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Abstract

I will focus on the semilinear Schrödinger equation of the form
i∂tu+ ∆u = µ|u|pu whose initial datum lies in some L2-based Sobolev
space. At first, I will briefly explain the linear Schrödinger equa-
tion and its dispersive phenomenon, and then quantify it in terms of
Lebesgue norms to obtain the Strichartz estimates. With the contrac-
tion mapping principle, this allows us to have the local well-posedness
of the equation for a certain range of p. On the other hand, as a
Hamiltonian equation, symmetries of the energy functional give rise
to some conserved quantities (via Noether’s theorem). Using these,
one can upgrade the local well-posedness to the global well-posedness.
Finally, if time permits, I will briefly introduce the scattering theory.
Most of the materials are brought from [Tao].

1 Notations and preliminaries

Fourier transform: the Fourier transform on Rd is defined by

f̂(ξ) :=

ˆ
Rd

f(x)e−iξ·xdξ.

Fourier multiplier : let m : R → R be a measurable function whose growth
is at most polynomial. We define m(∇

i
) as a linear operator from S(Rd) to

S ′(Rd) satisfying
[m̂(D)f ](ξ) = m(ξ)f̂(ξ)

where D = ∇
i
.
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Sobolev norms : we define the Sobolev norms for s ∈ R and 1 ≤ p ≤ ∞ as

‖f‖W s,p := ‖〈∇〉sf‖Lp , ‖f‖Ẇ s,p := ‖|∇|sf‖Lp .

Mixed Lebesgue norms : for 1 ≤ q, r ≤ ∞, we define

‖F (t, x)‖Lq
tL

r
x(I×Rd) :=

∥∥∥‖F (t)‖Lr
x(Rd)

∥∥∥
Lq
t (I)

.

Nonlinear Schrödinger equation (NLS): for p ≥ 0, s ∈ R and µ ∈ {−1, 0, 1},

i∂tu+ ∆u = µ|u|pu = µF (u)

u(0, x) = u0(x) ∈ Hs
x(Rd).

If µ = 0, this is called the linear (or free) Schrödinger equation. If µ = 1
(resp., −1), it is called the defocusing (resp., focusing).

Duhamel’s formula: If there exists a solution u ∈ C∞t,locSx(I×Rd) with initial
datum u0, the spatial Fourier transform yields that

i∂tû(t)− |ξ|2û(t) = µF̂ (u(t)).

From Duhamel’s formula in ODE theory, we obtain

û(t) = e−it|ξ|
2

û0 − iµ
ˆ t

0

e−i(t−s)|ξ|
2

F̂ (u(s))ds.

Finally, we take the inverse Fourier transform to obtain

u(t) = eit∆u0 − iµ
ˆ t

0

ei(t−s)∆F (u(s))ds.

Hamiltonian formulation: consider the Hamiltonian H and the symplectic
form w on L2(Rd) as follows

H(u) :=
1

2

ˆ
Rd

|∇u|2 +
µ

p+ 2

ˆ
|u|p+2, w(f, g) := Im

ˆ
Rd

f(x)g(x)dx.

The corresponding Hamiltonian equation becomes

∂tu = ∇wH(u) = i∆u− iµ|u|pu.

This H enjoys lots of symmetries. From Noether’s theorem, they correspond
to some conserved quantities. We list them as follows. Also, the equation
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Symmetries Conserved quantities
time translation Energy: E = 1

2

´
|∇u|2 + µ

p+2

´
|u|p+2

space translation Momentum: P = 2
´
Im(u∇u)

space rotation Angular momentum: Ljk = i
´
u[xj∂ku− xk∂ju]

phase rotations Mass: M =
´
|u|2

Galilean invariance Normalized center of mass: ~x− t~p

Table 1: Symmetries and Conserved quantities

itself enjoys some symmetries: let u be a solution. We have the scaling
symmetry

u(t, x) 7→ λ
2
pu(λ2t, λx).

In particular, if p = 4
d
(called mass-critical), then the above transformation

preserves the L2 norm. If p < 4
d
(resp. p > 4

d
), we call that case mass-

subcritical (resp. mass-supercritical).

Also, we have the Galilean invariance

u(t, x) 7→ eix·ξ0−it|ξ0|
2

u(t, x− 2ξ0t).

There are discrete symmetries: the time-reversal symmetry

u(t, x) 7→ u(−t, x)

and the pseudo-conformal symmetry (only holds when p = 4
d
or µ = 0)

u(t, x) 7→ t−
d
2 ei|x|

2/4tu
(
− 1

t
,
x

t

)
.

2 The linear Schrödinger equation

In order to study a nonlinear equation, it is customary to regard the nonlin-
ear equation as a perturbation of the linear equation at first time. Indeed,
the Duhamel formula exactly shows that one can obtain u by adding some
nonlinear feedback to the linear solution.

Let us first start with a linear dispersive equation of the form

∂tu = L(D)u,
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where L(z) = ih( z
i
) with a real polynomial h. Here, h is called a dispersion

relation. For example, the linear Schrödinger equation i∂tu + ∆u = 0 has
the dispersion relation h(ξ) = −|ξ|2, the Airy equation ut + uxxx = 0 has the
dispersion relation h(ξ) = ξ3, and the transport equation ∂tu = −v ·∇u with
v ∈ Rd has the dispersion relation h(ξ) = −v · ξ.

We first observe that

u(t, x) = eiξ0·x+ith(ξ0), ∀ξ0 ∈ Rd

is a linear solution. This says that u has the velocity − ξ0
|ξ0|

h(ξ0)
|ξ0| . This veloc-

ity is called the phase velocity, as one shall see soon that group velocity is
somewhat different. Suppose that φ̂ is supported near the frequency ξ0 and
u(0) = φ. Then,

u(t) =
∑
ξ

φ̂(ξ)eith(ξ)eiξ·x ≈
∑
ξ

φ̂(ξ)eit∇h(ξ0)·(ξ−ξ0)eith(ξ0)eiξ·x.

The term φ̂(ξ)e−it(2ξ0·ξ) makes the translation in the physical space by 2tξ0.
Therefore, u has the group velocity 2ξ0. With the superposition principle, we
see that each plane waves of different frequency moves in different velocity.
So the dispersive effect is apparent. However on Td, one cannot have an easy
dispersive effect as in Rd because of periodicity.

Roughly, as the linear solution disperses, its support becomes larger but its
height becomes lower. A common way to quantify this effect is to estimate
the Lpx norm for large p because it is less sensitive to the width of the support
of the function as p becomes larger.

Lemma 2.1 (Fundamental solution). We have eit∆u0 = Kt ∗ u0 where

Kt(x) = (4πit)−
d
2 ei|x−y|

2/4t

for all t 6= 0.

Proof. Formally, we have

eit∆u0(y) =
1

(2π)d

ˆ
Rd

e−it|ξ|
2

e−i(x−y)·ξu0(x)dxdξ

=

ˆ
Rd

ˆ
Rd

1

(2π)d
e−it|ξ|

2

ei(y−x)·ξdξ︸ ︷︷ ︸
Kt(y−x)

u0(x)dx.

The formula of Kt can be obtained using analytic continuation.
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Proposition 2.2 (Dispersive estimate). We have

‖eit∆u0‖Lp
x(Rd) .d,p |t|−d( 1

2
− 1

p
)‖u0‖Lp′

x (Rd)

for all t 6= 0 and 2 ≤ p ≤ ∞, where 1
p

+ 1
p′

= 1.

Proof. From the above lemma, ‖eit∆u0‖L∞
x (Rd) .d |t|−

d
2‖u0‖L1

x(Rd). On the
other hand, the Plancherel theorem tells us that eit∆ is a unitary operator
on L2

x(Rd). Therefore, the claim follows from the Riesz-Thorin interpolation
theorem.

Definition (Schrödinger admissible pairs). For 2 ≤ q, r ≤ ∞, (q, r) is called
a Schrödinger admissible pair if

2

q
+
d

r
=
d

2
, and (q, r, d) 6= (2,∞, 2).

Theorem 2.3 (Strichartz estimate). Let (q, r), (q̃, r̃) be Schrödinger admis-
sible pairs. Then,

‖eit∆u0‖Lq
tL

r
x(R×Rd) .d,q,r ‖u0‖L2

x(Rd),∥∥∥ˆ
R
e−is∆F (s, x)ds

∥∥∥
L2
x(Rd)

.d,q̃,r̃ ‖F‖Lq̃′
t L

r̃′
x (R×Rd)

,∥∥∥ˆ
s<t

ei(t−s)∆F (s, x)ds
∥∥∥
Lq
tL

r
x(R×Rd)

.d,q,r,q̃,r̃ ‖F‖Lq̃′
t L

r̃′
x (R×Rd)

.

Proof. We will only show the non-endpoint cases. The endpoint estimates
are proved in [KeelTao]. Let

[Tu0](t, x) := [eit∆u0](x).

Then, the dual operator becomes

[T ∗F ](x) :=

ˆ
R
e−is∆F (s, x)ds.

We use the TT ∗-argument; i.e., we will show that TT ∗ is bounded. Observe
that

[TT ∗F ](t, x) :=

ˆ
R
ei(t−s)∆F (s, x)ds.
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Now, we apply Minkowski’s inequality, dispersive estimate and Hardy-Littlewood-
Sobolev inequality to obtain

‖TT ∗F‖Lq
tL

r
x(R×Rd) .

∥∥∥ˆ
R
‖ei(t−s)∆F (s, x)‖Lr

x(Rd)ds
∥∥∥
Lq
t (R)

.d,r

∥∥∥ˆ
R
|t− s|−d( 1

2
− 1

r
)‖F (s)‖Lr′

x (Rd)ds
∥∥∥
Lq
t (R)

.d,r

∥∥∥‖F (s)‖Lr′
x (Rd)

∥∥∥
Lq′
t (R)

where we used 0 < 2
q

= d
2
− d

r
< 1 (non-endpoint assumption) in the HLS

inequality. This completes the proof of the first two estimates. In order
to obtain the last estimate, apply the Christ-Kiselev lemma which is stated
below.

Lemma 2.4 (Christ-Kiselev lemma). Let X, Y be Banach spaces; let I be a
time interval, and let K ∈ C0(I × I → BX→Y ) be a kernel. Suppose that we
have ∥∥∥ˆ

I

K(t, s)f(s)ds
∥∥∥
Lq
t (I→Y )

≤ A‖f‖Lp
t (I→X)

for some 1 ≤ p < q ≤ ∞ and A > 0. Then,∥∥∥ˆ
I

K(t, s)f(s)ds
∥∥∥
Lq
t (I→Y )

.p,q A‖f‖Lp
t (I→X).

Proof. See [Tao2].

3 Well-posedness of the NLS

Definition 3.1. (Strong L2
x solution) Suppose that u0 ∈ L2

x(Rd) are given. If
u ∈ C0

t L
2
x(I ×Rd) satisfies the integral equation, u is called a strong L2

x(Rd)
solution of NLS with initial datum u0.

Definition 3.2. (Strichartz space) The Strichartz space S0(I×Rd) is defined
with its norm

‖u‖S0(I×Rd) = sup
(q,r): admissible

‖u‖Lq
tL

r
x(I×Rd) and

‖u‖N0(I×Rd) = inf
(q,r): admissible

‖u‖
Lq′
t L

r′
x (I×Rd)

.
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Remark. If d = 2, the set of admissible pairs is not compact (not containing
(2,∞)). Therefore, we may truncate the supremum such as q ≥ 2 + ε.

Remark. By Riesz-Thorin interpolation on LqtLrx space, the above Strichartz
norm is equivalent to the supremum norm of two end-point admissible pairs.
Similarly, this applies to N0.

The Strichartz estimates can be written as:

‖eit∆/2u0‖S0(I×Rd) .d ‖u0‖L2
x(Rd),∥∥∥∥ˆ t

0

ei(t−s)∆/2F (s)ds

∥∥∥∥
S0(I×Rd)

.d ‖F‖N0(I×Rd).

Theorem 3.3 (L2
x-subcritical local well-posedness). Let d = 1 and p = 2.

For any R > 0 and u0 ∈ BL2
x
(0;R), there exists T = T (R) > 0 such that u0

admits a unique strong L2
x solution in S0([−T, T ]×R) ⊂ C0

t L
2
x([−T, T ]×R).

Furthermore, the solution map u0 7→ u is Lipschitz map from BL2
x
(0;R) to

S0([−T, T ]× R).

Remark. The T can be chosen depending only on R. This says that T does
not depends on the profile of the initial datum and whether the equation is
focusing or defocusing.

Proof. We want to apply the contraction mapping principle to the map Φu0 :
BS0(0;R1)→ BS0(0;R1) defined by

Φu0(u) = eit∆/2u0 − iµ
ˆ t

0

ei(t−s)∆/2F (u(s))ds.

1. (Self-map) For u ∈ BS0(0;R1), the Strichartz estimate and Hölder in-
equality yields that

‖Φu0(u)‖S0 ≤ ‖eit∆u0‖S0 +
∥∥∥ˆ t

0

ei(t−s)∆|u(s)|2u(s)ds
∥∥∥
S0

. ‖u0‖L2
x

+ ‖|u|2u‖L1
tL

2
x

. ‖u0‖L2
x

+ T
1
2‖u‖3

L6
t,x

≤ C1(R + T
1
2R3

1).
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2. (Contraction) For u, v ∈ BS0(0;R1), the Hölder inequality yields

‖Φu0(u)− Φu0(v)‖S0 . ‖|u|2u− |v|2v‖L1
tL

2
x

. T
1
2‖u− v‖L6

t,x
(‖u‖2

L6
t,x

+ ‖v‖2
L6
t,x

)

≤ C2T
1
2R2

1‖u− v‖S0 .

3. Note that Φu0(u) ∈ C0
t L

2
x because of the following fact:

if t→ t0 in R and f → f0 in L2
x, then e

it∆f → eit0∆f0 in L2
x.

By 1 and 2, we may choose R1 large such that R1 ≥ 2C1R. Then, we choose
T small such that T

1
2R3

1 ≤ R and C2T
1
2R2

1 ≤ 1
2
. By the contraction mapping

principle, there exists a unique solution u in BS0(0;R1).

Now, we show that u is indeed unique in the whole space S0. Suppose we
are given two solutions u, ũ for the initial datum u0. Since u, ũ ∈ C0

t L
2
x, the

set
A := {t ∈ [−T, T ] : u(t) = ũ(t)}

is closed. Hence, it suffices to show that A is also open in [−T, T ]. Let
t0 ∈ A be arbitrary and choose R1 ≥ 2C1 max{‖u‖S0 , ‖ũ‖S0}. Then, by the
observation 1 and 2, we can choose δ > 0 sufficiently small such that the
map Φu(t0) (whose initial datum is u(t0) at time t0 and S0 is defined on the
interval [t0 − δ, t0 + δ]) becomes a contraction. Therefore, u(t) = ũ(t) for all
t ∈ [t0 − δ, t0 + δ] by the uniqueness. Thus, A is open.

Finally, we prove Lipschitz continuous dependence on the initial data. For
any u0, v0 ∈ BL2

x
(0;R), let u, v be the solutions, respectively. Then,

‖u− v‖S0 ≤ ‖eit∆/2(u0 − v0)‖S0 + ‖Φu0(u)− Φu0(v)‖S0

≤ C3‖u0 − v0‖L2
x

+
1

2
‖u− v‖S0 .

This shows that u is a contraction.

Combining with mass conservation, we have global L2
x well-posedness:

Corollary 3.4 (L2
x-subcritical global well-posedness). Let 0 ≤ p < 4

d
. For

any u0 ∈ L2
x(Rd), there exists a unique strong L2

x solution u in S0
t,loc(R×Rd) ⊂

C0
t,locL

2
x(R × Rd). Moreover, the solution map u0 7→ u from L2

x to S0
t,loc is

continuous.
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When p is mass-critical, we need to change the statement slightly:

Theorem 3.5 (L2
x-critical local well-posedness). Let p = 3 and d = 2. For

any u∗ ∈ L2
x(R2), there exists ε0 > 0 such that whenever u∗ ∈ L2

x(R2) and I
satisfies ‖eit∆u∗‖L4

t,x(I×R2) ≤ ε0, any u0 ∈ BL2
x
(u∗; ε0) admits a strong L2

x(R2)

solution in S0(I ×R2) ⊂ C0
t L

2
x(I ×R2). Moreover, the solution map u0 7→ u

from BL2
x
(u∗; ε0) to S0(I × R2) is Lipschitz continuous.

Remark. The lifespan of the solution depends on the profile of the initial
datum. So we cannot obtain global well-posedness using mass conservation
in the critical case. Indeed, choose a solution of the form e−itτQ(x) where
Q ∈ Sx(Rd) (which is available in the focusing case). Using the pseudo-
conformal transformation, we see that eiτ/tei|x|2/2tQ(x/t) is also a solution to
the NLS. This solution has constant L2

x-norm (by mass conservation) but has
short existence time interval when t→ 0.

Proof. Define an artificial norm on S0(I × R2) by

‖u‖X = δ‖u‖S0(I×R2) + ‖u‖L4
t,x(I×R2),

where 0 < δ ≤ 1 will be chosen later. Here, choosing δ small means that we
will not have a good control on the size of ‖u‖S0 (i.e., it might be very large)
but we only require u ∈ S0(I × R2). Define Φu0 : BX(0; η) → BX(0; η) such
that

Φu0(u) := eit∆u0 − iµ
ˆ t

0

ei(t−s)∆|u(s)|2u(s)ds.

As before, we obtain

‖Φu0(u)‖X ≤ ‖eit∆(u0 − u∗)‖X + ‖eit∆u∗‖X +
∥∥∥ˆ t

0

ei(t−s)∆|u(s)|2u(s)ds
∥∥∥
X

. (1 + δ)ε0 + (ε0 + δ‖u∗‖L2
x
) + ‖|u|2u‖

L
4/3
t,x

≤ C1(ε0 + δ‖u∗‖L2
x

+ η3)

and

‖Φu0(u)− Φu0(v)‖X . ‖Φu0(u)− Φu0(v)‖S0

. ‖F (u)− F (v)‖
L
4/3
t,x

≤ C2η
2‖u− v‖X .

Note that Φu0(u) ∈ C0
t L

2
x follows as before. Therefore, we may choose η, ε0 >

0 small such that max{C1, C2}η2 < 1
2
and 0 < C1ε0 <

1
2
(η − C1η

3). Then,
choose δ > 0 small such that δ‖u∗‖L2

x
< η − C1(ε0 + ηp).
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The uniqueness in S0(I × R2) follows as before. For Lipschitz continuous
dependence on the initial data, observe for the two solutions u, v in BX(0; η)
whose initial data u0, v0 ∈ BL2

x
(u∗; ε0) that

‖u− v‖X = ‖eit∆/2(u0 − v0)‖X + ‖Φu0(u)− Φu0(v)‖X

≤ C‖u0 − v0‖L2
x

+
1

2
‖u− v‖X .

Since X norm depends on δ, the Lipschitz constant for BL2
x
(u∗; ε0)→ S0(I×

Rd) actually depends on u∗.

Remark. This argument works for all p = 4
d
in any dimension.

Remark. When u0 has very small norm, then we can apply the theorem
with u∗ = 0 and I = R. In this case, the solution globally exists and
‖u‖S0(R×R2) <∞.
Remark. Note that we cannot have such local well-posedness in the super-
critical case. Suppose that p is mass-supercritical and recall the scaling
invariance

u(t, x) 7→ λ
2
pu(λ2t, λx).

When λ > 1, the lifespan of λ
2
pu(λ2t, λx) becomes shorter and the profile

becomes sharper. When p is supercritical, the lifespan becomes shorter while
its L2

x norm becomes smaller. That means that there could exist a profile u0

whose L2
x-norm is arbitrarily small and its lifespan is arbitrarily short. Hence

it seems that the mass-supercritical NLS is ill-posed in some sense.

One can also obtain H1
x-(sub)critical local well-posedness.

Theorem 3.6 (H1
x-subcritical local well-posedness). Let p = 3 and d = 3.

For any R > 0 and u0 ∈ BH1
x
(0;R), there exists T = T (R) > 0 such that u0

admits a unique strong H1
x solution in S1([−T, T ] × R3) ⊂ C0

tH
1
x([−T, T ] ×

R3). Furthermore, the solution map u0 7→ u is Lipschitz map from BH1
x
(0;R)

to S1([−T, T ]× R3).

Proof. Proof strategy is almost same as before. We only note some estimates:

‖F (u)‖
L2
tW

1, 65
. T

1
5‖F (u)‖

L
10
3

t W 1, 65
by Hölder

. T
1
5‖u‖2

L10
t L5

x
‖u‖

L10
t W

1, 103
x

by fractional chain rule

. T
1
5‖u‖3

S1 . by Sobolev embedding

Thus, we may choose T small.
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Theorem 3.7 (Ḣ1
x-critical local well-posedness). Let p = 5 and d = 3. For

any u∗ ∈ Ḣ1
x(R3), there exists ε0 > 0 such that whenever u∗ ∈ Ḣ1

x(R3) and I
satisfies ‖eit∆u∗‖L10

t,x(I×R3) ≤ ε0, any u0 ∈ BḢ1
x
(u∗; ε0) admits a strong Ḣ1

x(R3)

solution in Ṡ1(I ×R3) ⊂ C0
t Ḣ

1
x(I ×R3). Moreover, the solution map u0 7→ u

from BḢ1
x
(u∗; ε0) to Ṡ1(I × R3) is Lipschitz continuous.

Proof. Observe that

‖F (u)‖
L2
t Ẇ

1, 65
. ‖u‖4

L10
t,x
‖u‖

L10
t Ẇ

1, 3013
x

. ‖u‖4
L10
t,x
‖u‖Ṡ1 .

Define X-norm by ‖u‖X := ‖u‖L10
t,x

+ δ‖u‖Ṡ1 and proceed as before.

Definition. A solution u to the NLS scatters in Ḣs
x, forward (resp. back-

ward) in time if there exists u± such that ‖u(t)−eit∆u±‖Ḣs
x
→ 0 as t→ ±∞.

Proposition 3.8 (Finite Strichartz norm implies scattering). Let u : I ×
Rd → C be a maximal-lifespan solution to the NLS. If ‖u‖S0(I) < ∞, then
I = R and u scatters in L2

x, both forward and backward in time.

Proof. I = R follows from inspecting the proof of local well-posedness. In
order to prove that u scatters, the Duhamel formula implies

e−it∆u(t) = u(0)− iµ
ˆ t

0

e−is∆F (s)ds.

Therefore, u scatters if the above integral conditionally converges. Since we
assume ‖u‖S0(I) <∞, this is the case.

Theorem 3.9 (Mass-critical scattering theorem). Let u0 ∈ L2
x(Rd) and u :

I×Rd → C be the maximal lifespan solution to the NLS with initial datum u0.
If µ = +1, then I = R and there exists a continuous function L : [0,∞) →
[0,∞) satisfying

‖u‖S0(R×Rd) ≤ L(‖u0‖L2
x
).

If µ = −1, we further assume that ‖u0‖L2
x
< ‖Q‖L2

x
and the above statement

holds with L : [0, ‖Q‖L2
x
)→ [0,∞).

We conclude this note with a remark. In the mass-critical case, if u0 ∈
H1
x, then one can use H1

x-subcritical local well-posedness. If µ = +1, then
energy conservation shows that the solution exists globally. If µ = −1, then
we further assume M(u) < M(Q) and use the sharp Gagliardo-Nirenberg
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inequality to obtain global existence. However, for an initial data only in L2
x,

the global well-posedness and scattering were conjectured for a long time.
This conjecture has been completely solved by B. Dodson (for a reference,
[Dodson] and will be enough). The proof uses the concentration-compactness
technique which originates from the elliptic theory. The major contribution
of Dodson is that he proved the longtime Strichartz estimate. Roughly, it
says that a (nonlinear) solution which seems to scatter must obey the linear
Strichartz estimate plus some amenable error.
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