
REU - Groups via Actions Summer 2009, Cornell University

Notes in Group Theory
Juan Alonso

1 Introduction to Groups

1.1 Definitions and first properties

A binary operation on a set A is a function · : A×A→ A. We will usually denote ·(a, b) by a · b, or ab when
the operation is clear from the context.

Definition A group is a pair (G, ·), where G is a nonempty set and · : G×G→ G is a binary operation
satisfying the following axioms:

1. (Associative law) For any a, b, c ∈ G, a · (b · c) = (a · b) · c

2. (Existence of an identity element) There exists e ∈ G so that for all a ∈ G, a · e = e · a = a

3. (Existence of inverses) For each a ∈ G there exists some b ∈ G such that a · b = b · a = e

Observe that under these assumptions the identity element e in condition 2 is unique. Indeed, if e1, e2
both satisfy this condition, then e1 = e1 · e2 = e2. In most of the cases, we will write 1 to denote the identity
element of a group. The element b in condition 3 is called the inverse of a, and written a−1. This terminology
is justified by the fact that each a ∈ G has a unique inverse. The proof is also easy. It is standard to refer
to the group (G, ·) only as G, and to the operation · as product.

In general, the commutative law needs not be satisfied. It’s said that the elements a, b ∈ G commute
when ab = ba. A group G is abelian every pair of elements of G commute.

Facts Let G be a group.

1. For a ∈ G, (a−1)−1 = a

2. For a, b ∈ G, (ab)−1 = b−1a−1

3. (Generalized associativity) For a1, . . . , an ∈ G, all the different ways of bracketing the expression
a1a2 · · ·an (and then computing the corresponding iterated product) yield the same result.

Here are a few examples.

1. Z, Q, R, C with the sum as operation. The identity is 0. The inverse of a is −a.

2. The integers modulo n.

Let n > 0 be an integer. We say that a, b ∈ Z are congruent modulo n, and write a ≡ b (mod n), if n
divides b− a.

This is an equivalence relation, and so it partitions Z into disjoint classes. The class of a ∈ Z,
denoted by ā, is defined as

ā = {b ∈ Z : b ≡ a (mod n)}

and it consists on the integers of the form a+ kn for k ∈ Z. Thus, there are n different classes,
0̄, 1̄, . . . , n− 1, corresponding to the possible remainders of division by n.

Define Zn to be the set of all classes modulo n, that is, Zn = {ā : a ∈ Z} = {0̄, . . . , n− 1}. The
operation in Zn will be denoted by +, and defined as

ā+ b̄ = a+ b

There is something to check for this to make sense. Namely, ā+ b̄ should depend only on the classes
ā and b̄. That is, if we choose other representatives, a1, b1 of these classes (ā1 = ā and b̄1 = b̄), we
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need to show that a1 + b1 = a+ b. That is easy to check from the definition of congruence mod n.
We say that the operation is well defined by the formula in the right hand side.

This operation (that we call sum of classes, or just sum) makes Zn into a group, with identity 0̄. The
inverse of ā is given by −a.

3. Let X be a set, and let
S(X) = {f : X → X : f is bijective}

This is a group with composition of functions as product. That is, given f, g ∈ S(X), their product is
f ◦ g, defined by (f ◦ g)(x) = f(g(x)) for all x ∈ X . In fact, the axioms for a group are chosen to
model this example. As a special case, when X = {1, . . . , n} this is called the symmetric group on n
letters, and written Sn. An element of Sn can be seen as an ordering (permutation) of the ”letters”
1, . . . , n. Exept when n = 2, this group is not commutative.

4. Let K = Q, R or C. Let GLn(K) be the n× n matrices with non zero determinant. This is a group
with the matrix multiplication.

The order of a group G, written |G|, is it’s cardinality (number of elements, possibly infinite). For
example, |Zn| = n, |Sn| = n!, |Z| = ∞ (countable).

1.2 Subgroups, Generators

Let G be a group.

Definition A subset H ⊂ G is a subgroup of G if it is nonempty and satisfies the following:

1. For x, y ∈ H , xy ∈ H .

2. For x ∈ H , x−1 ∈ H

That is to say, H is a subset that is closed under the group operations of G. In this case, the product
of G can be restricted to a binary operation on H , and this gives a group structure on H . (Condition 2 is
necessary for the restriction to be a group, for a counterexample look at Z+ ⊂ Z). We write H ≤ G.

Examples

1. Trivial subgroups. The group G always has {1} and G as subgroups. (We will usually denote {1} just
by 1)

2. The subgroups of Z are all of the form

nZ = {nk : k ∈ Z}

for some integer n ≥ 0.

3. Let Isom(Rn) be the set of all isometries of Rn, that is, maps from Rn to itself that preserve the
distance. This is a subgroup of S(Rn).

4. (Dihederal groups) Let Pn be a regular polygon in R2, centered at the origin 0. Let D2n be the set
of all isometries of R2 that leave Pn invariant. (That is, the image of x ∈ Pn is again in Pn). This
is a subgroup of Isom(R2). It consists of the n rotations around 0 of angles 2πj

n
for j = 0, . . . , n − 1

(including the identity), and of the n reflections about axes determined by the origin and a vertex or
edge middlepoint of Pn. Thus |D2n| = 2n.

The following fact provides a criterion to check if some subset of G is a subgroup.

Proposition Let H be a nonempty subset of G. Then

1. H is a subgroup iff for all x, y ∈ H , xy−1 ∈ H .

2. If H is finite, then it is a subgroup iff for all x, y ∈ H , xy ∈ H .

Remark The intersection of subgroups is again a subgroup.

2



Definition Let A ⊆ G be any subset. The subgroup of G generated by A is

〈A〉 =
⋂

{H : A ⊂ H,H ≤ G}

So, 〈A〉 is the smallest subgroup containing A. If H ≤ G, then a subset A ⊆ H such that H = 〈A〉 is
called a generator of H .

A group is finitely generated if it has a generator which is finite.

Proposition The elements of 〈A〉 are the g ∈ G of the form g = aǫ11 · · · aǫkk for k ≤ 0, a1, . . . , ak ∈ A and
ǫi = ±1.

Examples

1. In Z, the subgroup generated by A ⊂ Z is dZ where d is the greatest common divisor of the elements
of A.

2. In D2n, let r be the rotation of angle 2π
n
, and s be any reflection. Then r and s generate Dn. The

elements of D2n are rj and rjs for j = 0, . . . , n− 1. Note that sr = r−1s and this allows us to compute
products in this normal form.

3. R and C are not finitely generated (they are uncountable). Q is not finitely generated: Any finite
subset a1 = p1/q1, . . . ak = pk/qk is contained in the subgroup 1

m
Z where m = lcm(q1, . . . , qk).

1.3 Homomorphisms, Isomorphisms

Homomorphisms are the maps between groups that preserve products.

Definition Let G and H be groups. A map ϕ : G→ H is an homomorphism if for all x, y ∈ G,
ϕ(x · y) = ϕ(x) · ϕ(y).

It is easy to check that in this case ϕ(1G) = 1H , and ϕ(x−1) = ϕ(x)−1. Also, that composition of
homomorphisms is again an homomorphism.

Examples

1. The trivial map, ϕ : G→ H s.t. ϕ(g) = 1.

2. The map ϕ : Z → Zn s.t. ϕ(a) = ā.

3. The map ϕ : Z → Z s.t. ϕ(k) = nk, for a given n ∈ Z.

4. The map ϕ : D2n → {1,−1} sending each rotation to 1 and each reflection to −1.

Definition A map ϕ : G→ H between groups is an isomorphism if it is an homomorphism and is bijective.

We say that the groups G and H are isomorphic, and write G ∼= H , if there is an isomorphism ϕ : G→ H .
Since an isomorphism ϕ is bijective, it has an inverse map ϕ−1. Note that this map is also an homomorphism,
ans thus an isomorphism. This, together with other easy observations, leads to the fact that the isomorphism
relation between groups (∼=) is an equivalence on the class of all groups.

Isomorphic groups can be regarded as equal from the group theoretic point of wiev. They have the same
group structure, but possibly different names for the elements and the operation. An isomorphism can be
thought as just a change on these names.

Examples

1. The map ϕ : R → R+ s.t. ϕ(x) = 2x is an isomorphism between (R,+) and (R+,×).

2. If f : X → Y is a bijection, then ϕ : S(X) → S(Y ) s.t. ϕ(g) = f ◦ g ◦ f−1 is an isomorphism.

3. D6
∼= S3. Label the vertices of the triangle P3 with the letters 1, 2, 3. Each isometry in D6 induces a

permutation on the vertices, and hence on the corresponding labels. The same construction gives an
isomorphism between D2n and a subgroup of Sn.
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Proposition If ϕ : G→ H is an homomorphism, then

1. It’s image Imϕ = ϕ(G) is a subgroup of H .

2. If K ≤ H then the inverse image ϕ−1(K) is a subgroup of G.

One special case is when K = {1} above. The kernel of ϕ is

kerϕ = ϕ−1({1}) = {g ∈ G : ϕ(g) = 1}

Proposition An homomorphism ϕ is injective iff kerϕ = {1}.

1.4 Cyclic groups

Let g be an element of a group G, and n an integer. If n > 0, we define gn to be the n-fold product g · · · g.
For n < 0, put gn = (g−1)−n, and finally, set g0 = 1.

Proposition For G a group, g ∈ G and n,m ∈ Z, we have gngm = gn+m and (gm)n = gmn.

A group is called cyclic when it can be generated by a single element.

Proposition Let G be a cyclic group. Then

1. If |G| = n then G ∼= Zn

2. If |G| = ∞ then G ∼= Z

In order to show this, suppose G = 〈b〉, for some b ∈ G. Then we know that all the elements of G are of
the form bm, for m ∈ Z.

If all the powers bm are different from each other, then the map ϕ : Z → G s.t. ϕ(m) = bm is an
isomorphism. (It is an homomorphism by the previous proposition, and bijective by assumption).

On the other hand, suppose that bi = bj for some i 6= j. Then bi−j = 1 with i− j 6= 0. Put

n = min{m > 0 : bm = 1}

This minimum exists by the assumption of this case. It is then easy to check that ψ : Zn → G s.t. ψ(m̄) = bm

is a well defined map, and an isomorphism.

Now let G be any group, and g ∈ G. Define the order of g as |g| = |〈g〉|. That is, |g| is the minimum
n > 0 for which gn = 1, ahd |g| = ∞ if there is no such n.

1.5 Cosets, Index

Let G be a group and H ≤ G a subgroup of it. For x ∈ G we denote

xH = {xh : h ∈ H}

A subset of that form, for some x ∈ G, is called a right coset of H . In the same fashion, a left coset of H is
a subset of the form Hx = {hx : h ∈ H} for x ∈ G.

Note that x belongs to xH and Hx, as x = x1 = 1x. Note also that H is both a right and left coset.

Proposition

1. Two right cosets xH and yH are either disjoint or equal.

2. All the right cosets of H have the same cardinality, that is, |xH | = |H |.

First we show that if z ∈ xH then zH = xH . Since z ∈ xH , there is h0 ∈ H so that z = xh0. Now, an
element of zH has the form zh for h ∈ H . But then zh = xh0h, which belongs to xH , since h0h ∈ H . Thus
zH ⊆ xH . Write x = zh−1

0 and the same argument gives the other inclussion.
This gives us 1, for if x is in the intersection of xH and yH , then xH = zH = yH . To show 2, consider

the map f : H → xH s.t. f(h) = xh. Check that it is a bijection.

The same is true for left cosets. By this proposition, the left (or right) cosets of H form a partition of G
into disjoint subsets.
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Proposition The number (cardinality) of left cosets of H is the same as that of right costets of H .

To see this, note that the inversion map f : G → G s.t. f(g) = g−1 is a bijection (in fact f ◦ f = Id).
The image of a left coset under f is a right coset (and the other way around). Explicitely,

f(Hx) = {(hx)−1 : h ∈ H} = {x−1h−1 : h ∈ H} = x−1H

This gives a bijection between the set of right cosets of H and that of the left cosets.

The index of H in G is defined as the number of left (or right) cosets of H . It is denoted [G : H ]. The
first proposition then gives us the following.

Proposition (Lagrange’s Theorem) For G a group and H ≤ G, |G| = [G : H ]|H |.

In the case when G is finite, we obtain that the order of a subgroup H ≤ G divides the order of G. This
allows us to classify all groups without non trivial subgroups.

Theorem Let G be a non trivial group. Then G has no subgroups other than G and {1} iff it is cyclic of
prime order, that is iff G ∼= Zp, for p prime.

By Lagrange’s theorem, if |G| = p prime, then the only subgroups are the trivial ones. For the other
direction, let a ∈ G, a 6= 1. Then 〈a〉 is a subgroup of G, that is not {1}. Then 〈a〉 = G, and G is cyclic.
If G is infinite, then G ∼= Z, but we have seen that Z has non trivial subgroups, e.g. 2Z. So G is finite,
G ∼= Zn. If n = st with s, t > 1 we can check that s̄ generates a non trivial subgroup of Zn (of order t). So
the only possibility is G ∼= Zp with p prime.

A set of representatives for the right cosets of H in G is a set S ⊆ G so that:

1. Every right coset of H can be written as xH for x ∈ S.

2. If x, y ∈ S, x 6= y then xH 6= yH .

Such an S is formed by picking one element out of every coset of H (and any such choice of elements
will give a different set of representatives). Note that |S| = [G : H ]. The element x ∈ S is called the
representative of xH in S. Usually we will take 1 to be the representative of H . Of course, there is an
analogous for left cosets.

Note that for any H ≤ G, |H | = [H : 1]. Lagrange’s theorem then becomes a particular case of the
following

Proposition Let K ≤ H ≤ G. Then [G : K] = [G : H ][H : K].

Let S be a set of representatives of the right cosets of H in G, and T a set of representatives of those of
K in H . So we have the disjoint unions

G =
⋃

{xH : x ∈ S} H =
⋃

{yK : y ∈ T }

Is then easy to see that

G =
⋃

{xyK : (x, y) ∈ S × T }

And this union is disjoint: If xyK = x1y1K, then, since xyK ⊂ xH and x1y1K ⊂ x1H , we have xH = x1H .
So x = x1 because S is a set of representatives. Now xyK = xy1K. But then yK = y1K and so y = y1. So,
the products xy for x ∈ S, y ∈ T form a set of representatives of the cosets of K in G.
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2 Normal subgroups and Quotients

2.1 Conjugation, Normal subgroups

Let G be a group, and g, h ∈ G. We say that the element ghg−1 is the conjugate of h by g. If H ≤ G it’s
conjugate by g is defined as

gHg−1 = {ghg−1 : h ∈ H}

Observe that gHg−1 is also a subgroup. Moreover, the map αg : G → G s.t. αg(x) = gxg−1 is a group
isomorphism.

Definition Let H ≤ G. We say that H is a normal subgroup of G, and write H ⊳G, if gHg−1 = H for all
g ∈ G.

Examples (and non-examples)

1. The subgroups {1} and G are always normal.

2. Note that ghg−1 = h iff h and g commute. So, in an abelian group every subgroup is normal.

3. In D2n the subgroup 〈r〉 of all the rotations is normal. However, 〈s〉 for s a reflection is not normal.

4. Let H ≤ Sn be the subgroup of permutations that fix some j ∈ {1, . . . , n}. Then H is not normal.
gHg−1 is the subgroup that fixes g(j).

Proposition The subgroup H ≤ G is normal iff every right coset xH is also a left coset Hy.

The direct is easy, check that gHg−1 = H iff gH = Hg. For the reciprocal, let x ∈ G. Then there is a
y ∈ G with xH = Hy. So x ∈ Hy and we get Hx = Hy = xH .

Proposition If [G : H ] = 2 then H is normal.

We use the previous result: Let x ∈ G not in H . Then G is partitioned as G = H ∪xH = H ∪Hx. Thus
xH = Hx.

Remark The inclussion as normal subgroup is not transitive in general.

For an example let H be all the translations on R2, G = Isom(R2) and K = 〈t〉 where t is some non
trivial translation. Then K ⊳H and H ⊳G but K is not normal in G.

There is a deep relationship between normal subgroups and homomorphisms. The following results are
the first steps in describing it.

Proposition If ϕ : G→ H is an homomorphism then kerϕ is a normal subgroup of G. More generally, the
inverse image by ϕ of a normal subgroup of H is normal in G.

Let K ⊳ H . If g ∈ G and k ∈ ϕ−1(K) then we must check that gkg−1 ∈ ϕ−1(K). But ϕ(gkg−1) =
ϕ(g)ϕ(k)ϕ(g)−1 ∈ K since K is normal in H .

Proposition Let ϕ : G→ H be an homomorphism and x, y ∈ G. Then ϕ(x) = ϕ(y) iff x and y belong to
the same right (left) coset of kerϕ.

Put N = kerϕ. Then ϕ(x) = ϕ(y) iff ϕ(xy−1) = 1, iff xy−1 ∈ N , iff Ny = Nx.

2.2 Quotient group

Let G be a group, and N ⊳G a normal subgroup. We define G/N as the set of right cosets of N . That is

G/N = {xN : x ∈ G}

This can be done (and will be useful) for any subgroup, regardless of if it is normal. But in the case when
N is normal, there is a natural product on G/N that makes it a group. We define

xN · yN = xyN
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We need to check this is well defined, as well as the axioms for a group.
To see that it is well defined, pick some other representatives for the cosets xN and yN . They are of

the form xh1 and yh2 for h1, h2 ∈ N . Now we have to show that xh1yh2 is in the coset xyN . But since N
is normal, Hy = yH and there is some ĥ1 ∈ N such that h1y = yĥ1. So xh1yh2 = xyĥ1h2 that belongs to
xyH . The axioms for a group are checked easily, and the next result is just an inmediate consequence.

Proposition The map π : G→ G/N s.t. π(x) = xN is an homomorphism, and it’s kernel is N .

The map π is called canonical projection onto the quotient. Thus, we have shown that the normal
subgroups of G are exactly the kernels of the homomorphisms from G.

Example Zn is the quotient of Z by the normal subgroup nZ.

Note that if H ≤ G and N ≤ H , then N is normal in H and the quotient H/N is naturally included in
G/N . In fact π(H) = H/N and it consists on those cosets of N on G that are contained in H . On the other
hand, if K ≤ G/N then π−1(K) is a subgroup of G that contains N . This describes the correspondence in
the next proposition.

Proposition Let N ⊳G. There is a bijection between the subgroups of G that contain N and the
subgroups of G/N . Moreover, this bijection preserves normality and index (i.e. H ⊳G iff H/N ⊳G/N , and
[G : H ] = [G/N : H/N ]).

Example The subgroups of Zn are in 1 to 1 correspondence with the divisors of n. If n = ts, then 〈t̄〉 ≤ Zn

is isomorphic to Zs and it’s index is t.

2.3 Universal property, Isomorphism theorems

Proposition(Universal property for quotients) Let N ⊳G and π : G→ G/N the canonical projection. Let
ϕ : G→ H be an homomorphism with N ⊆ kerϕ. Then there is a unique homomorphism ϕ̂ : G/N → H
such that ϕ = ϕ̂ ◦ π. Moreover Imϕ̂ = Imϕ and ker ϕ̂ = kerϕ/N .

In that situation, we say that ϕ factors through π. It is clear that if an homomorphism factors through
π, then it’s kernel must contain N . The proposition gives a reciprocal to that fact.

Uniqueness is easy, if such ϕ̂ exists, then it must be ϕ̂(xN) = ϕ(x). For existence, define ϕ̂ by the last
formula, and check it is well defined and an homomorphism.

The following is the special case when N = kerϕ.

Proposition(First isomorphism theorem) Let ϕ : G→ H be an homomorphism. Then Imϕ ∼= G/ kerϕ.

A surjective homomorphism is called an epimorphism and an injective one is called a monomorphism or
an embedding. By this theorem, every epimorphism ϕ : G → H factors as a canonical projection π : G →
G/ kerϕ followed by an isomorphism.

Example The determinant det : GLn(K) → K∗ is an homomorphism. So SLn(K) = {A ∈ GLn(K) :
detA = 1} is a normal subgroup, and GLn(K)/SLn(K) ∼= K∗.

For H,K ≤ G we define HK = {hk : h ∈ H, k ∈ K}. It contains both H and K, and it is contained
in 〈H,K〉, the subgroup generated by both of them. It is a subgroup iff HK = KH , and in that case it is
equal to 〈H,K〉.

Lemma If H ⊳G and K ≤ G, then

1. HK = KH and thus it is a subgroup.

2. H ∩K ⊳K

Proposition(Second isomorphism theorem) Let H ⊳G and K ≤ G. Then K/H ∩K ∼= HK/H .

Consider the map ϕ : K → HK/H that consists on the inclussion K →֒ HK followed by the quotient
projection HK → HK/H . It is surjective and it’s kernel is H∩K. So we use the first isomorphism theorem.

Proposition(Third isomorphism theorem) Let N ⊳G, and H ⊳G with N ⊆ H . Then
(G/N)/(H/N) ∼= G/H .

Begin with the projection φ : G → G/H . Since N ⊆ H , the universal property gives a map φ̂ : G/N →
G/H which is also surjective and has kernel H/N . Then use the first isomorphism theorem.
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2.4 Direct products and sums

Let G and H be groups. The direct product of G and H is G×H with the operation

(g1, h1) · (g2, h2) = (g1g2, h1h2)

It is easy to verify the axioms, and to see that G×H ∼= H ×G. Also, we can think of G as a subgroup of
G×H , as G× {1}. The same goes for H .

There are projections of the product onto the factors, as π1 : G ×H → G s.t. π1(g, h) = g. The kernel
is kerπ1 = H , so H ⊳G×H . The situation with π2 is symmetric.

Proposition Let G be a group. If there are H,K ⊳G with G = HK and H ∩K = 1 then G ∼= H ×K.

If h ∈ H and k ∈ K, then hkh−1k−1 = (hkh−1)k−1 is in K, because K is normal. By the same reasoning
it belongs to H . So hkh−1k−1 = 1 and hk = kh. Now define the map ϕ : H ×K → G s.t. ϕ(h, k) = hk. It
is an homomorphism because of what we just proved. Since G = HK, it is surjective. And if (h, k) ∈ kerϕ,
then hk = 1. So h = k−1 ∈ H ∩K = 1 and (h, k) = (1, 1). Thus ϕ is an isomorphism.

We can take products with an arbitrary number of factors. Let Gi be groups, for i ∈ I an index set.
Then put

Πi∈IGi = {f : I → ∪iGi : f(i) ∈ Gi}

We use to represent an element f of this product as (gi)i∈I where gi = f(i) ∈ Gi. The group operation is
given by

(gi)i∈I(hi)i∈I = (gihi)i∈I

The direct sum of the groups Gi is the subgroup of ΠiGi consisting of all the elements (gi)i∈I for which
gi = 1 for all but finitely many i. It is denoted ⊕iGi.

Proposition Let G be a group, and Hi ≤ G for i ∈ I. If

1. Hi ⊳G for all i

2. ∪iHi generates G

3. Hi ∩ 〈∪j 6=iHj〉 = 1 for all i

Then G ∼= ⊕iGi.

Back to the case with two factors, suppose G is a group, H ⊳G and K ≤ G not necessarily normal. Also
assume that G = HK and H ∩K = 1. We say that G decomposes as a semidirect product of H and K. As
in the previous situation, we can write the elements of G in a unique normal form hk for h ∈ H and k ∈ K.
This time the operation depends on the particular group. We also have a projection G → K with kernel
H . But this time there is no projection onto the H factor, unless K is normal (and we would have a direct
product).

Examples

1. Z does not decompose into a product. That is because if H,K ≤ Z are non trivial, then H ∩K 6= 1.

2. If n = st with (s, t) = 1 then Zn
∼= Zs × Zt.

3. Let A ⊂ {1, . . . , n}, |A| = k. Let G = {g ∈ Sn : g(A) = A}. Then G ∼= Sk × Sn−k.

4. D2n is a semidirect product of H = 〈r〉 and K = 〈s〉. It is not a direct product unless n = 2.
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3 Group Actions

3.1 Actions and related concepts

Let G be a group and X a set.

Definition A left action of G on X is a map · : G×X → X (denoted by ·(g, x) = g · x) satisfying

1. For g, h ∈ G, x ∈ X , g · (h · x) = (gh) · x

2. For x ∈ X , 1 · x = x

There is an analogous definition for right actions. We will just use the term action, and it will be clear
from the context wether we refer to a left or a right action. We also say that G acts on X , and denote an
action by Gy X . As done with the group product, write gx for g · x.

Remark If we have a left action Gy X , then we can define a right action as x · g = g−1x for g ∈ G, x ∈ X .
Thus right and left actions are equivalent objects.

Note that an element g ∈ G defines a map fg : X → X given by fg(x) = gx. This map is a bijection,
with inverse fg−1 . The axioms for an action give us fg ◦ fh = fgh and f1 = IdX . Thus an action of G on
X gives rise to an homomorphism h : G → S(X) given by h(g) = fg. Conversely, if h : G → S(X) is an
homomorphism, then g ◦ x = (h(g))(x) defines an action. So we obtain the following.

Proposition There is a correspondence between the actions of G on X and the homomorphisms
h : G→ S(X).

Examples

1. All the groups we have given as subgroups of S(X) clearly act on X . Some important cases are Sn

acting on {1, . . . , n}, Isom(Rn) acting on Rn and GLn(K) acting on Kn. Also D2n acting on Pn.

2. Suppose G acts on X and Y is any other set. Then we can define an action of G on Y X , the set of
functions from X to Y , by the formula (g · f)(x) = f(g−1x) for g ∈ G, f ∈ Y X , x ∈ X . For example,
R acts on the functions f : R → R by translation of the argument.

3. Sn acts on K[x1, . . . , xn], the polynomials on n variables over K. If P ∈ K[x1, . . . , xn] and σ ∈ Sn

then σP is given by
(σP )(x1, . . . , xn) = P (xσ(1), . . . , xσ(n))

4. GL2(C) acts on C ∪ {∞} by Moebius transformations, that is

(

a b
c d

)

· z =
az + b

cz + d

when z ∈ C, and the limit extension for ∞ (i.e. g · ∞ = a/c and g · (−d/c) = ∞).

Let Gy X be an action.

Definition For x ∈ X , the orbit of x under the action is

G · x = O(x) = {gx : g ∈ G}

Note that x and y are in the same orbit iff there is g ∈ G s.t. gx = y. It is easy to check that two orbits
are either the same or disjoint. So they form a partition of X . An action is called transitive if there is only
one orbit, i.e. if O(x) = X for some (and all) x ∈ X .

Given an orbit Y = O(x) ⊂ X , we can restrict the action of G on X to an action G y Y which is
transitive.

Definition For x ∈ X , the stabilizer of x is

Gx = StabG(x) = {g ∈ G : gx = x}

11



The stabilizer of a point in X is a subgroup of G. If we think of the action as an homomorphism
h : G→ S(X) then we see that

kerh =
⋂

x∈X

Gx

This is called the kernel of the action. An action is faithful or effective if it’s kernel is 1.
Note that any action h : G→ S(X) can be reduced to an effective action of G/ kerh on X . This is given

by the universal property of the quotient.

Examples

1. The action of any subgroup of S(X) on X is clearly effective. The full group S(X) acts transitively
and the stabilizer of x is isomorphic to S(X \ {x}).

2. Isom(Rn) acts transitively on Rn, and the stabilizer of the origin is O(n).

3. GLn(R) y Rn has two orbits: {0} and it’s complement. The orbits of O(n) are {0} and the spheres
with center 0.

4. In D2n y Pn we have infinitely many orbits. Stab(0) = D2n. If x 6= 0 but is in the axis of a reflection
s, then Stab(x) = {1, s}. For any other x ∈ Pn, Stab(x) = 1.

5. The action of GL2(C) on C ∪ {∞} is not effective. It’s kernel consists of the matrices of the form λId
for λ ∈ C∗. It is transitive and the stabilizer of ∞ is the subgroup of upper triangular matrices.

Proposition Let g ∈ G and x ∈ X . Then StabG(gx) = gStabG(x)g
−1.

Indeed, if h ∈ G then hgx = gx iff g−1hgx = x. Hence h ∈ Ggx iff g−1hg ∈ Gx iff h ∈ gGxg
−1.

For g ∈ G we denote Xg = {x ∈ X : gx = x}. Thus x ∈ Xg iff g ∈ Gx. The support of g ∈ G is the
complement of Xg, that is supp(g) = {x ∈ X : gx 6= x}.

If A ⊆ G we write XA = ∩g∈AX
g, the points fixed by every element in A. Note that XA = XH where

H = 〈A〉.

Proposition Let g, h ∈ G. Then supp(ghg−1) = g · supp(h), or equivalently gXh = Xghg−1

.

This is a consequence of the previous one. We have x ∈ Xghg−1

iff ghg−1 ∈ Gx. And if we put x = gy,
this is equivalent to h ∈ Gy, and hence to y ∈ Xh. Recalling that x = gy, that is to say x ∈ gXh.

In particular, if g commutes with h then the action of g leaves invariant the support of h.

Definition Let Gy X and Gy Y be two actions of the same group G. A map f : X → Y is equivariant
if for all x ∈ X , g ∈ G it satisfies f(gx) = gf(x).

Two actions of G are equivalent if there is an equivariant bijection between them. This is indeed an
equivalence relation.

Proposition Let f : X → Y be equivariant. Then

1. f takes orbits to orbits, i.e. f(O(x)) = O(f(x)).

2. Gx fixes f(x), i.e. Gx ⊆ Gf(x). If f is an equivalence then Gx = Gf(x).

3.2 Regular representation

Let G be a group. For g ∈ G we define maps Lg, Rg : G → G by Lg(h) = gh and Rg(h) = hg. It is clear
that they are bijections. Also LgLh = Lgh and RgRh = Rhg.

By these properties, the map L : G→ S(G) taking g to Lg is a right action of G on itself. It is called the
left regular representation or the action by left translations. Analogously, the right translations Rg define a
right action of G on itself, that is named accordingly.

Observe that LgRh = RhLg for any g, h ∈ G.
The next result shows that any group defined in the abstract sense is isomorphic to a group of transfor-

mations, i.e. a subgroup of S(X) for some set X .
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Proposition(Cayley’s theorem) Every group G embedds as a subgroup of S(G).

We need to see that the homomorphism L : G→ S(G) is injective. But if g is in the kernel, i.e. Lg = IdG,
we get g = g1 = Lg(1) = 1.

Given a subgroup H ≤ G we can act by left translation on the left cosets of H . Define G×G/H → G/H
by g · xH = gxH . It is easy to check it is an action.

Facts

1. G acts transitively on G/H .

2. The stabilizer of the coset xH is xHx−1.

3. The kernel of the action is
⋂

{xHx−1 : x ∈ G}, that is the maximal subgroup of H that is normal in
G.

Suppose we have a transitive action Gy X . Pick x ∈ X and let H = Gx be it’s stabilizer. Then we have
a surjective map f : G→ X s.t. f(g) = gx. If we put the left translation action on G then f is equivariant.

Also note that f is constant on the left cosets of H . So the function f̂ : G/H → X s.t. f̂(gH) = gx is well
defined. And it is easy to see it is bijective and equivariant. Thus we obtain the following.

Proposition(Orbit - Stabilizer theorem) Let Gy X be an action.

1. If it is transitive, then it is equivalent to the action by left translations on G/Gx for any x ∈ X .

2. For x ∈ X , we have |O(x)| = [G : Gx].

The following is an example of how we can use actions of G to study the structure of G.

Theorem Let G be a finite group. Let p be the smallest prime dividing |G|. Then every subgroup of index
p in G is normal in G.

Let H ≤ G, with [G : H ] = p. Let K be the kernel of the action of G on G/H by left translations. Then
G/K acts faithfully on G/H , and since |G/H | = p this implies that G/K embedds as a subgroup of Sp. By
Lagrange’s theorem then |G/K| = [G : K] must divide p!. On the other hand, [G : K] must also divide |G|.
Now, p is the smallest prime factor of |G| and the largest of p! (and it’s exponent is 1). So [G : K] = p, and
then p = [G : K] = [G : H ][H : K] = p[H : K]. So [H : K] = 1 and H = K.

3.3 Action by conjugation

Now we consider another action of a group G on itself. For g ∈ G consider the map αg : G → G s.t.
αg(h) = ghg−1. Then αg is a group isomorphism for each g, and the map G → S(G) taking g to αg is a
group action. This is called action by conjugation. Note that αg = LgRg−1 .

The orbits under this action are called conjugacy classes. Note that in this action g is fixed by h iff g
and h commute. The stabilizer of g ∈ G is called the centralizer of g in G, and denoted

CG(g) = {h ∈ G : hg = gh}

By the orbit-stabilizer theorem, the number of elements conjugate to g is the index [G : CG(g)].
More generally, the centralizer of H ≤ G is

CG(H) = {g ∈ G : gh = hg for all h ∈ H}

The center of G is the set of fixed points for this action, Z(G) = CG(G). Note that Z(G) is abelian and
normal in G. The center is also the kernel of the action by conjugation.

The orbit-stabilizer theorem gives inmediately the next result for finite groups.

Proposition(Class equation) Let G be a finite group, and x1, . . . , xk be representatives for the conjugacy
classes of G not in Z(G). Then

|G| = |Z(G)|+
k

∑

i=1

[G : CG(xi)]

13



It is now an easy consequence that if |G| = pn for p prime (G is a p-group) then Z(G) 6= 1.

We can also act by conjugation on the set of subgroups of G. That is, if H ≤ G define g ·H = gHg−1.
Note that a subgroup is fixed under this action iff it is normal. For any H ≤ G, it’s stabilizer is called
normalizer of H in G. It is written

NG(H) = {g ∈ G : gHg−1 = H}

The normalizer NG(H) clearly contains H , and is the biggest subgroup of G in which H is normal. As above,
the number of different conjugates of H is [G : NG(H)].

It is clear that CG(H) ≤ NG(H). By its definition, the formula g · h = ghg−1 also defines an action of
NG(H) on H . It’s kernel is CG(H). In particular CG(H)⊳NG(H). Also note that H ∩CG(H) = Z(H).

Examples

1. For D2n there are two cases. When n is even, n = 2k then Z(D2n) = {1, rk}. The conjugacy class of
rj for 0 < j < n, j 6= k is {rj , r−j}. For n odd, the former is the case for any 0 < j < n, and the
center is trivial. On the other hand, when n is odd the conjugacy class of a reflection s consists of all
reflections of D2n. And when n is even, reflections are divided in those whose axes pass through
vertices (rjs for j even) and those with axes passing through edge middlepoints. These are the
conjugacy classes.

2. From the first example, if n is odd or n = 2k and j 6= k then CD2n
(rj) = 〈r〉. For s a reflection,

CD2n
(s) is generated by s and Z(D2n). It has order either 2 or 4.

3. The center of GLn(C) is {λId : λ ∈ C}.
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4 Automorphisms

4.1 Group of automorphisms

Let G be a group. An isomorphism from G to itself is called an automorphism of G. The set of all
automorphisms

Aut(G) = {ϕ : G→ G : ϕ is an automorphism}

is a group under composition (thus a subgroup of S(G)).
For g ∈ G we defined αg : G→ G s.t. αg(x) = gxg−1. We have seen they are automorphisms. They are

called inner automorphisms. Since the map G → Aut(G) sending g to αg is an homomorphism, the inner
automorphisms form a subgroup of Aut(G). It will be denoted Inn(G).

Note that Inn(G) ∼= G/Z(G), since Z(G) is the kernel of the conjugation action. We can also see that
Inn(G) is normal in Aut(G), since if ϕ ∈ Aut(G) and g ∈ G then ϕαgϕ

−1 = αϕ(g). The quotient

Out(G) = Aut(G)/Inn(G)

is called the group of outer automorphisms of G.

Examples

1. If G is abelian, then Inn(G) = 1.

2. Aut(Zn) = GLn(Z) that consists on the n× n matrices of integer coefficients and determinant ±1. To
see it, notice that an automorphism must take the standard basis of Zn to another basis.

3. For p prime, Aut((Zp)
n) = GLn(Zp). Note that (Zp)

n is a vector space over Zp and that a group
automorphism must be linear.

4. Aut(D6) = Inn(D6) ∼= D6. Since Z(D6) = 1, Inn(D6) ∼= D6. If ϕ is an automorphism, it must
preserve the subgroup 〈r〉 = {1, r, r−1} since |ϕ(r)| = |r| = 3. Thus the image of a reflection must also
be a reflection. Since D6 = 〈r, s〉, the automorphism ϕ is determined by the images of r and s. Then
we can see that |AutD6| ≤ 6, and since |Inn(D6)| = 6 they must be equal.

4.2 Semidirect products

If H and K are groups, an action K → S(H) is an action by automorphisms if it’s image is contained in
Aut(H). For example if H is a normal subgroup of G, then the action of G on H by conjugation is an action
by automorphisms.

If we have an action by automorphisms ϕ : K → Aut(H), we can define an operation in H ×G by

(g1, h1) · (g2, h2) = (g1(h1 ·ϕ g2), h1h2)

This gives a group structure, that we will denote H ⋊ϕ K.
As in the direct product, the inclussion maps of the factors H → H ⋊ϕ K and K → H ⋊ϕ K are

homomorphisms. So H and K can be regarded as subgroups of H ⋊ϕ K. Also, these subgroups generate
H ⋊ϕK. The projection onto the second factor (K) is an homomorphism, and so H (it’s kernel) is normal.

Notice that for k ∈ K, h ∈ H we have

(1, k)(h, 1)(1, k−1) = (k ·ϕ h, 1)

So the action ϕ of K in H is realized as an action by conjugation in the group H ⋊ϕ K.

Proposition Let G be a group, and H,K ≤ G such that

1. H ⊳G

2. G = 〈H,K〉

3. H ∩K = 1

Then G ∼= H ⋊K, for the restriction of the action by conjugation.
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Unless ϕ is trivial (i.e. Imϕ = {IdH}), K is not normal in H ⋊ϕ K. If it were normal, then H ⋊ϕ K
would be isomorphic to the direct product H ×K, where the conjugation action of K on H is trivial.

Examples

1. D2n
∼= Zn ⋊ Z2. If Z2 = {1, s}, it acts on Zn by s · g = g−1.

2. The action of Z2 just given works for every abelian group (because (gh)−1 = g−1h−1). The infinite
dihedral group D∞ = Z⋊Z2 is a special case of this. It can also be given as the subgroup of Isom(R)
that leaves Z invariant.

3. For any G, we can form G⋊Aut(G) by the obvious action. We see that every automorphism of G is
a conjugation in a bigger group that contains G as a normal subgroup.

4. Isom(Rn) = Rn ⋊O(n), where Rn is regarded as the group of translations. The action of O(n) on Rn

is the usual one.

4.3 Characteristic subgroups

Let G be a group and H a subgroup of G. We say that H is a characteristic subgroup of G if ϕ(H) = H for
all ϕ ∈ Aut(G). Note that a characteristic subgroup is also normal.

As opposed to the situation with normal subgroups, the relation of inclussion as characteristic subgroup
is transitive.

Proposition Let K ≤ H ≤ G

1. If K is characteristic in H and H is characteristic in G then K is characteristic in G.

2. If K ⊳H ⊳G and K is characteristic in H , then K ⊳G.

For (1), note that every automorphism of G restricts to an automorphism of H and hence leaves K
invariant. For (2), do the same for a conjugation.

Examples

1. The trivial subgroups, 1 and G.

2. In a cyclic group every subgroup is characteristic.

3. In D2n for n > 2, the subgroup of rotations is characteristic. This is because the generators of this
subgroup are the only elements of order n.

4. The characteristic subgroups of Zn are those of the form kZn for k ∈ Z.

5. The center Z(G) is always characteristic in G.

6. The commutator subgroup of G is
G′ = 〈[x, y] : x, y ∈ G〉

where [x, y] = xyx−1y−1. Then G′ is characteristic, because ϕ([x, y]) = [ϕ(x), ϕ(y)] for any
homomorphism ϕ.

So if we take iterated commutator subgroups G(n) = (G(n−1))′, we have that G(n)
⊳G for every n.
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5 Permutation groups

5.1 Cycle decomposition

We will use the notation [n] = {1, . . . , n}. An element of Sn is called a permutation.

Definition A permutation σ ∈ Sn is a cycle of length k if there exist x0, . . . , xk−1 ∈ [n] such that
σ(xi) = xi+1 for i ∈ Zk, and σ(x) = x for every other x ∈ [n].

In this case we will write σ = (x1, . . . , xk). It is clear that a cycle of length k has order k. Also

(x1, . . . , xk)
−1 = (xk, . . . , x1)

A cycle of length 2 is called a transposition. Note that if σ and τ are two permutations with disjoint
support then στ = τσ.

Proposition Let σ be a permutation. Then σ can be written as a product of cycles of disjoint support.
I.e. σ = τ1 · · · τk where each τi is a cycle, and supp(τi) ∩ supp(τj) = ∅ for i 6= j. This decomposition is
unique, aside from the order of the factors.

This decomposition corresponds to the orbits of 〈σ〉 acting on [n].

We will abreviate this as cycle decomposition. It gives us the order of a permutation, if σ = τ1 · · · τk is
the cycle decomposition, then |σ| = lcm(|τ1|, . . . , |τk|). And σ−1 = τ−1

1 · · · τ−1
k is the cycle decomposition of

the inverse.
If we have a cycle (x1, . . . , xk) and any permutation σ then

σ(x1, . . . , xk)σ
−1 = (σ(x1), . . . , σ(xk))

This can be used to describe the conjugacy classes in Sn.

Proposition Two elements σ, τ ∈ Sn are conjugate iff their cycle decompositions have the same structure.
That is, if they can be written as

σ = σ1 · · ·σk τ = τ1 · · · τk

with |σi| = |τi| for each i.

5.2 Alternating group

A cycle decomposes as
(x1, . . . , xk) = (x1, xk) · · · (x1, x2)

So we obtain the following.

Proposition Sn is generated by the transpositions (i, j), i < j.

So every permutation σ is a product of transpositions σ = t1 · · · tm. This factorization is not unique
in general, but we shall show that the parity of the number of factors (i.e. m) is the same for any such
decomposition.

Definition The alternating group is the set of permutations that are a product of an even number of
transpositions. It is denoted by An.

It is clear that it is a subgroup. Recall the action of Sn on Z[x1, . . . , xn] by permutation of the variables.
Let

P = Πi<j(xi − xj)

Observe that for σ ∈ Sn, we have that σ · P is either P or −P . So we can define ǫ : Sn → {1,−1} by

σ · P = ǫ(σ)P

Proposition ǫ : Sn → {1,−1} is a surjective homomorphism and it’s kernel is An.
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It is an homomorphism because (στ) ·P = σ · (τ ·P ). We see that ǫ((1, 2)) = −1 because it flips (x1−x2)
but preserves the order in every other factor (xi − xj) with i < j, 2 < j. Since every transposition (i, j) is
conjugate to (1, 2), we see that ǫ((i, j)) = −1. Thus ǫ(σ) = (−1)m where σ can be written as a product of
m transpositions. This gives ker ǫ = An.

So An is a normal subgroup of index 2. If σ is any permutation and (i, j) is a transposition, then exactly
one of σ, (i, j)σ is in An.

Thus {1, (i, j)} is a set of representatives for the cosets of An, and since it forms a subgroup, we get that
Sn splits as a semidirect product Sn = An ⋊ Z2.

Definition A group action Gy X induces an action of G on the cartesian product Xk by
g · (x1, . . . , xk) = (gx1, . . . , gxk). The action Gy X is k-transitive if the induced action on Xk is transitive.

It is immediate that k-transitivity implies l-transitivity for l ≤ k. The action of Sn on [n] is n-transitive,
but no proper subgroup can act n-transitively.

Proposition An, n ≥ 3, acts (n− 2)-transitively on [n].

Let {x1, . . . , xn−2} be an ordered (n−2)-subset of [n]. Let {xn−1, xn} be it’s complement, in some order.
Then the formula σ(i) = xi defines a permutation taking {1, . . . , n− 2} to the desired ordered subset. But
(xn−1, xn)σ also satisfies this property, and one of those must be in An.

It doesn’t act (n− 1)-transitively, for that would imply n-transitivity.

5.3 Simplicity of A
n
, n 6= 4

A group G is simple if it has no normal subgroups other than 1 and G.
The first cases, A2 = 1, A3

∼= Z3 are simple. But A4 is not simple, let

K = {Id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

It is contained in A4, and it can be checked to be a subgroup. It is normal, because it consists on Id and all
the products of two disjoint transpositions. So K ⊳A4.

Now we consider the general case, n ≥ 5.

Proposition An, n ≥ 3, is generated by the cycles of length 3.

Note that since a cycle (a, b, c) has order 3, ǫ((a, b, c)) = 1. So (a, b, c) belongs to An. It is clear that An

is generated by the products of two transpositions, i.e. the elements of the form (a, b)(c, d). When they are
overlapping, say a = d we get (a, b)(a, c) = (a, c, b). And when they are disjoint, we reduce it to the previous
case: (a, b)(c, d) = (a, b)(b, c)(b, c)(c, d), that is a product of pairs of overlapping transpositions.

Theorem An is simple for n ≥ 5.

The proof puts together all the ideas on this section. First, by the conjugation formula

σ(a, b, c)σ−1 = (σ(a), σ(b), σ(c))

and since An acts (n− 2)-transitively, n− 2 ≥ 3 we see that the RHS can be any cycle of length 3, while σ
can be chosen in An. So all cycles of length 3 are conjugate in An.

Now let G⊳An, G 6= 1. If G contains a cycle of length 3, then it contains all its conjugates by elements
of An. But these are all the length 3 cycles, and they generate An. So G = An.

Thus, we must check that if G⊳An, G 6= 1 then G contains a cycle of length 3. This will be done splitting
in cases. Let g ∈ G, g 6= 1. Take it’s decomposition as product of disjoint cycles g = g1 · · · gk. Then:

1. If g = g1 is a length 3 cycle, it is done.
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2. Suppose |gi| ≥ 4 for some i (we can assume i = 1). Let g1 = (a1, . . . , am) and let h = (a1, a2, a3) ∈ An.
We know that ghg−1h−1 is in G. Since the support of h is contained in that of g1, we get

ghg−1h−1 = g1hg
−1
1 h−1 = (a2, a4, a3)

3. Now assume |gi| ≤ 3 and some |gj| = 3. Let g1, . . . , gt be the length 3 cycles, and hence the rest are
transpositions. Then g2 = g−1

1 · · · g−1
t is in G, and has only length 3 cycles in it’s decomposition. If

t = 1 we are done. Otherwise, let g1 = (a1, a2, a3) and g2 = (b1, b2, b3). Put h = (a1, a2, b3). Then

ghg−1h−1 = g1g2hg
−1
1 g2h

−1 = (a1, a3, b2, a2, b3)

It is reduced to the previous case.

4. When all the gi are transpositions and k ≥ 4. Let g1 = (a1, a2), g2 = (b1, b2), g3 = (c1, c2). Put
h = (a2, b1)(b2, c1). Again

ghg−1h−1 = g1g2g3hg1g2g3h = (a1, b2, c1)(a2, c2, b1)

5. The remaining case is g = g1g2 = (a, b)(c, d). Let x 6= a, b, c, d, we use again n ≥ 5. Put h = (a, b, x).
We get ghg−1h−1 = (a, b, x).

19



20



6 Abelian groups

6.1 Basic facts

A group G is called abelian if every two elements of G commute. For abelian groups we will use additive
notation. That is, we will denote the group operation by + and call it sum. The identity element will be
denoted by 0 and the inverse of a by −a. For m ∈ Z, we denote by ma the m-th power of a, as defined in
1.4.

Remarks

1. Direct products of abelian groups are abelian.

2. Subgroups and quotients of abelian groups are abelian.

Lemma Let G be an abelian group, and a, b ∈ G. Then

1. If m ∈ Z, then m(a+ b) = ma+mb.

2. If a and b are of finite order, then |a+ b| ≤ lcm(|a|, |b|).

A non trivial element of finite order is called a torsion element. A group is called torsion-free if it has no
torsion elements. Let

T (G) = {g ∈ G : |g| <∞}

Proposition Let G be an abelian group. Then

1. T (G) is a characteristic subgroup of G.

2. G/T (G) is torsion-free.

6.2 Free abelian groups

We will focus on finitely generated groups, which will be abbreviated as f.g. groups. Suppose that G is a
f.g. abelian group and it is generated by a1, . . . , an ∈ G. By iterated application of the commutative law,
we can write any element a ∈ G in the form

a = k1a1 + · · ·+ knan for k1, . . . , kn ∈ Z

Note that the map ϕ : Zn → G s.t. ϕ(k1, . . . , kn) = k1a1+ · · ·+knan is then a surjective homomorphism.

Definition Let G be a f.g. abelian group.

1. The elements a1, . . . , an ∈ G form a basis of G if every element a ∈ G can be written uniquely as
a = k1a1 + · · ·+ knan for ki ∈ Z.

2. If such a basis exists, G is called a free abelian group.

Note that Zn is free abelian and the elements e1, . . . , en form a basis, where ei has a 1 in coordinate i
and zeroes in every other coordinate. This is called the canonical basis of Zn.

On the other hand, suppose that G is free abelian. If a1, . . . , an is a basis of G, then the corresponding
homomorphism ϕ : Zn → G is an isomorphism. So, a f.g. abelian group is free iff G ∼= Zn for some n. This
number is called the rank of G. It is well defined, as the next result will imply.

Lemma

1. For any m elements a1, . . . , am ∈ Zn with m > n, there are k1, . . . , km ∈ Z, not all equal to 0, such
that

k1a1 + · · ·+ kmam = 0

2. Zn is not isomorphic to Zm if n 6= m.

Since Qn is a vector space of dimension n, there are q1, . . . , qm ∈ Q s.t. q1a1+ · · ·+ qmam = 0, where not
all qi are equal to 0. Take m a multiple of all the denominators of the qi, and let ki = mqi. These coefficients
satisfy statement 1. Statement 2 is a consequence, since property 1 is preserved by isomorphism.

The following result is a rephrasing of facts we already obtained.

Proposition(Universal property for free abelian groups) Let G be a f.g. abelian group, with a generating
set a1, . . . , an. Then there exists a unique homomorphism ϕ : Zn → G such that ϕ(ei) = ai for i = 1, . . . , n.
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6.3 Subgroups of a free abelian group

Now we will study the subgroups of Zn. Together with the universal property, this will allow us to classify
the f.g. abelian groups.

Proposition A subgroup H ≤ Zn is also free abelian, and it’s rank is at most n.

We prove it by induction on n. When n = 1 this is true, since a subgroup of Z is of the form aZ. For the
inductive step, let πn : Zn → Z be the projection in the last coordinate. Then πn(H) = aZ for some a ∈ Z,
since it is a subgroup. If a = 0 then H ≤ kerπn = Zn−1 and we use the induction hypothesis. So, suppose
a 6= 0. Take x ∈ H so that πn(x) = a, and put K = H ∩ kerπn = H ∩ Zn−1. Now, if h ∈ H , then there is
m ∈ Z such that πn(h) = am. Applying πn, we can check that h−mx ∈ K. So H = 〈x〉+K. And we can
also check that 〈x〉 ∩K = 0 by the same method. So H ∼= K × Z with K ≤ Zn−1, and we can apply the
induction hypothesis to K.

Lemma Let A be a n× k matrix with Z coefficients. Then there exist P ∈ GLn(Z) and Q ∈ GLk(Z) such
that PAQ has the diagonal form

PAQ =

















d1 · · · 0
...

. . .
...

0 · · · dk
...

...
0 · · · 0

















where di divides di+1 for all i. (With the convention that 1|a and a|0 for every a ∈ Z).

First we define the elementary matrices, that are the square matrices of the following forms.

1. For i 6= j, Tij = (tkl) where tij = tji = tkk = 1 for k 6= i, j and all other entries are zero.

2. For i 6= j, a ∈ Z, Sij(a) = (skl) where skk = 1, sij = a and all other entries are zero.

These matrices correspond to the standard row and column operations. Let A be an n× k matrix.

1. TijA is the result of interchanging row i and row j in A. And ATij is the same for columns.

2. Sij(a)A is the result of summing a times the j-th row to row i in A. Doing ASij(a) is to sum a times
the i-th column to column j.

The elementary matrices of size m×m are in GLm(Z), for T−1
ij = Tij and Sij(a)

−1 = Sij(−a).

Using the row and column operations on A = (aij) we can:

- Move any entry aij to the (1, 1) position.

- Preform the Euclidean Algorithm to any pair of rows or columns, until it terminates for some entry.

Iterating the above procedures, it is possible to reduce A to the form

P1AQ1 =

(

d1 0
0 A1

)

where d is the gcd of all the entries in A, and divides every entry of A1. The matrices P1 and Q1 are the
products of the elementary matrices we used in the process.

So, by induction in k, we prove the lemma.

Now we can characterize every subgroup of Zn.
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Theorem Let H ≤ Zn be a subgroup of rank k. Then there exist

1. A basis x1, . . . , xn of Zn.

2. A basis y1, . . . , yk of H .

3. Integers d1| · · · |dk, di > 0.

Such that yi = dixi for i = 1, . . . , k.

Take some basis u1, . . . , uk of H . Write these elements in the canonical basis of Zn.











u1 = a11e1 + · · ·+ an1en
...

uk = a1ke1 + · · ·+ anken

Put A = (aij). Now let PAQ = D as in the previous lemma. Take yi = Q−1ui, xj = Pej . The di are
non zero. If not, the rank of H would be less than k. And by switching signs in the generators, they can be
taken positive.

Note We could have started just with a generator of H . The algorithm produces a basis. In this case some
of the di could be 0.

Uniqueness of the di is true, it is going to follow from the next section.

6.4 Structure of the finitely generated abelian groups

The goal of this section is to prove the following theorem, classifying the f.g. abelian groups.

Theorem Let G be a f.g. abelian group. Then G decomposes as a direct product

G ∼= Zp
m1
1

× · · · × Zp
ms
s

× Zr

For p1, . . . , ps primes (not necessarily different), and r,m1, . . . ,ms > 0. This decomposition is unique (aside
from the order of the factors).

We need a preliminary result about cyclic groups.

Proposition Let n = st with s, t > 0 and (s, t) = 1. Then Zn
∼= Zs × Zt.

Consider the subgroups generated by the classes t̄ and s̄. Then 〈t̄〉 ∼= Zs and 〈s̄〉 ∼= Zt. Their intersection
is trivial by Lagrange’s theorem, since (s, t) = 1. And they are clearly normal, so they generate a subgroup
isomorphic to Zs × Zt. But that has order n, so it must be all Zn.

As a consequence, if n = pα1

1 · · · pαk

k is the prime factorization of n, then

Zn
∼= Zp

α1
1

× · · · × Zp
αk
k

Existence

If G is a f.g. abelian group, take some generator a1, . . . , an. This defines a surjective homomorphism
ϕ : Zn → G s.t. ϕ(ei) = ai. So G ∼= Zn/ kerϕ.

We apply the theorem on last section to kerϕ. Let x1, . . . , xn, y1, . . . , yk and d1, . . . , dk be as in that
theorem. Now it is easy to check that

G ∼= Zdj
× · · · × Zdk

× Zn−k

where the factors are the subgroups generated by the ϕ(xi), and dj is the first of the di that is not equal to
1.

Applying the above result to the Zdi
factors gives the desired decomposition.
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Uniqueness

Regroup the product in the theorem as

G = S(p1)× · · · × S(pt)× Zr

where p1, . . . , pt are different primes, and the S(pi) are of the form

S(p) = Zpm1 × · · · × Zpmk

both the number of factors and their orders depending on i.
Now, it is clear that

T (G) = S(p1)× · · · × S(pt) and G/T (G) ∼= Zr

So, G/T (G) is free abelian, and r is it’s rank. So r depends only on the isomorphism class of G.
On the other hand, note that for each prime p, S(p) \ {0} is the set of all the elements of order pm for

some m. Thus the S(pi) are characteristic subgroups, and they are determined by the structure of G.
We are reduced to the case when G = S(p) = Zpm1 × · · · × Zpmk .
Let m be the maximum of the mi, and for j = 1, . . . ,m let rj be the number of mi ≥ j. Thus r1 = k

and rj − rj+1 is the number of factors of the form Zpj in the given decomposition. So, it is enough to show
that m and the rj are determined by the isomorphism class of G.

For this, condider the nested subgroups G ≥ pG ≥ · · · ≥ pmG = {0}. Note that m is the minimum
exponent such that pmG = {0}. And for each j = 1, . . . ,m we have

pj−1G/pjG ∼= (Zp)
rj

So rj = dim pj−1G/pjG as a Zp-vector space. This concludes the proof.
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7 Free groups

7.1 Definition of free group

Let X = {xi : i ∈ I} be a set. Consider a disjoint copy of X , that will be denoted as X−1 = {x−1
i : i ∈ I}.

The elements of X ∪X−1 will be called letters. Sometimes we refer to X as an alphabeth.
A word on the alphabeth X is a finite sequence

w = xǫ1i1 · · ·x
ǫn
in

where n ≥ 0, ǫi = ±1. When n = 0, it is called the empty word, and written w = 1. The number n is called
the length of w, and will be written l(w).

The concatenation product of the words v and w is defined as the word vw consisting on the letters of v
followed by those of w.

We say that the words w = w1x
ǫ
ix

−ǫ
i w2 and v = w1w2 are elementarily equivalent. We also say that v

is an elementary reduction of w. The words w and v are equivalent if there are words w = w1, . . . , wk = v
where wi and wi+1 are elementarily equivalent for all i. This is the smallest equivalence relation containing
the elementary reductions.

The equivalence class of w will be denoted [w]. Define the product of classes as [v][w] = [vw]. It is easy
to check it is well defined. This product makes the set of these equivalence classes into a group. The identity
element is [1], and the inverse of

[w] = [xǫ1i1 · · ·x
ǫn
in
] is [w]−1 = [x−ǫn

in
· · ·x−ǫ1

i1
]

The group just defined is denoted by F (X), and is called the free group on the free generators {xi}i∈I .
The rank of F (X) is |X |. Soon we shall show that free groups of different rank are not isomorphic.

Reduced words

The word w = xǫ1i1 · · ·x
ǫn
in

is reduced if it admits no elementary reductions. That is , if there is no j such

that x
ǫj
ij

= x
−ǫj+1

ij+1
. The reduced words are a set of representatives for the classes [w] ∈ F (X).

Proposition Let w be a word on the alphabeth X . There is a unique reduced word v that is equivalent to
w.

Such word will be obtained by the following reduction process. Let w = xǫ1i1 · · ·x
ǫn
in
. Then, for k = 1, . . . , n

we define Rk(w) = rk inductively,
r1 = xǫ1i1

And if rk−1 = xǫ1i1 · · ·x
ǫ
j

rk =

{

rk−2 if xǫkik = x−ǫ
j

rk−1x
ǫk
ik

otherwise

Put R(w) = Rn(w).
The result R(w) of the reduction process is a reduced word equivalent to w. And if w is reduced then

w = R(w). It is also easy to check that if we have a reduction w = w1x
ǫ
ix

−ǫ
i w2, v = w1w2 then R(w) = R(v).

So if w and v are equivalent words, then R(w) = R(v). This shows the uniqueness.

This shows that we could have defined F (X) as the set of reduced words, with the product v ·w = R(vw).
(Proving associativity would have been harder). We will use these two definitions without distinction.

Let v and w be reduced words. When the concatenation vw is reduced, we say that the product v · w
in F (X) is reduced as written. Under the second definition, this is the case when the concatenation and the
group product agree. In the contrary case, we say that there is cancellation in the product v · w.

7.2 Basic properties

It is clear that the group structure of F (X) only depends on it’s rank. If |X | = n, we shall write Fn = F (X)
and call it the free group on n generators.

Now we will characterize conjugation for elements of a free group. A reduced word w = xǫ1i1 · · ·x
ǫn
in

is

cyclically reduced if xǫ1i1 6= x−ǫn
in

. Every reduced word w 6= 1 is of the form w = uvu−1 for v a non trivial,
cyclically reduced word. If w is a cyclically reduced word, then a cyclic permutation of w is a word of the
form v = ba where w = ab. Note that such v is also cyclically reduced.
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Proposition The reduced words v and w are conjugate in F (X) iff they are of the form

v = v0abv
−1
0 w = w0baw

−1
0

where ab and ba are cyclically reduced.

By the observations above, v = v0v̂v
−1
0 and w = w0ŵw

−1
0 for v̂, ŵ cyclically reduced. This reduces us

to the case when v and w are cyclically reduced. It is clear that ab is conjugate to ba. Now suppose that
w = g · v · g−1 for g ∈ F (X). Since v is cyclically reduced, there can not be cancellation in both products.
Suppose there is no cancellation in g · v, the other case being analogous. Now, since w is cyclically reduced,
g−1 must be cancelled completely in gv · g−1. That is, gv = v1g for some word v1. We can assume that
l(g) < l(v), since otherwise we must have g = g1v, and so g · v · g−1 = g1 · v · g

−1
1 with l(g1) < l(g). But

under this assumption, we must have v = ab with g = b. And so w = ba.

This shows that the conjugacy classes in F (X) correspond to the cyclic words on the alphabeth X . That
is, the cyclically reduced words modulo cyclic permutation.

Proposition(Universal property for free groups) Let G be a group and S = {si : i ∈ I} ⊆ G a generating
set. Let X = {xi : i ∈ I}. Then there exists a unique homomorphism ϕ : F (X) → G such that ϕ(xi) = si
for all i ∈ I.

This is easier using the first definition. For a word w = xǫ1i1 · · ·x
ǫn
in
, it must be ϕ([w]) = sǫ1i1 · · · s

ǫn
in
. To

show that it is well defined, note that it is enough to check it for elementary reductions. It clearly takes
concatenation of words to products in G, so it is an homomorphism.

This implies that every group is a quotient of a free group. Intuitively, this says that the free groups
F (X) are the groups with the least possible relations.

For any group G, we defined it’s commutator subgroup as

G′ = 〈xyx−1y−1 : x, x ∈ G〉

It is normal, and the quotient G/G′ is called the abelianization of G. It is the maximal abelian quotient in
the following sense. If N⊳G has G/N abelian, then G′ ≤ N . Equivalently, if ϕ : G→ A is a homomorphism
and A is abelian, then ϕ factors through the quotient map G→ G/G′.

Proposition The abelianization of F (X) is isomorphic to

⊕

i∈I

Z

In particular Fn/F
′
n
∼= Zn.

By the universal property of the free group, there exists an homomorphism π : F (X) → ⊕i∈IZ taking xi
to a generator of the i-th coordinate, that we will also call xi.

In the last section we have seen a universal property for free finitely generated abelian groups. The
same statement is true for ⊕i∈IZ. Consider an homomorphism ϕ : F (X) → A where A is abelian. By
the mentioned universal property, there exists ψ : ⊕i∈IZ → A s.t. ψ(xi) = ϕ(xi). It is then clear that
ϕ = ψ ◦ π. Apply this when A is the abelianizaton, and ϕ it’s canonical projection. On the other hand, by
the observation made above, π must also factor through ϕ. Say that π = ψ̂ ◦ ϕ. By the uniqueness part of
the universal property, ψ and ψ̂ must be inverses of each other.

As a consequence, we obtain

Proposition F (X) and F (Y ) are isomorphic iff |X | = |Y |.

A group G is free if it is isomorphic to F (X) for some X , and in this case we say that |X | is the rank of
G.
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7.3 Graphs

Graphs are geometric objects deeply related to free groups. First we give the basic definitions.

Definition A (directed) graph Γ consist on a set V of vertices, a set E of edges and two functions
s, t : E → V . The sets V and E are at most countable.

We usually denote Γ = (V,E). For σ ∈ E, s(σ) is called it’s source and t(σ) it’s target. We say that σ is
oriented or directed from s(σ) towards t(σ).

Intuitively, elements of V corresponds to points, and an element σ ∈ E corresponds to an oriented line
segment connecting the vertices s(σ) and t(σ). Note that we allow loops (edges with s(σ) = t(σ)) and
multiple edges (there may be any number of edges with the same source and target).

As done with the alphabeth X before, we introduce a set E−1 = {σ−1 : σ ∈ E} and assign s(σ−1) = t(σ),
t(σ−1) = s(σ). We also refer to elements of E ∪E−1 as edges, with the convention that (σ−1)−1 = σ for any
of these edges. The pairs {σ, σ−1} are called geometric or unoriented edges.

Definition A path w in a graph Γ is a sequence of edges

w = σ1 · · ·σn

such that t(σi) = s(σi+1) for all i = 1, . . . , n− 1.

The path w is closed if t(σn) = s(σ1). It is reduced if no σσ−1 appears in the sequence. The paths of the
form σσ−1 are called spurs.

Definition Let Γ = (V,E) be a graph.

1. Γ is finite if V and E are finite.

2. Γ is connected if for every x, y ∈ V there is a path w = σ1 · · ·σn s.t. s(σ1) = x and t(σn) = y. In this
case we say that w goes from x to y.

3. The degree or valence of a vertex x ∈ V is the number of edges starting at x. I.e.
degΓ(x) = |{σ ∈ E ∪ E−1 : s(σ) = x}|.

A graph is called a tree if it is connected and contains no reduced closed paths. Given any two vertices
x and y in a tree T , there is a unique reduced path in T going from x to y.

Definition A subgraph ∆ of the graph Γ = (V,E) consists on subsets V1 ⊆ V , E1 ⊆ E such that for σ ∈ E1

we have s(σ), t(σ) ∈ V1.

Thus a subgraph ∆ = (V1, E1) of Γ is a graph whose source and target maps are the restrictions of those
of Γ. A spanning tree for a graph Γ is a subgraph T , which is a tree and contains all the vertices of Γ.

Lemma Every graph contains a spanning tree.

The key idea is to define subgraphs Tk by recursion. T0 is just a vertex x ∈ V , and no edges. Tk is
obtained by adding to Tk−1 all the edges σ ∈ E ∪ E−1 with s(σ) ∈ Tk−1 but t(σ) /∈ Tk1

, as well as the
corresponding vertices t(σ) and their inverse edges σ−1. Check that T = ∪∞

k=0Tk is a spanning tree.

The connectivity number of a graph Γ is the number of geometric edges in the complement of a spanning
tree. When Γ is finite, |V | = v and |E| = e, this number is e− v + 1.

7.4 Fundamental group

Let Γ be a connected graph, and x0 a vertex of Γ. Given a path w in Γ we can reduce it by deleting
spurs, yielding a unique reduced path. This is analogous as what we did for words. We can also define an
equivalence relation between paths, which is the minimal one containing reductions of spurs. Let [w] be the
class of w.

When the ending vertex of w1 is equal to the starting vertex of w2, we can concatenate them forming a
new path w1w2. Note that equivalent paths have the same starting and ending vertices. When w is closed,
we say that it is based at it’s starting (ending) vertex.
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Put
π1(Γ, x0) = {[w] : w based at x0}

with the product [w1][w2] = [w1w2]. This is well defined and a group operation, by the same proof we used
for free groups. The identity element is the path with no edges, which can be seen as the constant x0. The
inverse of w is the path obtained by travelling w backwards, and it has the same formula as the case with
words.

With this product, π1(Γ, x0) is called the fundamental group of Γ with basepoint in x0.

Proposition With the above notations, π1(Γ, x0) is a free group, and it’s rank is the connectivity number
of Γ.

Let T be a spanning tree for Γ. Let S = {si}i∈I be the set of edges in E that are not in T . For a path
w = σ1 · · ·σn in Γ let ϕ(w) be the word obtained from w by reading only the σj that are in S ∪ S−1, and
ignoring the edges in T .

This gives a well defined map ϕ : π1(Γ, x0) → F (S). It is easy to see that it is surjective and an
homomorphism.

Suppose w is a path in Γ with ϕ(w) = v1s
ǫ
is

−ǫ
i v2. Then w has the form w1s

ǫ
ius

−ǫ
i w2 where u is a closed

path in T , based at the target of sǫi . Since T is a tree, u can be reduced to the constant t(sǫi). Thus w
reduces to w1s

ǫ
is

−ǫ
i w2, which in turn reduces to w1w2. This is mapped to v1v2 under ϕ.

By iterating this argument, we see that a reduction of ϕ(w) comes from a reduction of w. This proves
that kerϕ = 1.

In particular, π1(Γ, x0) ∼= π1(Γ, x1) for any other vertex x1 of Γ. So we usually speak of π1(Γ), without
reference to the basepoint.

Remark The proof provides free generators for π1(Γ, x0) as follows. For a spanning tree T and an edge σ
not in T , let s = s(σ), t = t(σ). Let vσ, wσ be the unique paths in T from x0 to s and t respectively. Then
σ̄ = vσσw

−1
σ is a closed path based at x0. Then the elements σ̄ for σ ∈ E not in T form a free generator of

π1(Γ, x0).

7.5 Coverings

Let Γ be a graph. If v is a vertex of Γ, the star of v is the set of edges starting at x. That is

St(x) = {σ ∈ E ∪E−1 : s(σ) = x}

Definition A map f : Γ̂ → Γ between graphs is a covering if

1. it maps the vertices (edges) of Γ̂ to the vertices (edges) of Γ surjectively.

2. it preserves endpoints and orientation of edges. I.e. if σ is an edge of Γ̂, then s(f(σ)) = f(s(σ)) and
t(f(σ)) = f(t(σ)). Also f(σ)−1 = f(σ−1).

3. If x is a vertex of Γ̂, then f maps St(x) to St(f(x)) bijectively.

By condition 2, the image of a path under f is again a path. Condition 3 says that a covering is locally
bijective (bijective in some neighborhood of every vertex or edge).

Observe that the image of a spur under f is a spur. Thus, if the paths w1 and w2 in Γ̂ are equivalent,
we have that f(w1) is equivalent to f(w2). So we can define

f∗ : π1(Γ̂, x) → π1(Γ, f(x)) as f∗([w]) = [f(w)]

It is easy to check that it is an homomorphism.
Applying condition 3, we can show that if w is a reduced path, then f(w) is also reduced. In particular

ker f∗ = 1. For if [w] ∈ ker f∗ with w reduced, then f(w) has to be the constant f(x). And the length of a
path (number of edges in it) is clearly preserved by f , so w must be the constant x.

Thus, if we have a covering f : Γ̂ → Γ, a vertex x0 of Γ and a vertex x of Γ̂ with f(x) = x0, then the
induced homomorphism f∗ : π1(Γ̂, x) → π1(Γ, x0) is an embedding. We can see π1(Γ̂, x) as a subgroup of
π1(Γ, x0).

Coverings have the following important property
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Proposition(Path lifting property) Let f : Γ̂ → Γ be a covering, w a path in Γ starting at x, and x̂ a
vertex of Γ̂ with f(x̂) = x. Then there exists a unique path ŵ which starts at x̂ and satisfies f(ŵ) = w.

This is proved by induction on the length of w, using the condition 3 for a covering on each step.

The path ŵ is called the lift of w at x̂. Note that π1(Γ̂, x̂0) can be identified with the [w] ∈ π1(Γ, x0)
whose lifts at x̂0 are closed.

Let f−1(x0) ⊂ Γ̂ be the inverse image of x0, i.e. the vertices mapped to x0 under f . Then π1(Γ, x0) acts
in f−1(x0) as follows. If [w] ∈ π1(Γ, x0), and x ∈ f−1(x0) take ŵ the lift of w at x, and define x · [w] to be
the ending vertex of ŵ. This is a right action, and the stabilizer of x ∈ f−1(x0) is π1(Γ̂, x).

Hence, changing the basepoint x among the preimages of x0 yields the conjugates of π1(Γ̂, x̂0).
Now we will see that any subgroup of π1(Γ, x0) can be obtained as the fundamental group of a covering.

Theorem Given any subgroup H ≤ π1(Γ, x0), there is a covering f : Γ̂ → Γ and x̂0 ∈ Γ̂ such that
f(x̂0) = x0 and H = π1(Γ̂, x̂0).

Let S = {gi}iI be a set of representatives for the right cosets of H , with g1 = 1. Take T a spanning tree
for Γ, and a copy Ti for each coset Hgi. For each edge σ not in T let s = s(σ), t = t(σ). And let si, ti their
corresponding vertices in Ti.

To make Γ̂, start with ∪iTi. And for each σ as above, add edges σi with s(σi) = si and t(σi) = tj where
j is such that Hgiσ̄ = Hgj for σ̄ being the generator associated to σ.

The map f : Γ̂ → Γ takes each Ti to T by their standard identifications, and each σi to the corresponding
σ.

It is easy to check it is a covering. Let {x̂i} be the vertices projecting to x0 under f , with x̂i ∈ Ti. Then
the action of π1(Γ, x0) is given by x̂i · σ̄ = x̂j iff Hgiσ̄ = Hgj. Thus x̂1 · [w] = x̂1 iff [w] ∈ H , i.e. the

stabilizer of x̂1 is H . We have already seen that in that case π1(Γ̂, x̂1) = H .

7.6 The Nielsen - Schreier theorem

Every free group F (X) can be written as the fundamental group of a graph. Let Γ consist on a single vertex
x0, and one edge for each element of X (V = {x0}, E = X , s(σ) = t(σ) = x0). Then F (X) = π1(Γ, x0).
When |X | = n, this graph is called the rose of n petals, Rn.

Theorem Let G be a free group and H ≤ G. Then H is free. Moreover, if [G : H ] <∞ then

rank(H) = (rank(G) − 1)[G : H ] + 1

Consider Γ with G = π1(Γ) as above. By the result of the last section, there is a covering f : Γ̂ → Γ with
H = π1(Γ̂). So H is free, since it is the fundamental group of a graph.

For the second statement, let i = [G : H ]. By the construction of Γ̂, we know it has i vertices, and
rank(G) · i edges (the spanning tree in Γ is just x0). A spanning tree for Γ̂ takes up i − 1 edges, so it’s
connectivity number is

rank(G) · i− i+ 1

And this is the rank of H .

This theorem was first proved by Nielsen, for H finitely generated. The proof by Schreier gives a set of
generators for H in terms of it’s cosets. These generators can also be obtained from the geometric method,
as we shall discuss now.

Let H ≤ F (X) and consider a set of representatives S = {wj}j∈J for the right cosets of H . We say that
S satisfy the Schreier condition if every initial subword of a wj ∈ S is also in S. In this case S is called a
Schreier system for H . We will see that such systems exist and have a geometric interpretation in terms of
graphs.

Let f : Γ̂ → Γ be the covering corresponding to H that was constructed in the proof of the theorem. Then
the vertices of Γ̂ are exactly the elements of f−1(x0), that are in correspondence with the right cosets of H .
And each edge of Γ̂ projects under f to a generator xi ∈ X . Let x1 be the basepoint of Γ̂, corresponding to
the coset H .
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If T is a spanning tree for the graph Γ̂, then the elements of the form [f(ŵ)] where ŵ is a path in T
starting at x1 form a set of representatives of the right cosets of H . Note that they satisfiy the Schreier
condition.

On the other hand, given a Schreier system S = {wj}j∈J , the union of the lifts ŵj at x1 is a spanning

tree for Γ̂.
This clearly establishes a bijection between the spanning trees of Γ̂ and the Schreier systems for H .
Schreier systems can be used to write generators for the subgroup. Let S = {wj}j∈J be a Schreier system

for H . For wj ∈ S and xi ∈ X define

wjxi = wk where Hwk = Hwjxi

That is, wjxi is the representative in S of the coset of wjxi.
Note that wjxiwjxi

−1 is always in H . And it equals to 1 iff wjxi is an element of S.

Theorem Let H ≤ F (X), and S = {wj}j∈J a Schreier system for H . Then the elements of the form
wjxi(wjxi)

−1 that are different from 1 form a free generator for H

Consider the spanning tree T in Γ̂ given by S. Let ŵj be the lift of wj at x1. So ŵj is a path in T . This

gives a bijection between S and the vertices of Γ̂, for ŵj is the unique reduced path in T going from x1 to
it’s ending point.

We have seen that π1(Γ̂, x1) is freely generated by the elements of the form σ̄ = vσσw
−1
σ for σ an edge

(in E(Γ̂)) not in T , and vσ, wσ the unique paths in T from x1 to s(σ), t(σ) respectively. Thus H is freely
generated by the corresponding projections [f(σ̄)].

From the above discussion, we get that vσ = ŵj , wσ = ŵk for some wj , wk ∈ S. And by the construction

of the covering f : Γ̂ → Γ, we have that f(σ) = xi for some i. Thus [f(σ̄)] = wjxiw
−1
k , and since [f(σ̄)] ∈ H

we see that wk = wjxi.
On the other hand, the lift of an element wjxi(wjxi)

−1 must be of the form ŵjτŵ
−1
k for some edge τ

projecting to xi and wk = wjxi. This is because elements in H lift to closed paths based at x1. If τ is not
in T we are in the above case, that is wjxi(wjxi)

−1 = [f(τ̄ )]. Otherwise, we see that ŵk = ŵiτ (possibly
after reduction), and thus wjxi ∈ S.

So, the elements wjxi(wjxi)
−1 that are different from 1 are exactly the projections [f(σ̄)] for σ not in T ,

and thus are free generators for H .

Examples

1. In F (a, b), let H = 〈a2, ab, b2〉. It has index 2 (note that ba = b2(ab)−1a2 ∈ H). So it has rank 3.
S = {1, a} is a Schreier system, and the generators obtained from it are ba−1, a2, ab.

2. In F (a, b), let H = 〈a2, b〉. It clearly has rank 2. It has infinite index, since H 6= F (a, b) (e.g. a /∈ H)
but 1 is the only integer i satisfying rank(H) = (rank(F (a, b)) − 1)i + 1. A Schreier system is formed
by 1 and all the reduced words of the form aw, i.e. with first letter a. It gives the original generator.
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8 Group presentations

8.1 Normal closure and presentations

Let A ⊆ G, where G is a group. The normal closure of A is

〈〈A〉〉 =
⋂

{N ⊳G : A ⊆ N}

It is easy to see that 〈〈A〉〉⊳G, and it is the smallest normal subgroup of G containing A. The following is
analogous to the result for subgroup generators.

Proposition The elements of 〈〈A〉〉 are exactly those of the form g1a
ǫ1
1 g

−1
1 · · · gnaǫnn g

−1
n for n ≥ 0, ai ∈ A,

gi ∈ G and ǫi = ±1.

Now let X = {xi}i∈I and consider the free group F (X). Let R ⊆ F (X) be any subset. Define

〈X |R〉 = F (X)/〈〈R〉〉

Definition Let G be a group. A presentation for G is a pair X,R, where X is a set and R a subset of
F (X) satisfying

G ∼= 〈X |R〉

We refer to X as the set of generators of the presentation 〈X |R〉. The elements of 〈〈R〉〉 are called the
relations of this presentation, and those of R are called defining relations.

This notation is justified by the following facts. Let si be the image of xi under the isomorphism
G ∼= 〈X |R〉. Then it is clear that S = {si}i∈I is a generating set for G. And if w ∈ F (X) is a reduced word,
let w(S) be the result of substituting each xi in w for si (that is also the image of w under the isomorphism
in consideration). Then w(S) = 1 iff w ∈ 〈〈R〉〉.

Of course, we will usually abuse notation and call si and xi by the same name.

Proposition Every group has a presentation.

If G is a group, take X a generator (that may be G itself). By the universal property for free groups,
there is an homomorphism ϕ : F (X) → G, commuting with the inclussions X →֒ F (X) and X →֒ G. Let N
be it’s kernel. Then G ∼= F (X)/N . If R is any subset whose normal closure is N , then we have that 〈X |R〉
is a presentation for G.

We can see that there is a lot of freedom in the above construction, so a group will have many different
presentations. Also, 〈X |R〉 is the maximal group generated by X and satisfying the relations in R, in the
sense of the following universal property.

Proposition Let G = 〈X |R〉. And let H be a group generated by S = {si}i∈I which verifies r(S) = 1 for
each r ∈ R. Then there exists a unique homomorphism ϕ : G→ H , such that ϕ(xi) = si.

This is obtained using the universal properties for free groups and for quotients.

Notice that any group G with generators in X that satisfies this universal property is isomorphic to
〈X |R〉. We say that the relations in 〈〈R〉〉 are consequence of those in R. Also, we often express the relations
w ∈ 〈〈R〉〉 in the form of equations w(X) = 1.

Examples

1. Zn
∼= 〈a|an〉. From the classification of cyclic groups.

2. Z2 ∼= 〈a, b|ab = ba〉. The key point is to see that this presentation is an abelian quotient of F2, for if
the generators commute, every word on them will also do so.

3. D2n
∼= 〈r, s|rn, s2, (sr)2〉. We have seen that choosing suitable generators for D2n these relations are

satisfied. So D2n is a quotient of this presentation. But from the relations sr = r−1s, every element
in the RHS group can be put in the normal form rjsk, for j = 0, . . . , n− 1, k = 0, 1. This allows us to
prove that that the quotient map is an isomorphism.
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A group is called finitely presented if it has a presentation 〈X |R〉 with both X and R finite.

Proposition Let G be finitely presented. Then in any presentation with finitely many generators

G ∼= 〈x1, . . . , xn|R〉

there are r1, . . . , rm ∈ R such that 〈〈r1, . . . , rm〉〉 = 〈〈R〉〉. So G ∼= 〈x1, . . . , xn|r1, . . . , rm〉.

Let G = 〈A|B〉 with A and B finite. Applying the universal property for quotients, we can see that the
isomorphism between 〈A|B〉 and 〈X |R〉 induces an isomorphism F (A) → F (X) where X = {x1, . . . , xn}.
Let N be the image of 〈〈B〉〉 under this isomorphism, and let Nk = 〈〈r1, . . . , rk〉〉 where R = {ri}∞i=1. We
haveN =

⋃∞
k=1Nk. But since B is finite, it must be contained in someNm. SoN = Nm, and G ∼= F (X)/Nm.

8.2 Tietze transformations

Consider a presentation 〈X |R〉. We can apply the following transformations to it.

T1: Add a new relation that is consequence of those in R. So we get 〈X |R, s〉 where s ∈ 〈〈R〉〉.

T2: Add a new generator y together with a relation of the form y = w(X), for w any word on the letters
of X . The new presentation is then 〈X, y|R,w(X)y−1〉.

Such transformations yield a presentation that is equivalent to 〈X |R〉. That is, the groups defined by
them are isomorphic. We also consider the inverse moves T−1

1 , T−1
2 when it is possible to apply them.

The transformations of type T1, T2 or their inverses are called Tietze transformations.

Theorem Let 〈X |R〉 and 〈X ′|R′〉 be two finite presentations of the same group G. Then there is a
sequence of Tietze transformations that takes 〈X |R〉 to 〈X ′|R′〉.

Write the generarors in X as words on the letters of X ′. That is xi = wi(X
′) for all xi ∈ X . And for

rj ∈ R put rj(X
′) = rj(w1(X

′), . . . , wn(X
′)). Define x′k = vk(X) and r′l(X) in the same manner.

Transform 〈X |R〉 = 〈xi|rj〉 to

〈xi|rj , r
′
l(X)〉

by T1 moves. Next, apply T2 moves to get

〈xi, x
′
k|rj , r

′
l(X), x′k = vk(X)〉

Now the r′l are consequence of that set of relations. So we apply T1 moves, and get

〈xi, x
′
k|rj , r

′
l, r

′
l(X), x′k = vk(X)〉

By their definition, the r′l(X) are consequence of the other relations. So they can be removed by T−1
1 ,

yielding

〈xi, x
′
k|rj , r

′
l, x

′
k = vk(X)〉

This is still a presentation for G, so the relations xi = wi(X
′) must be satisfied. Using T1, we get

〈xi, x
′
k|rj , r

′
l, xi = wi(X

′), x′k = vk(X)〉

and this expression is symmetric, so we can bring 〈X ′|R′〉 to this form with transformations of the same type.

Example 〈a, b|abab−1〉 ∼= 〈c, d|c2d2〉. Use T2 with c = ab, d = b−1.
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8.3 Cayley graphs

Let G be a group and S = {si} a generating set. The Cayley graph associated to the pair (G,S) is a graph
with edges labelled by the elements of S, that we construct as follows. It has G as set of vertices. And for
g, h ∈ G, there is an edge labelled si from g to h iff gsi = h.

This graph is denoted by C(G,S). Observe that each vertex has exactly one incoming and one outgoing
edge for each element of S. In other words, the labelling is a bijection St(x) → S ∪ S−1 for each vertex
x ∈ G.

In general, the graph C(G,S) depends on the generating set S. That is, for different generating sets of
G, the associated Cayley graphs need not be isomorphic. This may happen even if the generating sets are
minimal, as happens in the example from last section.

However, for free groups the situation is simpler.

Proposition The Cayley graph C = C(F (X), X) of a free group F (X) is a tree.

Let Ck be the subgraph whose vertices are all the reduced words of length at most k, and contains all the
edges between them.

C0 consists only on the vertex 1. C1 consists on the vertices 1 and xǫi for xi ∈ X , ǫ = ±1. It is clear that
C1 is a tree, in which 1 has it’s full star from C. And each xǫi is connected to exactly one edge, with label xi.

Check that in Ck the vertices w with length l(w) < k have their full stars form C, and those with l(w) = k
are connected to just one edge.

All Ck are trees, by induction on k. Base cases are clear. If there is a reduced closed path γ in Ck+1,
it must pass through some vertex w with l(w) = k + 1, otherwise γ would be contained in Ck and we use
the induction hypothesis. But the vertex w has degree 1 in Ck+1, so γ contains a spur. Absurd, for γ was
reduced.

Since C =
⋃

k Ck is a nested union, C is also a tree.

This proposition, together with the fact that St(x) ∼= X ∪X−1 for x ∈ F (X) defines the graph structure
of C(F (X), S) for S any free generator.

Back to the general setting, let C = C(G,S).
Let γ = σ1 · · ·σn be a path in C starting at 1 and ending at some g ∈ G. Consider the word w = sǫ1i1 · · · s

ǫn
in

obtained by taking the labels of the edges in γ, where ǫj = ±1 according to the orientation in which σj is
traveled. More precisely, ǫj = −1 iff σj ∈ E−1(C).

Then g = sǫ1i1 · · · s
ǫn
in

as a product in G. In particular, if g = 1 then w is a relation in the presentation of
G given by S. This relationship can be seen in terms of covering spaces as follows.

Let ΓS be the graph with a single vertex x0 and an edge for each si ∈ S. Then we can define f : C → ΓS

by taking the edges σ ∈ E(C) of label si to the edge si of ΓS . Recall that π1(ΓS , x0) = F (S).

Proposition Let f : C(G,S) → ΓS defined as above. Then

1. f is a covering.

2. The projection f induces a bijection between paths from 1 to g in C and words w on S representing g
in G.

3. If N is the kernel of the homomorphism F (S) → G, we have N = π1(C, 1) under the standard
identifications.

Part 1 is true because of the form of St(x) for x ∈ C.
With γ and w as in the above discussion, we can see that f(γ) = w. And for any word w representing g

in G, the lift through f at 1 is a path ending at g. It is clear that this is inverse to the projection, proving 2.
In the case of closed paths based at 1, the correspondence in 2 is the standard identification of π1(C, 1)

as a subgroup of π1(ΓS , x0) = F (S). We see that if G = F (S)/N is the presentation of G given by S, then
N = π1(C, 1).

As a corollary, we obtain the reciprocal of the proposition before. That is, if C(G,S) is a tree, then G is
a free group.
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8.4 Free actions on graphs

Let G be a group and S a generating set. There is a natural action of G on C = C(G,S). In the vertex set,
it is G y G by left translations, i.e. g · x = gx. And since (g · x)si = g · xsi (for g, x ∈ G, si ∈ S), it is
possible to extend it as an action of G on C by graph isomorphisms that preserve labels.

Note The graphs isomorphisms we consider preserve the edge orientations. It is also common to say that
G acts without edge inversions in this case.

Facts

1. The action Gy C is free, that is, StabG(x) = 1 for every x ∈ C.

2. It is transitive in the set of vertices, and on that of the edges of a given label.

3. The orbit space C/G can be identified with the graph ΓS defined in last section.

Note then that the quotient map C → ΓS = C/G is exactly the covering we discussed in the last section.
So G ∼= π1(ΓS)/π1(C). The situation is similar for general free actions on graphs, as stated in the next result.

Proposition Let G be a group and Γ a graph. Let Gy Γ be a free action by graph isomorphisms. Then

1. Γ/G has a natural graph structure, and the quotient Γ → Γ/G is a covering.

2. Let x ∈ Γ be a vertex, and x̄ ∈ Γ/G be it’s projection. Then π1(Γ, x) ⊳ π1(Γ/G, x̄).

3. If Γ is connected, then G ∼= π1(Γ/G, x̄)/π1(Γ, x).

4. If in addition, G acts transitively on the vertices of Γ, then Γ is a Cayley graph for G (with a suitable
labelling of the edges).

Let [x] denote the projection of x into the quotient Γ/G, for x a vertex or edge of Γ. Formally, [x] is
the orbit of x under G. Since G acts by graph isomorphisms, the maps s([σ]) = [s(σ)] and t([σ]) = [t(σ)]
for σ ∈ E(Γ) are well defined. This makes Γ/G into a graph. The projection clearly satisfies the first two
conditions for a covering. For condition 3, observe that if g ∈ G, x ∈ V (Γ) then

gSt(x) = St(gx)

So, if σ1, σ2 ∈ St(x) then any g ∈ G with σ1 = gσ2 has to verify gx = x. So g = 1, since the action is free.
We obtain that two different edges in St(x) are in different orbits, proving condition 3.

Let f : Γ → Γ/G be the projection. Let N = π1(Γ, x) ≤ π1(Γ/G, x̄). Recall that if [w] ∈ π1(Γ/G, x̄) then
the conjugate of N by [w] is [w]−1N [w] = π1(Γ, x1), where x1 is the ending point of the lift of w at x. On
the other hand, since f(x1) = f(x) = x̄, there is g ∈ G with x1 = gx. Note that a closed path w in Γ is
based at x iff g · w is based at gx = x1. Thus f∗π1(Γ, x) = f∗π1(Γ, x1). We get that N = [w]−1N [w]. This
is for a general conjugate, so N ⊳ π1(Γ/G, x̄). So we have proved points 1 and 2 so far.

Take x ∈ V (Γ), and x̄ = f(x). Let Y = f−1(x̄) = O(x), that is, the orbit of x under G. Recall that
π1(Γ/G) acts on Y , being y · [w] the ending point of ŵ, the lift of w at y.

On the other hand, we have that G acts freely and transitively on Y . So for any y ∈ Y there is a unique
g ∈ G s.t. y = gx. Define

H : π1(Γ/G) → G by H([w]) = g iff x · [w] = gx

Assume that H([w]) = g and H([v]) = h. We have seen that x · [wv] is the ending point of ŵv̂ where
ŵ lifts w at x and v̂ lifts v at x · [w]. Since g−1(x · [w]) = x, the lift of v at x is g−1 · v̂. This gives
g−1(x · [wv]) = x · [v] = hx. So x · [wv] = (gh)x. Thus H([wv]) = gh = H([w])H([v]), and H is an
homomorphism.

It is clear that x · [w] = x iff [w] ∈ N = π1(Γ). So kerH = N . And it is surjective if Γ is connected.
For g ∈ G, there is a path v from x to gx. Then [f(v)] ∈ π1(Γ/G) maps to g under H . So we have
π1(Γ/G)/N ∼= G, proving statement 3.

If the action is transitive on V (Γ) then Γ/G has a single vertex. Let {σi} be the edges of Γ/G, and let
si = H(σi) ∈ G. Then S = {si} is a generator for G. Labelling σ ∈ E(Γ) with H(f(σ)) (the si corresponding
to the projection of σ), we have that Γ is isomorphic to C(G,S).

From now on, when we say that a group acts on a graph, we will assume it acts by graph isomorphisms.

34



Corollary Let G be a group, and suppose it acts freely on a tree. Then G is a free group.

Let G y T be a free action on a tree. Since T is connected, the last proposition says that G ∼=
π1(T/G)/π1(T ). But π1(T ) = 1 because T is a tree. So G ∼= π1(T/G) and so it is free.
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9 Splittings of groups

9.1 Free products

Let G and H be two groups. Recall that a word on the set G ∪ H , is a sequence w = x1 · · ·xn where
xi ∈ G ∪ H . We consider the minimal equivalence relation on the set of these words that contains the
following elementary reductions

1. w = w1xw2 reduces to v = w1w2 if x is either 1G or 1H .

2. w = w1xyw2 reduces to v = w1zw2 if either x, y ∈ G or x, y ∈ H , and z = xy in the corresponding
group.

The word w = x1 · · ·xn is reduced if it admits none of the above reductions. It is clear that w is reduced
iff no xi equals 1 and no two consecutive letters xi, xi+1 belong to the same group (G or H).

We define G ∗H as the set of equivalence classes of words on G ∪H . Let [w] be the class of w. Then we
define the product of classes as usual, [w][v] = [vw].

Lemma

1. The product above is well defined, and makes G ∗H into a group.

2. Each equivalence class in G ∗H contains a unique reduced representative.

The proof is analogous as the case for free groups.

Notice that we have embeddings G →֒ G ∗ H , H →֒ G ∗ H as one-letter words. We will identify their
images with G and H as usual. Then G ∗H is generated by G and H . They are not normal, unless one of
them is trivial.

Remarks

1. The free product between groups satisfies (G ∗H) ∗K ∼= G ∗ (H ∗K) and G ∗H ∼= H ∗G, via natural
isomorphisms.

2. Fn = Z ∗ · · · ∗ Z, n times.

3. If G and H are non trivial, then G ∗H is infinite.

The following is the analogous to the universal property for free groups.

Proposition(Universal property) Let ϕ : G→ K, ψ : H → K be homomorphisms. Then there exists a
unique homomorphism χ : G ∗H → K that restricts to the factors as χ|G = ϕ and χ|H = ψ.

The map χ is often called ϕ ∗ ψ. Free products can also be defined as those which satisfy such universal
property. They also can be defined through presentations, as follows.

Proposition Let G = 〈X |R〉 and H = 〈Y |S〉. Then the free product has the presentation

G ∗H ∼= 〈X,Y |R,S〉

Another consequence of the universal property is that when we have a group G, and H1, H2 ≤ G two
subgroups, then 〈H1, H2〉 ≤ G is a quotient of H1 ∗H2.

9.2 Ping-Pong Lemma

The ping-pong lemma provides a way of recognizing free products. There are a few different versions, some
specialized to free groups. The following is the most general for two factors.

Proposition(Ping-Pong lemma) Let G be a group, and H1 and H2 subgroups of G that are not {1} and
that generate G (i.e. G = 〈H1, H2〉). Also assume that |H1| > 2. Suppose there exists an action Gy X ,
with two non-empty subsets X1, X2 ⊆ X , X2 not included in X1 such that

g(X2) ⊆ X1 for g ∈ H1, g 6= 1

g(X1) ⊆ X2 for g ∈ H2, g 6= 1

Then G ∼= H1 ∗H2.
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Let w be a reduced word on the letters H1 ∪H2, that is, an element of H1 ∗H2. We want to show that
the element of G defined by w (i.e. the product in G of the letters of w) is different from 1. We denote this
element also by w.

First assume that w = a1b1 · · · ak−1bk−1ak where ai ∈ H1, bi ∈ H2 (none equals 1). Then we have

w(X2) = a1b1 · · ·ak−1bk−1ak(X2) ⊆ a1b1 · · · ak−1bk−1(X1) ⊆ a1b1 · · · ak−1(X2) ⊆ · · ·

· · · ⊆ a1(X2) ⊆ X1

So w(X2) ⊆ X1. Since X2 * X1, we get w 6= 1 in G.
We can reduce the general case to the one just discussed, by taking awa−1 for a suitable a ∈ H1.

Explicitely,

1. If w = b1a2b2 · · ·akbk, take any a ∈ H1, a 6= 1.

2. If w = a1b1 · · ·akbk, take a ∈ H1, a 6= 1, a−1
1 . (Recall |H1| > 2).

3. If w = b1a2b2 · · ·ak take a ∈ H1, a 6= 1, ak.

Then awa−1 is in the previous case, and so awa−1 6= 1. We get w 6= 1.

Example Consider the matrices A,B ∈ SL2(Z) given by

A =

(

1 k
0 1

)

B =

(

1 0
k 1

)

where k ≥ 2. Then A and B generate a free subgroup of rank 2 in SL2(Z).
To see this, consider the standard action of SL2(Z) in Z2, and let X1 = {(x, y) ∈ Z2 : |x| < |y|} and

X2 = {(x, y) ∈ Z2 : |y| < |x|}. Check they satisfy the ping-pong lemma.

9.3 Amalgamated products and HNN extensions

Let A, B and C be groups, and α : C → A, β : C → B be injective homomorphisms. Let

A = 〈X |R〉 B = 〈Y |S〉

be presentations for A and B.

Definition

1. The amalgamated product of A and B over α and β is

A ∗C B = 〈X,Y |R,S, α(c)β(c)−1 : c ∈ C〉

we usually abuse notation and speak about the amalgamated product of A and B over C.

2. Now let A = B. The HNN extension of A over α and β is

A∗C = 〈X, t|R, tα(c)t−1β(c)−1 : c ∈ C〉

we call t the stable letter.

Note that A ∗C B = A ∗ B/〈〈α(c)β(c)−1 : c ∈ C〉〉, so the amalgamated product depends only on A, B
and the embeddings of C. Similarly, an HNN extension is a quotient of A ∗ Z, with the same property.

The groups A and B embed naturally into A ∗C B. And C also embeds in A ∗C B through α or β, that
give the same embedding. And the intersection of the embedded copies of A and B inside of A ∗C B is the
mentioned copy of C. We will abuse notation and think of C as a subgroup of both A and B.

Respectively A embeds into A∗C , and with it C embedds in two ways, as α(C) and β(C). In this case
they are not identified, but note they are conjugate by t.

Lemma With the notations above, changing the maps α or β by an inner automorphism of C gives an
isomorphic amalgamated product or HNN extension.
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Suppose β′(g) = β(cgc−1) for all g ∈ C. Then the isomorphisms are given as follows:
For the amalgamated products: conjugate the generators and relations of B by β(c)−1.
For the HNN extensions: change the stable letter t to s = β(c)−1t.

Examples

1. When C = 1, the amalgamted product reduces to the free product, i.e. A ∗C B = A ∗ B. For HNN
extensions we have A∗C = A ∗ Z.

2. Zn+1 = Zn∗Zn , where α = β = Id.

3. The genus 2 orientable surface group is given by

G = 〈a1, b1, a2, b2| [a1, b1][a2, b2] = 1〉

It can be written as an amalgamated product G = F2 ∗Z F2. Explicitely, the factors are A = 〈a1, b1〉
and B = 〈a2, b2〉. If C = 〈c〉 then α(c) = [a1, b1] and β(c) = [a2, b2]

−1.

4. That group also decomposes as an HNN extension G = F3∗Z.

Here, A = 〈a1, b1, a2〉 and α(c) = [a1, b1]a2, β(c) = a2. The stable letter gives b−1
2 .

Amalgamated products and HNN extensions also have normal forms for their elements. First we deal
with amalgamated products.

Definiton A reduced word in the amalgamated product A ∗C B is a word

w = a1b1 · · · anbn

where ai ∈ A, bi ∈ B and ai /∈ C for i > 1, bi /∈ C for i < n.

Proposition Every element g ∈ A ∗C B can be written as a reduced word g = a1b1 · · · anbn. If
g = a′1b

′
1 · · · a

′
kb

′
k is another reduced word, then n = k and a′i = ciai, b

′
i = dibi for ci, di ∈ C.

Choose sets of representatives S, T for the right cosets of C in A, B respectively. We assume that 1 is the
representative of C in both cases. Then an element g ∈ A ∗C B has a unique normal form g = cs1t1 · · · sntn,
where si ∈ S, ti ∈ T , c ∈ C and si 6= 1 for i > 1, ti 6= 1 for i < n. This statement implies the proposition,
and can be proven by similar arguments to those we used in the case of free groups.

We can do almost the same with HNN extensions. We state the corresponding reduced form.

Definition A reduced word in the HNN-extension A∗C is a word

a1t
ǫ1a2 · · · an−1t

ǫn−1an

where ai ∈ A, ǫi = ±1 and if ǫi = −ǫi+1 :
- If ǫi = 1, then ai+1 /∈ α(C).
- If ǫi = −1, then ai+1 /∈ β(C).

There is a similat result that holds for the case of HNN extensions.
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9.4 Graphs of groups

The amalgamated products and HNN extensions are often called elementary splittings of the resulting group
G. Graphs of groups will encode the data for iteration of these constructions.

Definition A graph of groups consists on the following:

1. A connected finite graph Γ.

2. A group Gv for each vertex v of Γ.

3. A group Ge for each edge e of Γ, and two injective homomorphisms

∂+e : Ge → Gt(e)

∂−e : Ge → Gs(e)

This is denoted by (Γ, G, ∂+, ∂−), or simply by Γ

Note that one-edge graphs provide the data for an amalgamation (when the endpoints are different), or
an HNN extension (when they agree).

Let Γ be a graph of groups. In what follows, we will define the fundamental group of Γ. First define G(Γ)
by the following presentation:

- Generators: the elements of Gv for the vertices v ∈ V (Γ), and the edges e ∈ E(Γ).
- Relations: the relations in Gv for each vertex v, and

e∂+e (g)e
−1 = ∂−e (g)

for e ∈ E(Γ) and g ∈ Ge.
If c = σ1 · · ·σn is a path in Γ, then a word of type c is an element w ∈ G(Γ) of the form

w = g0e
ǫ1
1 g1 · · · gn−1e

ǫn
n gn

where σi = eǫii , g0 ∈ Gs(σ1) and gi ∈ Gt(σi) for i > 0.
For v0 a vertex of Γ, let π1(Γ, v0) be the set of the w ∈ G(Γ) s.t. w is a word of type c, for some c closed

path based at v0. Note that π1(Γ, v0) is a subgroup of G(Γ).

Remarks

1. Different choices of the basepoint v0 give conjugate subgroups of G(Γ).

2. Suppose Γ has only one edge e. If s(e) 6= t(e) then π1(Γ) ∼= Gs(e) ∗Ge
Gt(e). And if s(e) = t(e), then

π1(Γ) ∼= Gs(e)∗Ge
.

Now we give a presentation for this fundamental group. If T is a spanning tree for Γ, let π1(Γ, T ) be
defined by the following presentation,

- Generators: the elements of Gv for the vertices v ∈ V (Γ), and the edges e ∈ E(Γ), e /∈ T .
- Relations: the relations in Gv for each vertex v, and

∂+e (g) = ∂−e (g) for e ∈ T, g ∈ Ge

e∂+e (g)e−1 = ∂−e (g) for e ∈ E(Γ), e /∈ T, g ∈ Ge

Proposition Let Γ be a graph of groups, v0 a vertex in Γ and T a spanning tree. Then
π1(Γ, v0) ∼= π1(Γ, T ).

Consider the homomorphism G(Γ) → π1(Γ, T ) that sends the edges e ∈ T to 1, and all other generators
to themselves. The restriction of this map to π1(Γ, v0) is an isomorphism.

The fundamental group of a graph of groups corresponds to an iteration of amalgamated products and
HNN extensions on it’s vertex groups. This is implied by the following result.
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Proposition Let Γ be a graph of groups, Γ′ a connected subgraph, and ∆ the graph obtained by
collapsing Γ′ to a vertex v, and setting Gv = π1(Γ

′). Then

π1(Γ) ∼= π1(∆)

Let T ′ a spanning tree for Γ′, and T a spanning tree for Γ containing T ′. Let Λ be the tree obtained
from T by contracting T ′ to v. Then it is a spanning tree for ∆. Define a map

π1(Γ, T ) → π1(∆,Λ)

by sending the generators in the above presentation as follows:
- Elements not in Γ′ (be them vertex group elements, or edges not in T ) map bijectively to ∆− {v}.
- Elements of Γ′ map to their image in π1(Γ

′, T ′) = Gv.
It is clear that this map is an isomorphism.

Lastly, there is also a concept of reduced word for the case of a general graph of groups.
A word of type c in G(Γ)

w = g0e
ǫ1
1 g1 · · · gn−1e

ǫn
n gn

is reduced if the following holds:
-If n = 0, then g0 6= 1.
-If n > 0, whenever ei = ei+1 and ǫi = −ǫi+1, we have gi /∈ ∂ǫiei (Gei)

Proposition If w is a reduced word in π1(Γ), then w is not the identity.

If Γ′ is a connected subgraph and ∆ is the contraction of Γ to a vertex, then the inclusion

π1(Γ
′) → π1(Γ)

and the map
π1(Γ) → π1(∆)

take reduced words to reduced words. We know the theorem is true for graphs with one edge. So we use
induction, using the last result.

41



42



10 Actions on trees

10.1 Introduction

For a group G, we consider actions G y T where T is a tree, and G acts by graph isomorphisms. For any
tree T , there is a metric on V (T ) given by

d(x, y) = min{l(w) : w path from x to y}

where l(w) is the length of w. This is the same as setting edges to have length 1. It is clear that this metric
is preserved by the action. Recall that given two vertices x and y in a tree, there is a unique reduced path
between them. This path realizes the distance d(x, y). We denote it [x, y].

We usually call points to the vertices of T .

Example Let T be the real line, with Z as the vertex set. For a ∈ Z, define the action Z y T by n·x = x+na.
The tree T is called a line, and the action is called an action by translations on T .

In general, for Gy T , T a tree, and g ∈ G we define

l(g) = min{d(x, gx) : x ∈ T }

this is called the translation length of g. It is clear that l(g) = 0 iff g has a fixed point. In this case g is
called elliptic.

Proposition Let Gy T , T a tree. Let g ∈ G with l(g) > 0. Then there exists a unique subgraph A ⊂ T
such that

1. A is invariant under g.

2. A is isomorphic to a line.

3. The action of g on A is by translations of length l(g). I.e. 〈g〉 ∼= Z and the action 〈g〉 y A is
equivalent to the one in the previous example, with a = l(g).

Let x ∈ T , and consider the paths [x, gx] and [x, g−1x]. Their intersection is of the form [x, y] for some
y (possibly y = x). Now gy belongs to [x, gx], and d(x, y) = d(gy, gx). If this distance were more than
d(x, y)/2, then [y, gy] is invariant under g, and so g would have a fixed point in [y, gy]. We are assuming this
is not the case, so we have [x, gx] = [x, y][y, gy][gy, gx]. So [g−1y, y] and [y, gy] meet only at y. Put

A =
⋃

j∈Z

[gjy, gj+1y]

Properties 1 and 2 are clear. And if we start from x such that l(g) = d(x, gx) we can see that we obtain
y = x.

For uniqueness, let A be a line, invariant under g. Note that for any x ∈ T there is a unique y ∈ A such
that d(x, y) = min{d(x, z) : z ∈ A}. In this case [x, y] and A meet only at y. So [x, y][y, gy][gy, gx] is a
reduced path, and thus A is obtained from the previous construction.

In the case of the proposition, g is called hyperbolic and A = Ag is it’s translation axis. Note that

Ag = {x ∈ T : d(x, gx) = l(g)}

If we define d(x,A) = min{d(x, z) : z ∈ A}, then we have

d(x, gx) = 2d(x,Ag) + l(g)

for any x ∈ T .
These formulas are also true for g elliptic, and for Fix(g) instead of Ag.
Observe that l(gn) = |n|l(g) for n ∈ Z. If g is elliptic this is clear. If it is hyperbolic, and n 6= 0, note

that Ag is also a translation axis for gn.
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Proposition Let Gy T , T a tree. Let g, h ∈ G. Then

1. l(g) = l(hgh−1).

2. If they are hyperbolic Ahgh−1 = hAg.

This is easy from the definition of l(g), and the formulas above.

It is clear that a common fixed point of g and h is also a fixed point of gh. The following result is the
reciprocal of this.

Lemma Let g, h ∈ G be elliptic elements. Then gh is elliptic iff Fix(g) ∩ Fix(h) 6= ∅.

Note that Fix(g) is a subtree, for if g fixes x and x′, it also fixes every point in [x, x′]. So there are
x ∈ Fix(g) and y ∈ Fix(h) that minimize the distance. Then [x, y] meets Fix(g) only at x and Fix(h) only
at y. Because of that, [y, x][x, gy] is reduced (so [y, gy] = [y, x][x, gy]), and meets [(gh)−1y, (gh)−1gy] only
at y. So the union of the translates of [y, gy] under gh form a translation axis for gh.

Remark If g ∈ G is elliptic and x ∈ T , then [x, gx] has a middle point y (i.e. d(x, y) = d(y, gx)) and y is
fixed by g.

Proposition(Serre’s theorem) Let G be a f.g. group. If Gy T , T a tree, such that every element is
elliptic. Then T has a global fixed point.

Induction on the rank of G. Let g1, . . . , gn be a generator for G. If n = 1 it is trivial. For n > 1, let
H = 〈g1, . . . , gn−1〉. By induction, H y T has a fixed point x. If x is fixed by gn we are done. If not, let y be
the middle point of [x, gnx]. We have gny = y. If h ∈ H , then [x, gnhx] = [x, gnx] and by the previous remark,
y is fixed by gnh, since it is elliptic. So y is fixed by all h ∈ H , as well as by gn. Thus y is a global fixed point.

The action Gy T is called minimal if there are no proper invariant subtrees. We have just seen that if
all elements are elliptic, then T is minimal iff it is reduced to a single point. We say that Gy T is non-trivial
if there is some hyperbolic element.

Lemma Let Gy T non-trivial. There is a unique invariant subtree T ′ such that Gy T ′ is minimal.

Note that the intersection of invariant subtrees is also an invariant subtree, and use Zorn’s lemma. Such
T ′ has to contain the translation axes of the hyperbolic elements. In fact it can be shown to be equal to the
union of these axes. To see it, check that if Ag and Ah are disjoint, then gh is hyperbolic and Agh meets
both Ag and Ah.

An action Gy T is cocompact if T/G is a finite graph.

Lemma Let G be a f.g. group, and Gy T be minimal. Then it is cocompact.

Let g1, . . . , gn be a generator for G. Take x ∈ T . Let D be the convex hull in T of x, g1x, . . . , gnx, that
is, the minimal tree containing such points. D is clearly finite. So

T =
⋃

g∈G

gD

because the RHS is an invariant subtree, and T is minimal. So T/G = D/G and it is finite.
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10.2 Action induced by a graph of groups

For a graph of groups Γ, we will define an action of the fundamental group π1(Γ) on a tree. Let G = π1(Γ, T )
for T a spanning tree of Γ.

Now we will construct an action of G on a tree X̃ , such that

Γ = X̃/G

Define the set of vertices (resp. edges) of X̃ to be the set of left cosets in G of the vertex groups Gv of Γ
(resp. the edge groups Ge), i.e.:

V (X̃) =
⊔

v∈V (Γ)

G/Gv

E(X̃) =
⊔

e∈E(Γ)

G/Ge

(because of the defining relations of G, there is a standard inclusion of each Ge into G).
The graph structure is defined by:

s(gGe) = gGs(e)

t(gGe) = geGt(e)

where it’s assumed that e = 1 if e ∈ T .
Note that G acts on X̃ by left multiplication on the cosets, and it acts by graph isomorphisms. Note also

that Γ = X̃/G.

Proposition X̃ is a tree.

First we prove that X̃ is connected.
For each edge e ∈ T , the edge Ge of X̃ connects Gs(e) to Gt(e). Hence all vertices of the form Gv for

v ∈ V (Γ) can be joined to each other. In fact they form a tree that projects isomorphically onto T . The
same is true for the vertices of the form gGv, v ∈ V (Γ) for a fixed g ∈ G (because G acts on X̃).

We will show that any vertex of X̃ can be joined to one of the form Gv. In the case of a vertex gGv

where g ∈ Gu, we’ve seen that gGv can be joined with gGu = Gu. In the case of eGv where e is an edge, we
can join this vertex with eGt(e) and this is connected with Gs(e) by the edge Ge. Since G is generated by
the Gv and the edges of Γ, we can proceed by induction.

Next we show that X̃ is simply connected.
Suppose we have a reduced closed path γ in X̃ based at Gv0 . Note that if there is an edge between gGu

and hGv, then u and v are the endpoints of an edge e in Γ, and we can take h to be gg0e
ǫ, where g0 ∈ Gu

and ǫ = ±1. Applying this we can write the i-th vertex of γ as hiGvi where

hi = g0e
ǫ1
1 g1 · · · gi−1e

ǫi
i

Then hn is a word of type c, where n is the length of γ and c the projection of γ in Γ.
Since γ is closed, we have hnGvn = Gv0 and so hn ∈ Gv0 . Put gn = h−1

n . Then

g = g0e
ǫ1
1 g1 · · · e

ǫn
n gn = 1

is a word of type c, equal to the identity in G = π1(Γ, T ).
On the other hand, γ admits a reduction iff there is some i with vi = vi+2 and hiGvi = hi+2Gvi , i.e. iff

ei+1 = ei+2, ǫi+1 = −ǫi+2 and gi+1 ∈ ∂
ǫi+1

ei+1
(Gei+1

). So γ is reduced iff g is a reduced word.
So we have a reduced word equal to the identity in G, a contradiction.
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10.3 Bass-Serre theory

We are going to see that any cocompact action of a group G on a tree arise as the one just defined, for a
decomposition G ∼= π1(Γ) where Γ is some graph of groups.

Let Gy X be cocompact, X a graph. We associate a graph of groups to this action. Let

Γ = X/G

note it is a finite graph.
For each vertex v (edge e) of Γ, choose a lift ṽ (resp. ẽ) in X , and define

Gv = StabG(ṽ)

Ge = StabG(ẽ)

If e is an edge of Γ and v = t(e), let’s define the map ∂+e : Ge → Gv. By construction, there is an element
g ∈ G such that g · ẽ has ṽ as target. Then we have

gGeg
−1 = StabG(g · ẽ) ⊂ StabG(ṽ) = Gv

Let ∂+e be the conjugation by g followed by this inclussion.
The maps ∂− are defined in the analogous way.
Different choices of the lifts ṽ, ẽ give equivalent graphs in the following sense. Let (Γ, Ḡ, ∂̄+, ∂̄−) be

obtained from another such choice of lifts. Then,

• For any vertex v (edge e) of Γ, there are isomorphisms fv : Gv → Ḡv (resp. fe), that are given by
conjugations by elements of G.

• If v = t(e), then fv ◦ ∂+e = ∂̄+e ◦ fe, possibly up to an inner automorphism of Ge. The same holds for
v = s(e) and the maps ∂−, ∂̄−.

Remark Suppose that Γ is a graph of groups, G = π1(Γ) and X̃ is the tree defined in the previous section.
Note that the above construction applied to X̃ gives a graph of groups that is equivalent to Γ.

Theorem Let G be a group, and Gy X a cocompact action on a tree. Let Γ = X/G be the associated
graph of groups. Then G ∼= π1(Γ).

Let T be a spanning tree for Γ = X/G, and let

j : T → X

be a lifting. So j(T ) is a tree that projects isomorphically to T . Extend j for the edges e ∈ E(Γ), e /∈ T ,
setting j(e) to be an edge of X projecting to e and starting at j(s(e)) (i.e. s(j(e)) = j(s(e))). Since j(e)
projects to e, there is γe ∈ G such that

t(j(e)) = γej(t(e))

Set γe = 1 for e ∈ T .
Recall that Γ can be constructed with

Gv = StabG(j(v))

Ge = StabG(j(e))

even when X is not a tree.
Let

φ : π1(Γ, T ) → G

be the homomorphism that restricts to the generators as Gv →֒ G (standard inclussion) and φ(e) = γe. It
exists, since the relations on the generators of π1(Γ, T ) hold for their images in G.
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Let X̃ be the tree associated to Γ as in the previous section, and

ψ : X̃ → X

be defined by ψ(gGv) = φ(g)j(v) for g ∈ π1(Γ, T ) and v a vertex of Γ (same for the edges). Then ψ is a
graph map.

- ψ is onto: It is easy to check that ψ(X̃) is closed in X (with the topology coming from the metric d).
It is also open: if w = ψ(gGv) = φ(g)j(v) and f is an edge of X adjacent to w, let e be the projection of f
to Γ and take h ∈ G so that f = hφ(g)j(e). Then

h ∈ StabG(w) = φ(g)Gvφ(g)
−1

and so h = φ(h0) and f = φ(h0g)j(e) is in ψ(X̃). So, for every vertex in ψ(X̃) we have a neighborhood of
it inside ψ(X̃). Since X is connected, ψ is onto.

- φ is onto: Let g ∈ G, and take v a vertex of Γ. Since ψ is onto, we have

gj(v) = ψ(hGv) = φ(h)j(v)

for some h ∈ π1(Γ, T ). Then gφ(h)
−1 ∈ Gv ⊂ Imφ and so g ∈ Imφ.

Now, for v ∈ V (Γ) we have kerφ ∩ Gv = 1 (and the same for edges e ∈ E(Γ)). So the restricted action
kerφy X̃ is free.

On the other hand, if ψ(gGv) = ψ(hGv) then φ(g−1h) ∈ Gv and so g−1h ∈ kerφ · Gv, by the previous
observation. So hGv = gkGv for some k ∈ kerφ. Since kerφ is normal, the inverse image under ψ of ψ(gGv)
can also be written as {kgGv : k ∈ kerφ}. But this is the orbit of gGv under the action of kerφ. The same
is true for an edge e in place of v.

Thus X can be identified with X̃/ kerφ, and ψ : X̃ → X with the quotient map, that is a covering.
Now we finally use that X is a tree. Since a tree is simply connected, every connected covering of it is

an isomorphism. So kerφ = 1, and φ : π1(Γ, T ) → G is an isomorphism.

These results establish a correspondence between cocompact actions of G on trees, and decompositions
of G as a fundamental group of a graph of groups. In this context, the action Gy T , and the graph Γ with
G = π1(Γ) are associated iff

• Γ = T/G

• Gx is the stabilizer of some point projecting to x, for x vertex or edge of Γ.

This is called the Bass-Serre correspondence.

10.4 Applications on free products

Here we prove Kurosh’s classification of the subgroups of a free product, using Bass-Serre theory. We restrict
to the case of f.g. subgroups, the general case involves the theory with infinite graphs of groups.

Theorem(Kurosh) Let G = A ∗B, and H ≤ G finitely generated. Then there exist A1, . . . , An ≤ A,
g1, . . . , gn ∈ G, B1, . . . , Bm ≤ B, h1, . . . , hm ∈ G and X ⊂ G finite, such that

H ∼= (∗igiAig
−1
i ) ∗ (∗jhjBjh

−1
j ) ∗ F (X)

Let Γ be the one-edge graph with two vertices, whose groups are A and B, and the edge group is 1.
Then G = π1(Γ). Let T be it’s Bass-Serre tree. Then H also acts on T by restricting the action of G.
Let T ′ be the minimal subtree for H , that is cocompact because H is f.g., and let Γ′ = T ′/H be the as-
sociated graph of groups. Let x ∈ Γ′, vertex or edge, and Hx it’s group in Γ′. So Hx = StabH(x̃) for
x̃ ∈ T ′ projecting to x. Note that StabH(x̃) ≤ StabG(x̃). So, if x is an edge then Hx = 1. And if x
is a vertex, then Hx is a subgroup of a conjugate of A or B. Let giAig

−1
i , hjBjh

−1
j be the vertex groups

of Γ′. Since all edge groups are trivial, it is easy to show that H ∼= π1(Γ
′) has the form given in the statement.
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