
Geometry & Topology XX (20XX) 1001–999 1001

Pseudo-Anosov mapping classes not arising from Penner’s
construction

HYUNSHIK SHIN

BALÁZS STRENNER

We show that Galois conjugates of stretch factors of pseudo-Anosov mapping
classes arising from Penner’s construction lie off the unit circle. As a conse-
quence, we show that for all but a few exceptional surfaces, there are examples
of pseudo-Anosov mapping classes so that no power of them arises from Penner’s
construction. This resolves a conjecture of Penner.

37E30; 57M99, 15A18, 11R32

1 Introduction

Let Sg,n be the orientable surface of genus g with n punctures. The mapping class group
Mod(Sg,n) is the group of isotopy classes of orientation-preserving homeomorphisms of
Sg,n . Thurston’s classification theorem [Thu88] states that each element of Mod(Sg,n)
is either periodic, reducible, or pseudo-Anosov. An element f ∈ Mod(Sg,n) is pseudo-
Anosov if there is a representative homeomorphism ψ , a number λ > 1, and a pair of
transverse invariant singular measured foliations Fu and F s such that

ψ(Fu) = λFu and ψ(F s) = λ−1F s.

The number λ is called the stretch factor (or dilatation) of f .

Isotopy classes of orientation-preserving Anosov maps of the torus can easily be
classified as actions of matrices M ∈ SL(2,Z) with |tr(M)| > 2 on R2/Z2 . However,
it is much harder to give explicit examples of pseudo-Anosov maps on more complicated
surfaces.

Thurston gave the first general construction of pseudo-Anosov mapping classes in
terms of Dehn twists [Thu88]. After Thurston’s work, various other constructions have
been developed [AY81, Kra81, Lon85, Pen88, CB88, BH92]. In this paper, we study
Penner’s construction [Pen88].
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Penner’s Construction Let A = {a1, . . . , an} and B = {b1, . . . , bm} be a pair of
multicurves on a surface S . Suppose that A and B are filling, that is, A and B are in
minimal position and the complement of A∪ B is a union of disks and once punctured
disks. Then any product of positive Dehn twists about aj and negative Dehn twists
about bk is pseudo-Anosov provided that all n + m Dehn twists appear in the product
at least once.

Penner [Pen91] used this construction to give examples of pseudo-Anosov mapping
classes with small stretch factors. (See also [Bau92] and [Lei04] for more work on
small stretch factors arising from Penner’s construction.)

Pseudo-Anosov maps arising from Penner’s construction fix the singularities and sep-
aratrices of their invariant foliations, and therefore not all pseudo-Anosov mapping
classes arise from Penner’s construction. However, since the construction is fairly
general, Penner conjectured the following.

Conjecture (Penner, 1988) Every pseudo-Anosov mapping class has a power that
arises from Penner’s construction.

The conjecture is listed as Problem 4 in Chapter 7 of [Far06] and also discussed briefly
in Section 14.1.2 of [FM12].

It is a folklore theorem that Penner’s construction is true for S1,0 and S1,1 and that it is
false for S0,4 , but a modified version of the conjecture, allowing half-twists in addition
to Dehn twists in Penner’s construction, is true. To the best of our knowledge, no proof
of this has appeared in the literature. In the appendix, we give a proof by considering
the action of the mapping class group on the curve complex. The main result of this
paper is the answer to Penner’s conjecture in the remaining nontrivial cases.

We call a pseudo-Anosov mapping class and its stretch factor λ coronal if λ has a
Galois conjugate on the unit circle.

Main Theorem A coronal pseudo-Anosov mapping class has no power coming from
Penner’s construction. Moreover, there exists a coronal pseudo-Anosov mapping class
on Sg,n when 3g + n ≥ 5. In particular, Penner’s conjecture is false for Sg,n when
3g + n ≥ 5.

We remark that even the modified version of the conjecture, allowing half-twists in
addition to Dehn twists in Penner’s construction, is false for S0,n when n ≥ 5.
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The proof of the first part of the Main Theorem is based on the fact that stretch factors of
pseudo-Anosov mapping classes arising from Penner’s construction appear as Perron–
Frobenius eigenvalues of products of certain integral matrices, which depend only on
the intersection numbers of curves. We show that such matrix products may not have
eigenvalues on the unit circle other than 1, which implies that pseudo-Anosov stretch
factors arising from Penner’s construction are not coronal.

The key idea is that an eigenvalue on the unit circle corresponds to a rotation on
an invariant plane, which we consider a dynamical system. Our topological setting
provides a natural quadratic form h which, considered as a height function, plays a role
similar to that of Lyapunov functions in stability theory. We show that the products
of matrices arising from Penner’s construction act by increasing the height, which
prohibits rotations on subspaces.

To prove the second part of the Main Theorem, we use known coronal pseudo-Anosov
mapping classes on S2,0 and S0,5 to construct coronal pseudo-Anosov mapping classes
on the rest of the surfaces via introducing punctures and taking branched covers.

The Main Theorem provides a number-theoretical obstruction for pseudo-Anosov maps
to arise from Penner’s construction: if the stretch factor of f has a Galois conjugate
on the unit circle, then no power of f can arise from Penner’s construction. We do not
know whether there are other obstructions.

Question 1.1 Let f be a pseudo-Anosov mapping class whose stretch factor does not
have Galois conjugates on the unit circle. Does f n arise from Penner’s construction
for some n ∈ N?

Acknowledgements The authors are grateful to Richard Kent and Dan Margalit for
numerous helpful conversations and invaluable comments. We also thank Richard Kent
for suggesting the term coronal and the referee for many helpful comments.

2 Proof of the Main Theorem

2.1 Stretch factors arising from Penner’s construction

Let A = {a1, . . . , an} and B = {b1, . . . , bm} be a pair of multicurves on a surface.
Introduce the notation

(e1, . . . , en+m) = (a1, . . . , an, b1, . . . , bm).
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The intersection matrix of A and B is the symmetric (n + m) × (n + m) nonnegative
integral matrix Ω = Ω(A,B) whose (j, k)-entry is the geometric intersection number
i(ej, ek).

The monoid Γ(Ω) Penner showed that actions of the Dehn twists Taj and T−1
bk

on
A ∪ B can be described by the matrices

Qi = I + DiΩ (1 ≤ i ≤ n + m),

where I is the (n + m)× (n + m) identity matrix, and Di denotes the (n + m)× (n + m)
matrix whose ith entry on the diagonal is 1 and whose other entries are zero. Any
product of Taj and T−1

bk
, where each aj and each bk appear at least once, is pseudo-

Anosov, and its stretch factor is given by the Perron–Frobenius eigenvalue of the
corresponding product of the matrices Qi . Therefore one can study pseudo-Anosov
stretch factors arising from Penner’s construction by studying the monoid

Γ(Ω) = 〈Qi : 1 ≤ i ≤ n + m〉,
generated by the matrices Qi depending on Ω. For more details, see [Pen88].

The height function h Define the quadratic form h : Rn+m → R by the equation

h(v) =
1
2

vTΩv.

Geometrically, the vector v corresponds to assigning a real number to each curve in A
and B. The function h is the sum of the products of the values of intersecting curves
over all intersection points.

The multicurves A and B define two transverse cylinder decompositions of the surface.
When v > 0, the values assigned to the curves can be thought of as the widths of
the cylinders. This way we get a singular flat metric on the surface with a rectangle
corresponding to each intersection, and the area of this flat surface is h(v). When v is
not positive, one can still think of h(v) as a signed area. However, it is not clear how
this geometric interpretation explains the following interaction between the function
h(v) and the matrices Qi .

Proposition 2.1 h(Qiv)− h(v) = ||Qiv− v||2 .

Proof Since all entries on the diagonal of Ω are zero, we have DiΩDi = 0 for all i,
and hence we have

1
2

QT
i ΩQi −

1
2

Ω =
1
2

(I + ΩDi)Ω(I + DiΩ)− 1
2

Ω = ΩDiΩ.

It follows that h(Qiv)− h(v) = ||DiΩv||2 = ||Qiv− v||2 .
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Corollary 2.2 If M ∈ Γ(Ω), then h(Mv) ≥ h(v) with equality if and only if Mv = v.

Proposition 2.3 If M ∈ Γ(Ω), then M cannot have eigenvalues on the unit circle
except 1.

Proof Assume for contradiction that M has an eigenvalue µ 6= 1 on the unit circle.
Then there exists v ∈ Rn+m and a sequence pi → ∞ of positive integer powers such
that Mv 6= v and Mpiv → v. (If µ 6= −1, choose v to be any nonzero vector in the
two-dimensional invariant subspace on which M acts by a rotation. If µ = −1, choose
v to be a corresponding eigenvector.) Therefore we have h(Mv) > h(v), and hence
h(Mpiv) ≥ h(M(v)) for all pi by Corollary 2.2. However, we have h(Mpiv)→ h(v) by
continuity, which is a contradiction.

2.2 Coronal pseudo-Anosov mapping classes

Recall that a pseudo-Anosov mapping class and its stretch factor λ are coronal if λ
has a Galois conjugate on the unit circle.

Lemma 2.4 If a pseudo-Anosov mapping class f is coronal, then each power of f is
also coronal.

Proof Let λ be the stretch factor of f . Let σ be an automorphism of the Galois
extension L/Q with |σ(λ)| = 1, where L is the splitting field of the minimal polynomial
of λ. For all k ≥ 1, we have |σ(λk)| = |σ(λ)k| = 1. Therefore λk , the stretch factor
of f k , has a Galois conjugate σ(λk) on the unit circle.

As a consequence of Proposition 2.3 and Lemma 2.4, we have the following.

Corollary 2.5 (First part of the Main Theorem) A coronal pseudo-Anosov mapping
class has no power coming from Penner’s construction.

To complete the proof of the Main Theorem, we need to show that coronal pseudo-
Anosov mapping classes exist on all but a few exceptional surfaces.

Lemma 2.6 If there exists a coronal pseudo-Anosov mapping class on a surface S ,
and there is a branched covering S̃ → S , then there exists a coronal pseudo-Anosov
mapping class on S̃ as well.
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Proof If f ∈ Mod(S) is a coronal pseudo-Anosov mapping class, then some power of
f can be lifted to a pseudo-Anosov mapping class f̃ on S̃ with the same stretch factor as
the power of f (see [FLP79, Exposé 13, II.1.]). By Lemma 2.4, f̃ is also coronal.

Lemma 2.7 If there exists a coronal pseudo-Anosov mapping class on a surface S ,
then there exists a coronal pseudo-Anosov mapping class on the surface S′ = S \ {p}
with one more puncture as well.

Proof Let f ∈ Mod(S) be a coronal pseudo-Anosov mapping class with stretch factor
λ and let ψ be its representative homeomorphism. Some power ψk has a fixed point
p (see [FLP79, Proposition 9.20] or [FM12, Theorem 14.19]), and hence ψk induces a
pseudo-Anosov homeomorphism of S \ {p} with coronal stretch factor λk .

Proposition 2.8 (Second part of the Main Theorem) There exists a coronal pseudo-
Anosov mapping class on Sg,n when 3g + n ≥ 5.

Proof On S2,0 there is a coronal pseudo-Anosov mapping class with stretch factor the
Perron root of the polynomial x4− x3− x2− x + 1 [Zhi95]. For each g ≥ 3 there is an
unbranched covering of S2,0 by Sg,0 . It follows from Lemma 2.6 and Lemma 2.7 that
there exists a coronal pseudo-Anosov mapping class on all Sg,n with g ≥ 2 and n ≥ 0.

For the genus 0 cases, start from a coronal pseudo-Anosov mapping class on S0,5 with
stretch factor the Perron root of x4−2x3−2x+1 [LT11a]. By Lemma 2.7, there exists
a coronal pseudo-Anosov mapping class on S0,n for each n ≥ 5.

Finally, there is a branched covering S1,2 → S0,5 , induced by the hyperelliptic invo-
lution of S1,2 exchanging the two punctures, which yields a coronal pseudo-Anosov
mapping class on S1,2 by Lemma 2.6. (Technically, here S1,2 and S0,5 should be
considered surfaces with marked points, not punctures. Because the theory of pseudo-
Anosov maps and stretch factors is the same on surfaces with punctures and on surfaces
with marked points, we can go back and forth between marked points and punctures as
is convenient.) By Lemma 2.7, there exists a coronal pseudo-Anosov mapping class
on S1,n for n ≥ 2.

The Main Theorem immediately follows from Corollary 2.5 and Proposition 2.8.
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3 Remarks on the Galois conjugates of stretch factors

Examples of coronal pseudo-Anosov mapping classes The set of coronal pseudo-
Anosov mapping classes is presumably much larger than the set of examples constructed
above. For example, the minimal pseudo-Anosov stretch factors tend to be coronal. In
fact, when g = 2, 3, 4, 5, 7, 8, the minimal stretch factor on Sg among pseudo-Anosov
mapping classes with orientable foliations are known, and they are all coronal [LT11b].
The minimal pseudo-Anosov stretch factors on the surfaces S0,n for 5 ≤ n ≤ 9 are
also all coronal with the exception of n = 8 [LT11a].

Not only is the set of coronal pseudo-Anosov mapping classes infinite, but so is the
set of coronal stretch factors (even modulo taking powers). This follows from the first
author’s examples of pseudo-Anosov mapping classes on Sg with stretch factor a degree
2g Salem number [Shi]. Hironaka’s infinite family of pseudo-Anosov mapping classes
coming from the fibration of a single 3–manifold [Hir10] also seem to consist mostly
of coronal pseudo-Anosov mapping classes whose stretch factors can have arbitrarily
high algebraic degree.

The abundance of coronal pseudo-Anosov mapping classes are also suggested by
computer experiments of Nathan Dunfield and Giulio Tiozzo on random walks in the
group of braids with 10 and 14 strands. Using the standard Artin generators, mean
length 25, variance 9, and a sample of 100,000 pseudo-Anosov mapping classes, 94%
of the stretch factors had Galois conjugates on the unit circle. Computer experiments
also show that a random reciprocal polynomial is very likely to have a root on the unit
circle. This may suggest that pseudo-Anosov mapping classes arising from Penner’s
construction are actually rare.

Location of Galois conjugates It would be interesting to know precise constraints
on the location of Galois conjugates of pseudo-Anosov stretch factors arising from
Penner’s construction. In particular, we wonder if they can at least approach the
unit circle or if they are even dense in C. A positive answer would imply that Galois
conjugates of all pseudo-Anosov stretch factors are dense in C, which is also suggested
by the experiments of Dunfield and Tiozzo.

A Penner’s conjecture for the exceptional surfaces

In this appendix, we show that Penner’s construction is true for S1,0 and S1,1 and that
it is false for S0,4 , but a modified version of the conjecture, allowing half-twists in
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addition to Dehn twists in Penner’s construction, is true.

The curve complex Let S be one of these three surfaces. The modified curve
complex C(S) is a graph with vertices the isotopy classes of simple closed curves on S ,
where two vertices are connected by an edge if they have minimal intersection number
(one for S1,0 and S1,1 , and two for S0,4 ). In all three cases, C(S) is isomorphic to the
1-skeleton of the Farey tessellation F of the hyperbolic plane (Figure 1). For more
details, see [FM12, Section 4.1.1].

The action of Mod(S) Let us consider the action of Mod(S) on C(S), which gives
rise to a homomorphism

A : Mod(S)→ Isom+(F) ∼= PSL(2,Z)

of Mod(S) to the orientation-preserving isometries of F , once an identification of C(S)
with F is chosen. We denote the image of an element f ∈ Mod(S) by Af .

Actions of Dehn twists We call an ideal triangle in the complement of F a tile. A
rotation of F about a vertex v of F to the left by k tiles is defined as the parabolic
element of Isom+(F) that fixes v and shifts the tiles adjacent to v in counterclockwise
direction by k . Rotations to the right are defined analogously.

For a Dehn twist Tc about a curve c in S , the isometry ATc is parabolic, and it fixes
the vertex of F corresponding to c. Depending on the choice of identification of C(S)
with F , positive Dehn twists can act by rotating F to the left or to the right. We choose
the identification so that positive Dehn twists correspond to rotations to the right and
negative Dehn twists correspond to rotations to the left. Note that Dehn twists on S1,0

and S1,1 act by rotations by one tile, but Dehn twists on S0,4 act by rotations by two
tiles. It is the half-twists on S0,4 that correspond to rotations by one tile.

Actions of pseudo-Anosov elements For a pseudo-Anosov element f ∈ Mod(S),
the isometry Af is hyperbolic in PSL(2,Z) and hence Af has an invariant geodesic on
the hyperbolic plane, called the axis γ of Af . Since f does not fix any curve on S , Af

does not fix any vertex of F . In particular, the endpoints of the axis γ of Af are not
vertices of F . Therefore γ traverses a bi-infinite sequence of triangles in the Farey
tessellation, and it cuts two sides of each triangle.

Associated to f , there is a bi-infinite sequence of letters L and R obtained as follows:
travel along γ in the direction of the translation, and for each triangle record if the
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b

e0

Af (e) = e5 γ

e1

e2

e3

e4

t1

t2

t3

t4

t5

Figure 1: The action Af of a pseudo-Anosov mapping class f on the Farey tessellation.
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common vertex of the cut sides are on the left or the right side of γ . This sequence
is periodic, because Af is a translation along γ . As the following lemma shows,
this bi-infinite sequence encodes how the hyperbolic isometry Af can be written as a
composition of parabolic isometries.

Lemma A.1 Let e0 be an edge of F intersecting γ . Let a and b be the endpoints
of e0 on the left and right hand side of γ , respectively. Let e1, e2, . . . , en = Af (e0)
be edges of F intersected by γ such that ek−1 and ek are different sides of an ideal
triangle tk of F for all 1 ≤ k ≤ n. (See Figure 1 for an illustration when n = 5.) For
all 1 ≤ k ≤ n, define sk to be the letter L or the letter R depending on whether the
common vertex of ek−1 and ek is on the left or right side of γ .

Let τa and τb be the rotations of F by one tile to the right about the points a and b,
respectively, and introduce the notation

τ (s) =

{
τ−1

a if s = L

τb if s = R.

Then
Af = τ (s1) ◦ · · · ◦ τ (sn).

(By the usual convention for composition of functions, the rotations are applied in
right-to-left order.)

Proof For all 1 ≤ k ≤ n, there is a unique φk ∈ Isom+(F) that maps e0 to ek

and a to the endpoint of ek lying on the left hand side of γ . We have φn = Af ,
so we need to prove that φn = τ (s1) ◦ · · · ◦ τ (sn). We will prove by induction that
φk = τ (s1) ◦ · · · ◦ τ (sk) for all 1 ≤ k ≤ n.

For k = 1, we can easily see that the isometry mapping e0 to e1 is τ−1
a or τb , depending

on whether the common vertex of e0 and e1 is a or b.

Now assume that the claim is true for k where 1 ≤ k < n, that is, φk = τ (s1)◦· · ·◦τ (sk).
We want to show that φk+1 = φk ◦ τ (sk+1). Note that the edges e0 and τ (sk+1)(e0)
of t1 meet on the same side of γ as the edges ek and ek+1 of tk+1 . Since we have
τ (sk)(e0) = ek by the induction hypothesis, this implies

φk(τ (sk+1)(e0)) = ek+1.

The right hand side can also be written as φk+1(e0), therefore φk ◦ τ (sk+1) and φk+1

map e0 to the same edge, and their actions on the endpoints also agree. Hence we have
φk+1 = φk ◦ τ (sk+1) as claimed.
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Proof of Penner’s conjecture for S1,0 , S1,1 and S0,4 Let S be one of these three
surfaces and let f be any pseudo-Anosov element of Mod(S). We want to show that f
has a power arising from Penner’s construction.

Let Af , γ , e0 , a and b be as above. Choose a and b for the role of the filling curves
in the construction. By Lemma A.1, some product of T−1

a and Tb defines an element
h ∈ Mod(S) such that Af = Ah . Since Ah is hyperbolic, both Dehn twists must appear
in this product. Therefore h is a pseudo-Anosov mapping class arising from Penner’s
construction.

When S is the torus or the once-punctured torus, we have Mod(S) ∼= SL(2,Z). So
f = ±h and hence f 2 = h2 . When S = S0,4 , then A is surjective with kernel
Z/2Z × Z/2Z [FM12, Prop. 2.7]. The kernel is generated by two hyperelliptic
involutions and only its identity element fixes all four punctures. Thus two elements
of Mod(S0,4) that project to the same element of PSL(2,Z) are equal if they permute
the four punctures in the same way. Therefore f 12 = h12 , because both maps act
trivially on the punctures. (The number 12 is the least common multiple of the orders
of elements of the symmetric group on 4 points.) Hence f has a power arising from
Penner’s construction.

Remark Note that without allowing half-twists, the conjecture is false for S0,4 .
Indeed, an LR-sequence corresponding to a product of Dehn twists is a sequence of
LL and RR blocks. So any pseudo-Anosov mapping class that contains the block LRL
in its sequence does not have a power arising from the construction.
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