0 . .
.

0 0
a1 0 · · · 0

 0q×(p−q) 0q×q


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Proper SL(2,R) actions

Here, a is spanned by basis Ei , i = 1, 2, · · · , q where Ei is of the form

0p×p


0 0 · · · a1
0 · · · a2 0

0 . .
.

0 0
aq 0 · · · 0


0(p−q)×q

0 0 · · · aq
0 · · · aq−1 0

0 . .
.

0 0
a1 0 · · · 0

 0q×(p−q) 0q×q


with only ai = 1 and all other aj ’s equal 0.
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Proper SL(2,R) actions

Lemma

Let L1, L2 and H be two reductive subgroup of G = SO(p, q). Suppose
that L1 and L2 are conjugate via SO(p, q). Then L1 acts on G/H properly
if and only if L2 does. If L1, L2 acts properly discontinuously and freely,
then L1\G/H is isometric to L2\G/H.

Theorem

Let p ≥ q > 0, n := p + q ≥ 3 and let g = so(p, q). Let l be a
sl2-subalgebra of g of type (d1, · · · , de ; de1 , · · · , de+l). Then there is
sl2-subalgebra l′ and g ∈ SO(p, q)0 such that l′ = Ad(g).l = g lg−1 and

that al′ is an 1-dimensional subspace of a spanned by
∑dd1e+···+dde+le

i=1 ciEi

where ci are nonzero numbers. Here, d·e is the ceiling function.

Note that l′ in the theorem is what we called “good representative” of
conjugacy class.
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Proper SL(2,R) actions

Now we use Kobayashi’s theorem:

Theorem (1989, Kobayashi)

Let G be a real reductive Lie group. Let L, H be reductive subgroups of
G. Fix a maximal split abelian subspaces al, ah and a of L, H and G.
Assume that al, ah ⊂ a. Then, L acts on G/H properly if and only if

ah ∩W (g, a) · al = {0}.

where W (g, a) is the Weyl group.

We will investigate when ah ∩W (g, l).al = {0} happen.
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Proper SL(2,R) actions

We state and prove the main theorem:

Theorem

Let g = so(p, q), p ≥ q > 0. Let l be an sl2-subalgebra of g of type
(d1, · · · , de ; de+1, · · · , de+l). Let h = so(p − i , q − j)⊕ so(i , j). Let G ,H
and L be the corresponding Lie groups for g, h and l respectively. Then,
(g, h, l) satisfies the Kobayashi’s criterion (i.e., L acts on G/H properly) if
and only if

min{i , j}+ min{p − i , q − j} < dd1e+ · · ·+ dde+le.

Proof.

Because each w ∈W (g, a) just permutes the coordinates (up to sign), the
number of nonzero coordinates of x ∈ a is not changed under the Weyl
group action. Since the number of nonzero coordinates of x ∈ al is
dd1e+ · · ·+ dde+le, the theorem follows.
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Application to the Surface Group Action

As an application, we can reprove the following fact

Corollary (2013, Okuda)

Let h = so(i , j)⊕ so(p − i , q − j) be a subalgebra of g = so(p, q) with
p ≥ q > 0. Let G ,H be the corresponding Lie groups.

If p 6= q or p = q is even then G/H admits proper SL(2,R) action if
and only if

min{i , j}+ min{p − i , q − j} < min{p, q} = q.

If p = q is odd, then G/H admits proper SL(2,R) action if and only if

min{i , j}+ min{p − i , q − j} < min{p, q} = q and |i − j | 6= 1.

In fact, Okuda gives full list of semisimple pairs (g, h) that can admit
proper SL(2,R) action. But his proof was much abstract than our proof.

Hongtaek Jung (KAIST) Proper SL(2,R)-actions December 22, 2014 19 / 22



Application to the Surface Group Action

Another application is

Corollary (1981, Kulkarni)

Let p + q ≥ 2. The fundamental group π of closed surface of genus g > 1
acts properly discontinuously and freely on
Sp,q = SO(p + 1, q)0/SO(p, q)0 when p < q − 1 or p = q − 1 is odd. In
particular, the homogeneous space Sp,q admits Clifford-Klein space form
which has fundamental group isomorphic to π when p < q − 1 or
p = q − 1 is odd.

Proof.

Direct application of previous corollary. To treat freeness of action, use
Selberg’s lemma.

We shall show that the converse is also true.
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Application to the Surface Group Action

To prove the converse statement, we must use more intrinsic method.
Let g as before and fix a positive system Π of restricted root system
Σ(g, a).

Denote Σ+ the positive roots with respect to Π.

Let a+ = {A ∈ a |α(A) ≥ 0 for any α ∈ Σ+}.
Fix w0 ∈W (g, a) having the longest length. Let

b = {A ∈ a | − w0.A = A}, and b+ = b ∩ a+.

Theorem (1996, Benoist)

There is a Γ not virtually abelian discrete subgroup of G which acts
properly discontinuously on G/H if and only if b+ 6⊂ w .ah for any
w ∈W (g, a).
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Application to the Surface Group Action

Direct computation shows that

Proposition

b+ 6⊂ w .ah for any w ∈W (g, a) if and only if p 6= q or p = q is even.

Because surface groups are not virtually abelian,

Corollary

Let p + q ≥ 2. The fundamental group π of closed surface of genus g > 1
acts properly discontinuously and freely on
Sp,q = SO(p + 1, q)0/SO(p, q)0 when p < q − 1 or p = q − 1 is odd. In
particular, the homogeneous space Sp,q admits Clifford-Klein space form
which has fundamental group isomorphic to π if and only if p < q − 1 or
p = q − 1 is odd.
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