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We explicitly construct pseudo-Anosov maps on the closed surface of genus g
with orientable foliations whose stretch factor λ is a Salem number with algebraic
degree 2g . Using this result, we show that there is a pseudo-Anosov map whose
stretch factor has algebraic degree d , for each positive even integer d such that
d ≤ g .
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1 Introduction

Let Sg be a closed surface of genus g ≥ 2. The mapping class group of Sg , denoted
Mod(Sg), is the group of isotopy classes of orientation preserving homeomorphisms
of Sg . An element f ∈ Mod(Sg) is called a pseudo-Anosov mapping class if there
are transverse measured foliations (Fu, µu) and (F s, µs), a number λ(f ) > 1, and a
representative homeomorphism φ such that

φ(Fu, µu) = (Fu, λ(f )µu) and φ(F s, µs) = (F s, λ(f )−1µs).

In other words, φ stretches along one foliation by λ(f ) and the other by λ(f )−1 . The
number λ(f ) is called the stretch factor (or dilatation) of f .

A pseudo-Anosov mapping class is said to be orientable if its invariant foliations are
orientable. Let λH(f ) be the spectral radius of the action of f on H1(Sg;R). Then

λH(f ) ≤ λ(f ),

and the equality holds if and only if the invariant foliations for f are orientable (see
[5]). The number λH(f ) is called the homological stretch factor of f .

Question Which real numbers can be stretch factors?

It is a long-standing open question. Fried [4] conjectured that λ > 1 is a stretch factor
if and only if all conjugate roots of λ and 1/λ are strictly greater than 1/λ and strictly
less than λ in magnitude.

http://www.ams.org/mathscinet/search/mscdoc.html?code=57M50, 57M15
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Thurston [12] showed that a stretch factor λ is an algebraic integer whose algebraic
degree has an upper bound 6g− 6. More specifically, λ is the largest root in absolute
value of a monic palindromic polynomial. Thurston gave a construction of mapping
classes of Mod(Sg) generated by two multitwists and he mentioned that his construction
can make a pseudo-Anosov mapping class whose stretch factor has algebraic degree
6g− 6. However, he did not give specific examples.

What happens if we fix the genus g? To simplify the question, we may ask which
algebraic degrees are possible on Sg .

Question What degrees of stretch factors can occur on Sg ?

Very little is known about this question. Using Thurston’s construction, it is easy to find
quadratic integers as stretch factors. Neuwirth and Patterson [10] found non-quadratic
examples, which are algebraic integers of degree 4 and 6 on surfaces of genus 4 and
6, respectively. Using interval exchange maps, Arnoux and Yoccoz [1] gave the first
generic construction of pseudo-Anosov maps whose stretch factor has algebraic degree
g on Sg for each g ≥ 2.

Main Theorems

In this paper, we give a generic construction of pseudo-Anosov mapping classes with
stretch factor of algebraic degree 2g.

Let ci and dj be simple closed curves on Sg as in Figure 1. For k ≥ 3, let us define

fg,k = TAg,k TBg ,

where TAg,k =
(
Tc1Tc2 · · · Tcg−1

) (
Tcg

)k and TBg = Td1 · · · Tdg . Here, Tα is the Dehn
twist about α . We will show that fg,k is a pseudo-Anosov mapping class and its stretch
factor λ(fg,k) is a special algebraic integer, called Salem number. A Salem number is
an algebraic integer α > 1 whose Galois conjugates other than α have absolute value
less than or equal to 1 and at least one conjugate lies on the unit circle.

Theorem A For each g ≥ 2 and k ≥ 3, fg,k is a pseudo-Anosov mapping class and
satisfies the following properties:

(1) λ(fg,k) = λH(fg,k),

(2) λ(fg,k) is a Salem number, and

(3) lim
g→∞

λ(fg,k) = k − 1.
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...

Sg

d1c1d2c2
dgcg

Figure 1: Simple closed curves on Sg

In particular, we will prove that for k = 4, the algebraic degree of stretch factor is
2g. It is known that the degree of the stretch factor of a pseudo-Anosov mapping class
f ∈ Mod(Sg) with orientable foliations is bounded above by 2g (see [12]). Therefore
our examples give the maximum degrees of stretch factors for orientable foliations in
Mod(Sg) for each g ≥ 2.

Theorem B Let fg ∈ Mod(Sg) be the mapping class given by

fg = fg,4 = TAg,4TBg .

Then the minimal polynomial of the stretch factor λ(fg) is

pg(x) = x2g − 2

2g−1∑
j=1

xj

+ 1.

This implies
degλ(fg) = 2g.

The hard part is to show the irreducibility of pg(x), which is proved in section 7.

In general, for each k ≥ 3, the Salem stretch factor of fg,k is the root of the polynomial

pg,k(x) = x2g − (k − 2)

2g−1∑
j=1

xj

+ 1.

It can be shown that pg,k(x) is irreducible for each k ≥ 4, but since the main purpose
of this paper is degree realization, we will prove only for k = 4 case that the algebraic
degree of the stretch factor is 2g.

Using a branched cover construction, we use Theorem B to deduce the following partial
answer to our question about algebraic degrees.
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Corollary 5 For each positive integer h ≤ g/2, there is a pseudo-Anosov mapping
class f̃h ∈ Mod(Sg) such that deg(λ(f̃h)) = 2h and λ(f̃h) is a Salem number.

Obstructions.

There are three known obstructions for the existence of algebraic degrees. For any
pseudo-Anosov f ∈ Mod(Sg), we have:

(1) degλ(f ) ≥ 2,

(2) degλ(f ) ≤ 6g− 6, and

(3) if degλ(f ) > 3g− 3, then degλ(f ) is even.

The third obstruction is due to Long [8] and we have another proof in section 5. It
turns out these are the only obstructions for g = 2. However it is not known whether
there are other obstructions of algebraic degrees for g ≥ 3. By computer search, odd
degree stretch factors are rare compared to even degrees. We conjecture that every
even degree d ≤ 6g− 6 can be realized as the algebraic degree of stretch factors.

Conjecture On Sg , there exists a pseudo-Anosov mapping class with a stretch factor
of algebraic degree d for each positive even integer d ≤ 6g− 6.

In section 6, we show that the conjecture is true for g = 2, 3, 4, and 5.

Outline

In section 2 we will give the basic definitions and results about Thurston’s consturction.
We will prove Theorem A in section 3 by the theory of Coxeter graphs. In section 4,
we construct pseudo-Anosov mapping classes via branched covers. In section 5, we
explain some properties of odd degree stretch factors. Section 6 contains examples of
even degree stretch factors for g = 2, 3, 4 and 5. Section 7 is where we prove Theorem
B, that is, we prove that the minimal polynomial of λ(fg) has degree 2g.
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2 Background

Thurston’s construction

We recall Thurston’s construction of mapping classes [12]. For more details on this
material, see [3] or [6].

Suppose A = {a1, . . . , an} is a set of pairwise disjoint simple closed curves, called a
multicurve. We denote the product of Dehn twists

∏n
i=1 Tai by TA . This product is

called a multitwist.

Suppose A = {a1, . . . , an} and B = {b1, . . . , bm} are multicurves in a surface S so
that A ∪ B fills S , that is, the complement of A ∪ B is a disjoint union of disks and
once-punctured disks. Let N be the n× m matrix whose (j, k)-entry is the geometric
intersection number i(aj, bk) of aj and bk . Let ν = ν(A ∪ B) be the largest eigenvalue
in magnitude of the matrix NNt . If A ∪ B is connected, then NNt is primitive and by
the Perron–Frobenius theorem ν is a positive real number greater than 1 (see [3, p.
392 - 395] for more detail).

Thurston constructed a singular Euclidean structure on S with respect to which 〈TA,TB〉
acts by affine transformations given by the representation ρ : 〈TA,TB〉 → PSL(2,R)

ρ(TA) =

(
1 −ν1/2

0 1

)
and ρ(TB) =

(
1 0
ν1/2 1

)
.

In particular, an element f ∈ 〈TA,TB〉 is pseudo-Anosov if and only if ρ(f ) is a
hyperbolic element in PSL(2,R) and then the stretch factor λ(f ) is equal to the bigger
eigenvalue of ρ(f ). For instance, for a mapping class f = TATB ,

ρ(TATB) =

(
1 −ν1/2

0 1

)(
1 0
ν1/2 1

)
=

(
1− ν −ν1/2

ν1/2 1

)
,

and the stretch factor λ(TATB) is the bigger root of the characteristic polynomial

λ2 − λ(ν − 2) + 1,

provided that ν − 2 > 2.
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...

Figure 2: Multicurves and configuration graph G(Ag,k ∪ Bg)

3 Proof by the theory of Coxeter graphs

We will prove Theorem A in this section.

For the set C of simple closed curves on the surface Sg , the configuration graph for
C , denoted G(C), is the graph with a vertex for each simple closed curve and an edge
for every point of intersection between simple closed curves.

Let fg,k be a mapping class on Sg defined by

fg,k = TAg,k TBg , k ≥ 3,

as in Theorem A. By regarding the multiple power of Tcg as the product of Dehn twists
about parallel (isotopic) simple closed curves cg1 , . . . , cgk , let us define the multicurves

Ag,k = {c1, . . . , cg−1, cg1 , . . . , cgk} and Bg = {d1, . . . , dg}.

Then the configuration graph G(Ag,k ∪ Bg) is a tree as in Figure 2,

3.1 Coxeter graphs and mapping class groups

We say that a finite graph G is a Coxeter graph if there are no self-loops or multiple
edges. For given multicurves A and B such that A ∪ B fills the surface S , suppose
that the configuration graph G = G(A ∪ B) is a Coxeter graph. Leininger proved the
following theorem.
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Theorem 1 ([6] Theorem 8.1 and Theorem 8.4) Let G(A ∪ B) be a non-critical
dominant Coxeter graph. Then TATB is a pseudo-Anosov mapping class with stretch
factor λ such that

λ2 + λ(2− µ2) + 1 = 0,

where µ is the spectral radius of the graph G .

For the definitions and pictures of critical and dominant graphs, see [6, Section 1]

For the multicurves Ag,k and Bg in Theorem A, G(Ag,k ∪Bg) is a non-critical dominant
Coxeter graph for each k ≥ 3. Therefore by Theorem 1 the mapping class fg,k = TATB

is pseudo-Anosov for each k ≥ 3.

3.2 Orientability

Suppose that G is a connected Coxeter graph with the set Σ of vertices. There is an
associated quadratic form ΠG on RΣ and a faithful representation

Θ : C (G)→O(ΠG),

where C (G) is a Coxeter group with generating set Σ, O(ΠG) is the orthogonal group
of the quadratic form ΠG , and each generator si ∈ Σ is represented by a reflection.
Leininger also proved the following theorem.

Theorem 2 ([6] Theorem 8.2 ) Let G(A ∪ B) be a Coxeter graph and suppose that
A and B can be oriented so that all intersections of A with B are positive. Then there
exists a homomorphism

η : RΣ→H1(S;R)

such that
(TATB)∗ ◦ η = −η ◦Θ(σAσB),

where σAσB is an element in C (G) corresponding to TATB .
Moreover, Θ(σAσB)|ker(η) = −I and η preserves spectral radii.

Theorem 2 implies that if A and B can be oriented as in the theorem, then the stretch
factor of a pseudo-Anosov mapping class is equal to the spectral radius of the action
on homology. For multicurves Ag,k and Bg in Theorem A, they can be oriented so that
all intersections are positive as in Figure 3. Therefore we have

λ(fg,k) = λH(fg,k)
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...

Figure 3: Orientation of positive intersections

and the invariant foliations for fg,k are orientable.

It is also possible to directly compute the action on the first homology. Consider the
mapping class fg = TAg,4TBg as in Theorem B. Let us choose a basis {a1, b1, . . . , ag, bg}
for H1(Sg) as in Figure 4.

...

Sg

a1b1a2b2a3agbg

Figure 4: A basis for H1(Sg).

By computing images of each basis element under fg , we can get the action on H1(Sg)
1 −1 0 0 · · · 0
1 0 −1 0 · · · 0
...

...
...

...
. . .

...
1 0 0 0 · · · −1
4 0 0 0 · · · −3

 .

By induction, the characteristic polynomial hg(x) of the homological action is

hg(x) = x2g + 2

2g−1∑
j=1

(−1)jxj

+ 1.



Algebraic degrees of stretch factors in mapping class groups 9

Since the largest root of hg(x) in magnitude is a negative real number, we can deduce
that the stretch factor λ(fg) is the root of hg(−x). Specifically, λ(fg) is the root of

pg(x) = x2g − 2

2g−1∑
j=1

xj

+ 1.

In a similar way, one can get the polynomial for λ(fg,k), which is

pg,k(x) = x2g − (k − 2)

2g−1∑
j=1

xj

+ 1.

3.3 Salem numbers and spectral properties of starlike trees

The configuration graph G(Ag,k∪Bg) for fg,k is a special type of graphs, called a starlike
tree, and its relation to Salem numbers is studied in [9]. A starlike tree is a tree with at
most one vertex of degree > 2. Let T = T(n1, n2, . . . , nk) be the starlike tree with k
arms of n1, n2, . . . , nk edges.

Theorem 3 ([9] Corollary 9) Let T = T(n1, n2, . . . , nk) be a starlike tree and let µ
be the spectral radius of T . Suppose that µ is not an integer and T is a non-critical
dominant graph. Then λ > 1, defined by

√
λ+ 1/

√
λ = µ, is a Salem number.

The configuration graph G(Ag,k ∪Bg) in Theorem A is a non-critical dominant starlike
tree

T(2g− 2, 1, 1, . . . , 1︸ ︷︷ ︸
k-times

), k ≥ 3

and we will denote it by T(2g−2, k·1). The fact that the spectral radius of T(2g−2, k·1)
is not an integer follows from the following theorem.

Theorem 4 ([11]) If µ is the spectral radius of the starlike tree T(n, k · 1), then

√
k + 1 < µ <

k√
k − 1

for n ≥ 1 and k ≥ 3.
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Thus for the starlike tree T(n, k · 1), the spectral radius satisfies

k + 1 < µ2 <
k2

k − 1
= k + 1 +

1
k − 1

.

Therefore µ is not an integer and by Theorem 3 λ(fg,k) is a Salem number.

Moreover, the proof of Corollary 2.1 of Lepović–Gutman [7] implies that

lim
g→∞

λ(fg,k) = k − 1.

For completeness, we reprove this here.

Recall that λ(fg,k) is the largest root of

pg,k(x) = x2g − (k − 2)

2g−1∑
j=1

xj

+ 1.

By multiplying pg,k(x) by x−1, the stretch factor λ(fg,k) is the largest root in magnitude
of

qg,k(x) = x2g+1 − (k − 1)x2g + (k − 1)x− 1.

We have qg,k(k − 1) = (k − 1)2 − 1 > 0, and for any fixed positive integer m,

qg,k

(
k − 1− 1

10m

)
=

(
k − 1− 1

10m

)2g(
− 1

10m

)
+ (k − 1)

(
k − 1− 1

10m

)
− 1

Hence qg,k
(
k − 1− 10−m

)
< 0 for sufficiently large values of g and therefore pg,k(x)

has a root on the interval (k − 1− 10−m, k − 1). This implies

lim
g→∞

λ(fg,k) = k − 1.

This completes the proof of Theorem A.

Remark A positive integer cannot be a stretch factor (which is an algebraic integer
of degree 1). However, Theorem A implies that for sufficiently large genus g there is
a stretch factor which is a Salem number arbitrarily close to a given integer k − 1 for
each k ≥ 3.
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4 Branched Covers

Lifting a pseudo-Anosov mapping class via a covering map is one way to construct
another pseudo-Anosov mapping class. If there is a branched cover S̃ → S and a
pseudo-Anosov mapping class f ∈ Mod(S), then there is some k ∈ N such that
Mod(S̃) has a pseudo-Anosov element f̃ which is a lift of f k and hence λ(̃f ) = λ(f )k .

Corollary 5 Let g ≥ 2. For each positive integer h ≤ g/2, there is a pseudo-Anosov
mapping class f̃h ∈ Mod(Sg) such that deg(λ(f̃h)) = 2h and λ(f̃h) is a Salem number.

Proof Let

h =


g−2m

2 , if g is even, m = 0, 1, . . . , (g− 2)/2,

g−1−2m
2 , if g is odd, m = 0, 1, . . . , (g− 3)/2.

Then h is an integer such that 1 ≤ h ≤ g/2.

Sg Sg

Sh Sh

g even g odd

Figure 5: A branched cover

Construct a branched cover Sg → Sh as in Figure 5. For h ≥ 2, Sh has a pseudo-
Anosov mapping class fh ∈ Mod(Sh) as in the Theorem B whose stretch factor has
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deg(λ(fh)) = 2h. For some k , fhk lifts to Sg and the lift has stretch factor λ(fh)k . We
claim that deg

(
λ(fh)k

)
= 2h. To see this, let λi , 1 ≤ i ≤ 2h, be the roots of the

minimal polynomial of λ(fh) and let us define a polynomial

p(x) =
2h∏

i=1

(
x− λk

i
)
.

Then p(x) is an integral polynomial because the following elementary symmetric
polynomials in λ1, . . . , λ2h∑

λi,
∑
i<j

λiλj,
∑

i<j<l

λiλjλl, · · · , λ1λ2 · · ·λ2h

are all integers and hence each coefficient of p(x)∑
λk

i ,
∑
i<j

λk
i λ

k
j ,
∑

i<j<l

λk
i λ

k
j λ

k
l , · · · , λk

1λ
k
2 · · ·λk

2h

are integers as well. Therefore p(x) is divided by the minimal polynomial of λ(fh)k .
Due to the proof of Theorem B in section 7, λ(fh)k is also a Salem number and
p(x) does not have a cyclotomic factor. This implies that p(x) is irreducible and
deg

(
λ(fh)k

)
= 2h.

If h = 1, Sh is a torus and it admits a Anosov mapping class f whose stretch factor
λ(f ) has algebraic degree 2. Then similar arguments as above tells us that there is a
lift of some power of f to Sg whose stretch factor has deg(λ(f k)) = 2.

Therefore there is a pseudo-Anosov map f̃h ∈ Mod(Sg) with deg(λ(f̃h)) = 2h for each
h ≤ g/2. In other words, every positive even degree d ≤ g is realized as the algebraic
degree of a stretch factor on Sg .

5 Stretch factors of odd degrees

Long proved the following degree obstruction and McMullen communicated to us the
following proof. First we will give a definition of the reciprocal polynomial. Given
a polynomial p(x) of degree d , we define the reciprocal polynomial p∗(x) of p(x) by
p∗(x) = xdp(1/x). It is a well-known property that p∗(x) is irreducible if and only if
p(x) is irreducible.

Theorem 6 ([8]) Let f ∈ Mod(Sg) be a pseudo-Anosov mapping class having stretch
factor λ(f ). If deg(λ(f )) > 3g− 3, then deg(λ(f )) is even.
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Proof Since f acts by a piecewise integral projective transformation on the 6g − 6
dimensional space PMF of projective measured foliations on Sg , and since λ(f ) is an
eigenvalue of this action, λ(f ) is an algebraic integer with deg(λ(f )) ≤ 6g− 6. Also,
since f preserves the symplectic structure on PMF , it follows that λ(f ) is the root of
palindromic polynomial p(x) whose degree is bounded above by 6g− 6.

Let q(x) be the minimal polynomial of λ(f ) and let q∗(x) be the reciprocal polynomial
of q(x). Then either q(x) = q∗(x) or they have no common roots, because if there
is at least one common root ζ of q(x) and q∗(x), then both q(x) and q∗(x) are the
minimal polynomial of ζ and hence q(x) = q∗(x). Suppose deg(q(x)) > 3g − 3.
If q(x) and q∗(x) have no common roots, then their product q(x) q∗(x) is a factor of
p(x) since q∗(x) is the minimal polynomial of 1/λ(f ). This is a contradiction because
deg(p(x)) ≤ 6g−6 but deg

(
q(x) q∗(x)

)
> 6g−6. Therefore we must have q(x) = q∗(x)

and this implies that q(x) is an irreducible palindromic polynomial. Hence deg(q(x))
is even since roots of q(x) come in pairs, λi and 1/λi .

It follows from the previous proof that if the minimal polynomial p(x) of λ has odd
degree, then p(x) is not palindromic and in fact the minimal palindromic polynomial
containing λ as a root is p(x)p∗(x).

We will now show that the stretch factors of degree 3 have an additional special property.
A Pisot number, also called a Pisot–Vijayaraghavan number or a PV number, is an
algebraic integer greater than 1 such that all its Galois conjugates are strictly less than
1 in absolute value.

Proposition 7 Let f ∈ Mod(Sg). If deg(λ(f )) = 3, then λ(f ) is a Pisot number.

Proof Let λ1 > 1 be the stretch factor of a pseudo-Anosov mapping class with
algebraic degree 3, and let p(x) be the minimal polynomial of λ1 . Let λ1, λ2, and
λ3 be the roots of p(x). Then the degree of p(x)p∗(x) is 6 and it has pairs of roots
(λ1, 1/λ1), (λ2, 1/λ2), (λ3, 1/λ3), where λ1 is the largest root in absolute value. We
claim that the absolute values of λ2 and λ3 are strictly less than 1.

Suppose one of them has absolute value greater than or equal to 1, say |λ2| ≥ 1. The
constant term λ1λ2λ3 of p(x) is ±1 since it is the factor of a palindromic polynomial
with constant term 1. Hence |λ1λ2λ3| = 1 and we have

1
|λ3|

= |λ1λ2| ≥ |λ1|,

which is a contradiction to the fact that the stretch factor λ1 is strictly greater than all
other roots of the palindromic polynomial p(x)p∗(x). This proves the claim and hence
the stretch factor of degree 3 is a Pisot number.



14 Hyunshik Shin

We now explain two constructions of mapping classes f ∈ Mod(Sg) whose degree of
λ(f ) is odd.

1. As we mentioned, Arnoux–Yoccoz [1] gave examples of a pseudo-Anosov mapping
class on Sg whose stretch factor has algebraic degree g. In particular for odd g, this
gives examples of mapping classes with odd degree stretch factors. They proved that
these stretch factors are all Pisot numbers.

2. For genus 2, there is a pseudo-Anosov mapping class f whose stretch factor has
algebraic degree 3 (see section 6). This is the only possible odd degree on S2 by Long’s
obstruction. It is also true that deg(λ(f )k) = 3 for each k because the stretch factor is a
Pisot number (Proposition 7). There is a cover Sg → S2 for each g, so the lift of some
power of f has a stretch factor with algebraic degree 3 on Sg .

Proposition 8 For each genus g, the stretch factor with algebraic degree 3 can occur
on Sg .

Question Are there stretch factors with odd algebraic degree that are not Pisot num-
bers?

6 Examples of even degrees

Tables 1 through 4 give explicit examples of pseudo-Anosov mapping classes whose
stretch factors realize various degrees. We will follow the notation of the software
Xtrain by Brinkmann. More specifically, ai, bi, ci, and di are Dehn twists along
standard curves and Ai,Bi,Ci, and Di are the inverse twists as in [2]. The only missing
degree on S3 is degree 5. We do not know if there is a degree 5 example or there is
another degree obstruction.

deg f ∈ Mod(S2) Minimal polynomial λ(f )

2 a0a0d0C0D1C0 x2 − 3x + 1 λ = 2.618

3 a0d0d0C0C0D1 x3 − 3x2 − x− 1 λ = 3.383

4 a0d0d0d1c0d0 x4 − x3 − x2 − x + 1 λ = 1.722

6 a0a0d0A0C0D1 x6 − x5 − 4x3 − x + 1 λ = 2.015

Table 1: Examples of genus 2
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deg f ∈ Mod(S3) Minimal polynomial λ(f )

2 a1c0d0c0d2C1D1 x2 − 4x + 1 3.732

3 a0c0d0C1D1D2 x3 − 2x2 + x − 1 1.755

4 a1c0d0a1c1d1d2 x4 − x3 − 2x2 − x + 1 1.722

6 a0c0d0d2C1D1 x6 − 3x5 + 3x4 − 7x3 + 3x2 − 3x + 1 2.739

8 a0c0d0d1C1D2 x8 − x7 − 2x5 − 2x3 − x + 1 1.809

10 a1c0d0d1C1A2D2 x10 − x9 − 2x8 + 2x7 − 2x5 + 2x3 − 2x2 − x + 1 1.697

12 a1c1c0d1d2A0D0 x12 − x11 − x9 − x8 + x7 + x5 − x4 − x3 − x + 1 1.533

Table 2: Examples of genus 3

deg f ∈ Mod(S4) deg f ∈ Mod(S4)

4 a0a0a1c0d0c1d1c2d2c3d3 12 a0B1d0c0d1c1d2c2d3c3

6 a0B2A3d0c0d1c1d2c2d3c3 14 a0d0B0d0c0d1c1d2c2d3c3

8 a0A1d0c0d1c1d2c2d3c3 16 A0d0c0d1c1d2c2d3c3

10 a0b1A2d0c0d1c1d2c2d3c3 18 a0B1A2d0c0d1c1d2c2d3c3

Table 3: Examples of genus 4

deg f ∈ Mod(S5) deg f ∈ Mod(S5)

6 b3d0c0d1c1d2c2d3c3d4c4 16 a1B2d0c0d1c1d2c2d3c3d4c4

8 a0a1d0c0d1c1d2c2d3c3d4c4 18 a1B0d0c0d1c1d2c2d3c3d4c4

10 a1A4d0c0d1c1d2c2d3c3d4c4 20 a1A0d0c0d1c1d2c2d3c3d4c4

12 b2C2d0c0d1c1d2c2d3c3d4c4 22 a2A1d0c0d1c1d2c2d3c3d4c4

14 a1B1d0c0d1c1d2c2d3c3d4c4 24 c2A2d0c0d1c1d2c2d3c3d4c4

Table 4: Examples of genus 5

7 Irreducibility of Polynomials

In this section, we will prove Theorem B. It is enough to show that the polynomial

pn(x) = x2n − 2

2n−1∑
j=1

xj

+ 1.

is irreiducible for n ≥ 2. We will show that pn(x) does not have a cyclotomic
polynomial factor. It then follows from Kronecker’s theorem that pn(x) is irreducible.
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Suppose pn(x) has the mth cyclotomic polynomial factor for some m ∈ N. Then
e2πi/m is a root of pn(x). Multiplying pn(x) by x− 1 yields

x2n+1 − 3x2n + 3x− 1

and hence we have

(1) e2(2n+1)πi/m − 3e4nπi/m + 3e2πi/m − 1 = 0.

Consider the real part and the complex part of (1). Then we have the system of
equations {

cos
( 2(2n+1)π

m

)
− 3 cos

(4nπ
m

)
+ 3 cos

(2π
m

)
− 1 = 0

sin
( 2(2n+1)π

m

)
− 3 sin

(4nπ
m

)
+ 3 sin

(2π
m

)
= 0

Using double-angle formula for the first cosine and sum-to-product formula for the last
two cosines, the first equation gives

2 sin
( (2n + 1)π

m

)[
3 sin

( (2n− 1)π
m

)
− sin

( (2n + 1)π
m

)]
= 0.

Similarly the second equation gives

2 cos
( (2n + 1)π

m

)[
sin
( (2n + 1)π

m

)
− 3 sin

( (2n− 1)π
m

)]
= 0.

Since sine and cosine have no common zeros, we must have

sin
( (2n + 1)π

m

)
− 3 sin

( (2n− 1)π
m

)
= 0.

For m ≤ 5, by direct calculation we can see that pn(e2πi/m) 6= 0. So we may assume
that m ≥ 6. Let ϕ = (2n− 1)π/m and then we can write the above equation as

(2) sin
(
ϕ+

2π
m

)
− 3 sin(ϕ) = 0.

Since sin
(
ϕ+ 2π/m

)
is a real number between −1 and 1, we have

(3) − 1
3
≤ sin(ϕ) ≤ 1

3
.

Let ψ = sin−1(1/3). Then note that ψ < π/6. Equation (3) gives the restriction on
ϕ, which is

−ψ ≤ ϕ ≤ ψ or π − ψ ≤ ϕ ≤ π + ψ.

Another observation from (2) is that both sin
(
ϕ + 2π/m

)
and sin(ϕ) must have the

same sign.

We claim that ϕ has to be on the either first or third quadrant. Suppose ϕ is on the
second quadrant, that is, π − ψ < ϕ < π . Note that m ≥ 6 implies 2π/m ≤ π/3.
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Since ϕ is above the x-axis, ϕ+ 2π/m also has to be above the x-axis due to (2) and
hence the only possibility is that ϕ+ 2π/m is between ϕ and π . Then

0 < sin
(
ϕ+

2π
m

)
< sin(ϕ) =⇒ sin

(
ϕ+

2π
m

)
< 3 sin(ϕ),

which is a contradiction to (2). Similar arguments hold if ϕ is on the fourth quadrant.
Therefore the possible range for ϕ is

0 < ϕ ≤ ψ or π < ϕ ≤ π + ψ.

Suppose ϕ is on the first quadrant. Then so is ϕ+ 2π/m because

0 < ϕ+
2π
m
≤ ψ +

π

3
<
π

2
.

We can write
ϕ =

(2n− 1)π
m

≡ jπ
m

(mod 2π)

for some positive integer j, i.e., 0 < jπ/m < π/2.

If j ≥ 2, Using the subadditivity of sin(x) on the first quadrant

sin(x + y) ≤ sin(x) + sin(y),

we have

sin
(
ϕ+

2π
m

)
− 3 sin(ϕ) ≤

(
sin(ϕ) + sin

(2π
m

))
− 3 sin(ϕ)

= sin
(2π

m

)
− 2 sin(ϕ)

= sin
(2π

m

)
− 2 sin

( jπ
m

)
< 0,

which contradicts (2).

If j = 1, using triple-angle formula

sin
(
ϕ+

2π
m

)
− 3 sin(ϕ) = sin

(3π
m

)
− 3 sin

(π
m

)
=
(

3 sin
(π

m

)
− 4 sin3

(π
m

))
− 3 sin

(π
m

)
= −4 sin3

(π
m

)
< 0,

which contradicts (2) again. Therefore there is no possible ϕ on the first quadrant. By
using the same arguments, the fact that ϕ is on the third quadrant gives a contradiction.
Therefore we can conclude that p(x) does not have a cyclotomic factor.
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We now show that pn(x) is irreducible over Z. Suppose pn(x) is reducible and write
pn(x) = g(x)h(x) with non-constant functions g(x) and h(x). There is only one root
of pn(x) whose absolute value is strictly greater than 1. Therefore one of g(x) or h(x)
has all roots inside the unit disk. By Kronecker’s theorem, this polynomial has to be
a product of cyclotomic polynomials, which is a contradiction because pn(x) does not
have a cyclotomic polynomial factor. Therefore pn(x) is irreducible.
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