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Abstract 

In this paper we analyze a class of V-cycle multigrid methods for discretizations of second-order nonsymmetric 
and/or indefinite elliptic problems using nonconforming P1 and rotated Q l finite elements. These multigrid 
methods are based on the so-called Galerkin approach where the quadratic forms over coarse grids are constructed 
from the quadratic form on the finest grid and iterated coarse-to-fine grid operators. The analysis shows that 
these V-cycle multigrid iterations with one smoothing on each level converge at a uniform rate provided that 
the coarsest level in the multilevel iterations is sufficiently fine (but independent of the number of multigrid levels). 
Various types of smoothers for the nonsymmetric and indefinite problems are considered and analyzed. The theory 
presented here also applies to mixed finite element methods for the nonsymmetric and indefinite problems. © 1998 
Elsevier Science B.V. and IMACS. All rights reserved. 
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1. Introduction 

This is the third paper of a series where we develop and analyze a class of multigrid methods for 
discretizations of  partial differential problems using nonconforming and mixed finite elements. This new 
class of  multigrid methods, introduced in the first paper [13], is based on the so-called Galerkin approach 
where the quadratic forms over coarse grids are constructed from the quadratic form on the finest grid 
and iterated coarse-to-fine grid operators. Its convergence for both the V- and W-cycle  multigrid methods 
with one smoothing iteration on each level has been shown. In the second paper [18], the convergence 
of  these new multigrid methods for partial differential problems without regularity assumptions has 
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been obtained. In contrast, the usual multigrid methods for nonconforming finite elements use discrete 
equations on all levels which are defined by the same discretization. Furthermore, for these usual 
methods only the W-cycle multigrid methods have been shown to converge under the assumption 
that the number of smoothing iterations on all levels is sufficiently large (see the extensive references 
in [13]). 

In this paper we analyze this new class of );-cycle multigrid methods for discretizations of second- 
order nonsymmetric and/or indefinite elliptic problems using nonconforming P1 and rotated Q1 finite 
elements. Multigrid methods for solving nonsymmetric and/or indefinite problems by nonconforming 
finite elements have been first introduced and analyzed in [19], but these multigdd iterations use 
conforming coarse-grid corrections. While the convergence of the multigrid );-cycle methods with 
one smoothing has been shown for this conforming coarse-grid correction approach, the analysis only 
applies to the Pl-nonconforming finite element [19]. The reason for this is that only the nonconforming 
Pl element contains the conforming Pl element as a subspace over the same triangulation, which 
is used in the coarse-grid corrections; other nonconforming elements do not contain any reasonable 
conforming subspaces over the same triangulation. We here prove convergence estimates for the );-cycle 
multigrid methods for the new approach for the nonsymmetric and indefinite problems under rather weak 
assumptions (e.g., the domain need not be convex and problems need not have regularity assumptions) for 
both the P1 and rotated Q I finite elements. The rotated Q1 finite element has applications to the Stokes 
problem [26], the problem related to the deformation of martensitic crystals with microstructure [23], 
and semi-conductor modeling [11]. 

A variety of smoothers are considered and analyzed here. These smoothers are the variants of 
those for conforming finite element methods [7]. One type of smoothers is defined in terms of the 
corresponding symmetric problem, and the other type is entirely based on the original nonsymmetric 
and indefinite problem. These two types of smoothers include point and line Jacobi and Gauss- 
Seidel iterations. The analysis here assumes that the nonsymmetric/indefinite terms are a "compact 
perturbation"; the convection-dominated problems are not studied here. Also, due to the equivalence 
between nonconforming and mixed finite element methods (see [2,3,10,12,17] for symmetric problems 
and [19] for nonsymmetric problems), all the analysis throughout this paper directly applies to the 
mixed methods. Finally, we mention that there has been intensive research on multigrid methods for 
nonsymmetric and indefinite problems using conforming finite elements (see the references in [7]). 

The rest of the paper is organized as follows. In Section 2 we state the continuous problem and its 
corresponding discrete system. Then, in Section 3 we describe multigrid methods for nonconforming 
methods and carry out the convergence analysis. Finally, in Sections 4 and 5 we apply the theory to the 
P1 and rotated Q I finite elements, respectively. We mention that there are extensive numerical results 
available for discretizations of nonsymmetric problems using nonconforming and mixed finite elements 
by means of the present and usual approaches [13,19]. These numerical results have shown convergence 
of these approaches. That is part of the reason that we are interested in the theoretical proof. However, 
with the usual approach we are not able to prove the convergence. With the present approach, we can 
show it here for both the PI and rotated Q1 nonconforming elements for second-order nonsymmetric and 
indefinite problems. Also, the problem under consideration has many practical applications such as those 
to flow of fluids in porous media [15]. 
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2. Preliminaries 

In this section we consider as our model problem the following equation: 

- V .  (AVu)  + 13. Vu + cu = f in f2, 
(2.1) 

u = 0  on 0f2, 

where I2 C ]~2 is a simply connected bounded polygonal domain with the boundary 0f2, f E L2(f2), the 
coefficient ,4 E (L~(S2)) 2×2 satisfies the uniformly positive definite condition 

~a'A(x)~ ~> a0~a'~, x E f2, ~ E ~n, (2.2) 

and the coefficients 13 and c are bounded. Other conditions on ,A and 13 will be stated later. Finally, we 
assume that (2.1) has a unique solution. 

Problem (2.1) is recast in weak form as follows. The bilinear form a(., .) is given by 

a(v, w) = (AVv, Vw) + (13. Vv,  w) + (cv, w), v, w E Hl(,f2), 

where (., .) denotes the L2(t'2) or (L2(£2)) 2 inner product, as appropriate. The solution u E Hd(f2) 
of (2.1) then satisfies 

a(u, v) = ( f ,  v) Yv E Hd(t'-2). (2.3) 

Associated with a(., .), we also introduce the symmetric positive definite form ~(., -) by 

~(v, w) = (AVv ,  Vw) + (v, w), v, w e Hi(y2). 

The difference form is indicated by 

D(v, w) = a(v, w) - ~(v, w). (2.4) 

For 0 < h < 1, let gh be a partition of f2 into triangles or rectangles of size h, and define Vh to be 
the space of the nonconforming Pl [21] (see the definition in Section 4) or rotated Q1 [2,11,26] (see 
Section 5) finite elements. Associated with Vh, we define a mesh-dependent form ah (', ") by 

ah(v, w) = Z {(.AVv, Vw)e + (B.  Vv, w)e} -4- (cv, w), v, w E Vh U Hd(K2), 
E~h 

where (., ")E is the L2(E) inner product. The corresponding symmetric form is denoted by ah(', "). The 
nonconforming finite element solution uh ~ Vh of (2.1) is given by 

ah (Uh, Y) -~- ( L  V) VU E V h. (2.5) 

The norm induced by (~h(V, V)) 1/2 for v ~ Vh tO H01 (f2) is equivalent to the norm 

Thus, we define 

IlvllE,h = 8h(v, U) 1/2 VU E Vh tO al(£2) .  

Let us note the inequality 

lab(v, w)[ ~< Cllvll~,hllwllE,h Yv, w ~ Vh tO Hd(f2), (2.6) 
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where (and below) C, with or without a subscript, denotes a generic constant independent on h. 
We now state the next theorem [19]. 

Theorem 2.1. Let Vh be the space of  the nonconforming P1 or  rotated Q1 finite elements. Then 
problem (2.5) has a unique solution for h sufficiently small. 

3. The multigrid method 

To develop a multigrid method for (2.5), we need to assume a structure to our family of partitions. 
Let h0 and gho = go be given. For each integer 0 < k ~< K, let h~ = 2-kh0 and ghk = gt be constructed 
by connecting the midpoints of the edges of the element in gk-1, and let gh = gX be the finest grid. In 
this and the following sections, we replace subscript hk simply by subscript k. 

Let the mesh size of go be do; then, by similarity, the mesh size of gk is 2-kdo. From Theorem 2.1, 
for (2.5) to be well behaved, the approximation grid must be sufficient fine. As in the conforming 
case [7], we shall require that the coarsest grid in the multilevel method be sufficient fine. Toward that 
end, let the coarsest grid size be determined by an integer L. Then the space Vk has a mesh size of 
hk = 2-L-kd0 = 2-kh0, k = 0 . . . .  , K. 

3.1. Notation 

Let Vk be the space of either the nonconforming Pl or rotated Q1 finite elements on each level 
k = 0 . . . . .  K, and let ak(.,-) be the quadratic form on Vk x Vk, as defined in the last section. The 
corresponding symmetric form is indicated by ~ ( . ,  .), k = 0 . . . . .  K. Also, for the nonconforming P1 
or rotated Ql finite elements, let (., .)~ be the usual discrete L 2 inner product, and Ik : Vk-I ~ Vk be the 
standard averaging coarse-to-fine grid operator (see Sections 4 and 5). 

We now introduce the iterates of Ik [13,20,25] 

n ~ = I r . . . l k + l : V k - - > V r ,  k = 0  . . . . .  K, 

with Hff = I (the identity operator), and the quadratic form bk (', ") on Vk × Vk: 

The symmetric positive definite quadratic form b~ (., .) on Vk x Vk is similarly defined by 

The norms corresponding to (., ")k, ak(', "), and bk(', ") will be denoted by [[. Ilk, [[" lie,h, and [1. Ill,k, 
respectively. It follows [13,20,25] that there are positive constants C1 and C2 such that 

Cl[[O[[1.k<~[IV[[g.k~C21lV[[Lk YV~Vk ,  k = 0  . . . . .  K, (3.1) 

and 

C~IIVlIE,k<~I]HkXVlIE.I~C211vlIE,k VV~Vk,  k = 0  . . . . .  g .  (3.2) 

As in the previous section, we denote the difference form by 

Dk(V, W) = ak(V, W) -- ~dk(V, w) Vv, w ~ Vt. 
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Also, define 

dk(v, w ) =  DK(HKv, HKw) ¥v, w E Vk, 

i.e., 

k = 0  . . . . .  K, 

dk(v, w) = bk(v, w) - "bk(v, W) Yv, w 6 V k .  

We now assume that there are positive constants C such that 

IOk(v,W)l<~CllvllE,~llwllk Vv, w~Vk, k = O  . . . . .  K, 

and 

(3.3) 

Iln[/7, vll,,K ClIvlI,,K VV VK, k = 0  . . . . .  K. (3.7) 

In the case where regularity estimates of the form of (3.6) are not known to hold, it can be shown by 
combining the techniques in [27] for conforming finite elements and the ideas in [13] for handling H[Hkr 
for nonconforming elements that, given e > 0, there exists an h(e) > 0 such that for 0 < hk ~< h, 

vv v,¢, k = 0  . . . . .  g .  (3.8) 

The above s will appear in our later convergence result. We observe that s can be taken arbitrarily small 
if L is sufficiently large. Hence L will be sufficiently large so that Theorem 2.1, (3.7), and (3.8) hold. 

We remark that the hard part in these inequalities (3.1)-(3.8) is the verification of the upper bound 
in (3.2). That is why we are here restricted to the P1 and rotated Q1 nonconforming elements for which 
it was verified under some conditions on go [20,25] (see also Sections 4 and 5). This upper bound for 
other nonconforming elements was discussed in [ 13]. 

and 

IDk(v,w)l<~CIIvHkllwIp&k Vv, wEVk,  k=-0  . . . . .  K. (3.4) 

Note that (3.3) directly follows from the definition of Dk(v, w): 

Dk(V, w) = ~ (13. Vv, W)E + ((C -- 1)V, W). 
E egk 

While (3.4) is trivial for conforming finite elements, it is not so straightforward for nonconforming 
elements. It has been shown in [ 19] for the P1 nonconforming element. For the rotated Q 1 nonconforming 
element, it will be proven in Section 5. Due to (3.1), (3.3) and (3.4) also hold for the norm I1" ]ll,k in place 
of II • Ile,~- Finally, if (3.3) and (3.4) hold for Dk, so do they for dk by (3.1) and (3.2). 

The following operator/-/~ : VK -~ Vk plays a crucial role in the subsequent analysis: 

b~(17~K v, w) =bK(v, HKw), v ~ VK, w ~ Vk, 

for k = 0 . . . . .  K; i.e.,/7/~ is the adjoint operator of Hk K with respect to bk(', "). If the solution of (2.1) 
satisfies regularity estimates of the form 

Ilull,+~ ~<Cllfll-l+~,, O<ot~< 1, (3.5) 

then it follows [13,14] that there exists a constant h such that for hk ~ -h (k = 0 . . . . .  K ) ,  

1](1- Hff H~)v[] r <~ Ch~]l(I -  Hff Hkr)vlll,x VV ~ VK, (3.6) 
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3.2. The multigrid method 

Note that while on the finest level 

b r ( v , w ) = a K ( v , w )  Yv,  w • V K ,  

bk(', ") are different from ak(', ") on all the lower levels. The multigrid method below will be defined 
in terms of bk(., .) instead of ak(., "). Hence this approach differs from the usual one in that the usual 
nonconforming multigrid methods are defined in terms of ak(., .) [19]. This idea has been exploited for a 
long time in the context of finite difference methods (see the references in [22,24]). For conforming finite 
elements, these two quadratic forms are the same. 

We define the discretization operator A~ : Vk --+ Vk on level k given by 

(Akv,  w ) k = b k ( v , w ) ,  v , w •  Vk, k = O  . . . . .  K.  

Also, define the operators Pk-i : Vk ~ Vk-l and P°_ l : V~ ~ Vk-1 by 

bk- l (Pk- lO,  w ) = b k ( v ,  Ikw),  W •  Vk-1, k = l  . . . . .  K, 

and 

( P ° l v ,  W)k_l = (V, Ikw)k, W • Vk-1, k = 1 . . . . .  K.  

The operators Ak and ffk-1 are similarly defined in terms of the bk form in place of bk. Finally, let 
R,  : Vk ~ V, for k = 1 . . . .  , K be linear operators; examples of Rk will be given in Sections 3.3 and 3.4 
below. On V0, let R0 = Aol; i.e., we solve exactly on the coarsest level. Now we define a simplest )~- 
cycle multigrid method only with pre-smoothing. Other types of methods with just post-smoothing or 
both pre- and post-smoothing can be analyzed analogously. Also, the analysis of the W-cycle can be 
given similarly. 

The following method iteratively defines a multigrid operator Bk : Vk ~ Vk: 

Multigrid Method (MG). Set B0 = Ao 1 • For 0 < k ~< K, assume that Bk-1 has been defined and define 
Bkg for g • Vk by 

(1) Set xk = Rkg. 
(2) Define Bkg = Xk + lkq, where q • Vk-1 is given by 

q = Bk- lP°_ l  (g - AkXk). 

We shall now write the multigrid operator Bk in a product form, which is a fundamental ingredient in 
the subsequent convergence analysis. 

Let g = Akx.  It is clear from MG that 

q = B k _ I P ° _ I A k ( I  -- R k A k ) x  , 

so that, by the facts that P°_IAk = Ak-1Pk-1 and Pk- l lk  = I on Vk-1 [13,18], we have 

q = B k - l A k - l P k - l ( l  -- RkAk)x .  

That is, 

I - BkAk = (I  -- l kBk - lAk - lPk -1 )Jk ,  (3.9) 

where Jk = I -- RkAk. Also, by the definition o f / / ~  we see that 

= and = P -I. 
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Then it follows from (3.9) that 

I - HffBkAkFIkK = I - H  IK kHK + H f f ( l  - BkAk)FI~ 

---- I K k H f f ( i  Pi-1)JklT~ - HI, 17 r + - IkBk-lAk-1 

- - ( I  K k-, H{J , I - I~ )  H~ IkB,_IAk_II7  K ) ( I  K k _ - - - H  i 1 7 K +  . 

Now, set S k = H~CRkAkIl~. Note that S k maps VK into VK, but exploits the coarse space Vk. That is 
why we here use the superscript k to differ from the subscript used in other operators such as It, which 
have a range in Vk. Then we obtain 

I - H~BkAk lT~  ----(I - H~_,Bk_ ,Ak_ , IT~- I ) ( I  - St) .  

Finally, let E t = I ~ k - -  H i BkAkl7 r and E = E r ,  so E k = E k-1 (I - S k) and 

E = ( I -  sO) . . .  (I - SK). (3.10) 

The same remark for the notation on S k applies to E k as well. A product form for symmetric problems 
has been described in [13,18]. 

3.3. Smoothers based on Ak 

The smoothers presented in this and next subsections are the variants of those for the conforming finite 
element method (see, e.g., the references in [7]). In this subsection we describe three smoothers denoted 
by/~k, which are based on the symmetric problem. We list three conditions on these smoothing operators, 
and then we give convergence estimates for MG with Rk =/~k. 

A 

Let/-/"-r ~ be the adjoint operator of H ~  with respect to the bk form; i.e., 

w)= 
Accordingly, set ~k x ^ ^ Ak = H i RkAkFI K. Now, the first assumption is standard: 

(v, V)_______kk <~ CR(-Kkv, V)k ¥v  E Vk, (3.11) 

where the constant CR is independent of k, R---k = (I - J~Jk)A~ ~ with .~ --- I - /~kAk and • being the 

adjoint with respect to the inner product bk(', "), and Xk is the largest eigenvalue of Ak. The second 
assumption is also standard: 

bx(Skv ,  Skv) <~O'bt~('Skv, v) ¥ v ~  Vr,  (3.12) 

where the constant 0 (independent of k) is required to be less than two. Note that if (3.12) holds, then for 
UE VK, 

bK ( ( I - ~Sk)v, ( I - ~Sk)v) = bK(V, v ) -  2bK ( ~Skv, v ) +  bx ( Sk v, ~Sk v) 

~< bK(v, v) -- (2 -- 0)b/~ (Sky, v) 

<. "br(v, v), (3.13) 

so that the operator norm of I - ~k in terms of b r  is bounded by one. The last assumption is that for 
k > O, there exists a constant Cs such that 

(ski), ~Ski))K ~ Cs)~kl'bK(Sku, u) r U E  V K. (3.14) 
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Note that both (3.12) and (3.14) hold on Vr.  Also, we remark that if assumptions (3.11), (3.12), and 
(3.14) are satisfied for a smoother R~, so are they for its adjoint R T with respect to the inner product 
(., .)~. This implies that assumption (3.11) is satisfied for-Rk = (I  -- J~J~)Ak  I and assumptions (3.12) 
and (3.14) for (~k).. 

Example 1. The simplest smoother is given in this example: 

where ~-k is defined as in (3.11). For this example, it is trivial to see that (3.11), (3.12), and (3.14) hold 
with CR = 0 = Cs = 1. Obviously, (3.11), (3.12), and (3.14) also hold with any ~k replacing )~k in this 
example provided that it satisfies that ~,k ~< ~g ~< C)~t. In this case, (3.11) is valid with CR =-Xi/Xk and 
(3.14) holds with Cs = )~k/Xk. 

The next two smoothers are defined in terms of subspace decompositions. Toward that end, we define 

t(k) 

j= l  

where Vj,k is the one-dimensional subspace spanned by a nodal (respectively, edge) basis function for the 
P1 element (respectively, for the rotated Q 1 element) or the one spanned by the nodal (respectively, edge) 
basis functions along a line, and l(k) is the number of such spaces. These spaces satisfy the following 
property: 

Ilvllk ~< Chkllvlll,k VV ~ Vi,k. (3.15) 

Example  2. This example defines an additive smoother: 

l(k) 

R k = Y ~ - ~ A j , k Q j , k ,  
j= l  

where ,4j,k : Vj,k ~ Vj,k is the symmetric discretization operator on Vj,k given by 

Qj,k : Vk --~ Vj,k is the projection operator on Vj,k with respect to the inner product (-, ")k, and the constant 
y is a scaling factor which is chosen to ensure that the smoothing property (3.12) is satisfied [6]. Note 
that Rk is symmetric with respect to the inner product (., ")k- 

Example  3. The final example in this subsection determines a multiplicative smoother. Given g 6 Vk, 
we define 

(1) Set x0 = 0. 
(2) Determine xi, for i = 1 . . . . .  l (k) ,  by 

Xi : Xi--I -~- ,4~,lk a j,k (g -- AkXi -1 ) .  

(3) Set Rkg = Xl{k). 
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Applying the support properties of the basis functions, the subspaces Vj.k satisfy a so-called limited 
interaction property with respect to bk(.,-) for each j ,  as seen in [13]. Thus, assumptions (3.11) and 
(3.12) can be shown in a standard way as in the conforming case [5,6]. Also, the proof of (3.14) in [7] 
for the conforming case just uses the same limited interaction property with respect to the inner product 
(', ")k. Again, this property obviously holds for the nonconforming P1 and rotated Q1 elements, so (3.14) 
can be proven as in [7]. 

3.4. Smoothers based on Ak 

In this subsection we give three examples of smoothers directly based on Ak. Example 4 below 
corresponds to the first example, and Examples 5 and 6 are closely related to Examples 2 and 3, 
respectively. 

Example 4. We define 

- - - 2  T 
Rk = X k A k , 

where ~k is given as in Example 1 and AT is the adjoint operator of Ak with respect to the inner product 
(', ")k. This smoother was originally analyzed in [4]. 

Example 5. We define 

t(k) 
A-1 Rk = y ~ j.k Q J,k, 

j = l  

where Aj,k : Vj,k ~ Vj,k is the discretization operator on Vj,k given by 

(aj,kv,  qg) = bk(v, ~o) '¢~o ~ Vj,k, (3.16) 

and Qj,k : Vk ~ Vj,k and y are as in Example 2. For Aj,k to be invertible, we need hk to be small enough 
(e.g., 0 < hk ~< h, as in Section 3.1) so that (3.16) is well defined. For the subsequent analysis, we shall 
also use the projection operator Pj,k : Vk --+ Vj,k satisfying 

bk(Pj,kv, w) = bk(V, w) Vw E Vj,k. 

As in (3.7), Pj,k satisfies 

[[Pj.kvlll,k <~ C[[vlll,~j.~, v ~ Vk, (3.17) 

for 0 < hk ~< h, where the subdomain $2j,k is the support of functions in Vj,k. 

Example 6. Given g 6 Vk, we define 
(1) Set x0 = 0. 
(2) Determine xi, for i = 1 . . . . .  l(k), by 

Xi = Xi--I "~- Aj-,lk Q j , k ( g  - A k X i - 1 ) .  

(3) Set Rkg = Xt(k~. 
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3.5. Analysis of the multigrid method 

We now carry out a convergence analysis for MG with the smoothers provided in Examples 1-6 in the 
framework of [7]. The analysis is based on the product form (3.10) and perturbation from the convergence 
estimate for the multigrid method applied to the symmetric problem. 

We first state a result from [13,14,18] on the convergence rate for the application of MG to the 
symmetric problem. For this, we need an additional assumption on the coefficient .A. In the case of 

< 1 (independent of k) in Theorem 3.1 below, we assume that the elements of .A are in the Sobolev 
space Wr, q(12) for r > 2/q (see [1] for the definition of Wr, q(S2)) in addition to (2.2). In the other case 

which does not require any elliptic regularity (i.e., in the case of ~ = 1 - 1/(C K) in Theorem 3.1 below), 
we just assume (2.2) and the boundedness of the elements of ,A. With this and the definition of/~K 

/~/( ---- (I  - ~ 0 ) . . .  (I  - ~K) ,  (3.18)  

we have the following theorem [ 13,14,18]: 

Theorem 3.1. For k > O, let Rk be given by any of Examples 1-3. Then there exists a positive constant 
"g such that 

v) vv vK, 

where "g < 1 is independent of K if .A E (Wr, q(~))  2x2 (r > 2/q), and "g = 1 - 1/(CK) for some positive 
constant C otherwise. 

The proof of Theorem 3.1 for the symmetric problem with full elliptic regularity (i.e., ot = 1 in (3.5)) 
or without any elliptic regularity was carried out in detail in [13] and [18], respectively. The case of less 
than full elliptic regularity was mentioned in [14]. To estimate E K, we need the next lemma. 

Lemma 3.2. For k > O, let Rk be defined by any of Examples 1-3. Then with Z k = S k - ~k, 

br(Zkv,  w) = Dr(v ,  (Sk)*w) ¥v, w ~ Vr, (3.19) 

where (~k). = H ff ~ k ~ k .  For k = 0 ,  we have 

bK(Z°v, w) = DK((I - H~IT°)v ,  HoX'~°w) Vv, w 6 VK. (3.20) 

Proof. For k > 0, with Rk = Rk we see that 

bx(Skv, w ) = b r ( H [  R~a~n~v,  w) 

= bK (v, HK RT.4k'H~W ) 

=bK(v,  ('Sk)*w) 

= b K ( v ,  ('Sk)*w) + Dr(v ,  (?3k)*w) 

= + D,, 
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For k = 0, we have 

& (Ho w) =  o(n°v, fio ) 

=bK (V, H~  I-I~'~w) - DK ( HoK FIO v, H ~ - °  w) 

:&(v,  [fio ) + DK( , H:fi° ) - DK(Ho  n° H[fi° 
= K( gfi°v, + DK((I- 

This completes the proof. [] 

To use the perturbation analysis, we need to estimate Z k. In turn, it follows from Lemma 3.2 that we 
need to bound DK. That is why we have assumed (3.3) and (3.4) for the difference form dk(', "). To 
show (3.4), we require an assumption on the coefficient B. That is, we assume that B is continuously 
differentiable on ~ and piecewise C 2 with the sum of the second-order derivatives over pieces being 
bounded (see Lemma 3.3 in [19] and Lemma 5.1 in Section 5). With this, we have the next convergence 
result when Rk =/~k given by Examples 1-3. 

Theo rem 3.3. Let Rk = Rk be one of the smoothers defined in Examples 1-3 and 13 satisfy the above 
assumption. Then, given e > O, there exists an -h > 0 such that for 0 < hk <~ h_ 

bK(EV, Ev) <. 32bK(V, v) Yv E VK, 

where E = E r is given as in (3.10), 3 = 3"+ C(hl + e), and "g is determined by Theorem 3.l. 

Proof. For an arbitrary operator O : VK --+ VK, its operator norm is defined by 

bx (Or, w) 
IIOIIz-= sup 

v,w~Vx "bK(V, V)I/2bK(W, it)) 1/2 

First, for k ---- 0, it follows from an application of (3.4), (3.1), (3.8), and (3.7) to (3.20) that 

"bx(Z°v, w) <~ Ce[[(I - H:I"I°)vl]I.K][H:H°wI[1,K <~ CellVlll.UllWlll.K. 

Next, for k > O, apply (3.3), (3.1), (3.14), and the remark following (3.14) to (3.19) to see that 

[bK(Zkv, W)] • C[[V[[1,KII(sk)*WI[K < Chk[[Vl[1,Kl[tOl[l,K. 

Since I - S k = I - ~k _ Z k, the operator norm of I - S k is less than 1 + Chk by (3.13). Hence we obtain 

k 

[[EkH~-~< (1 + Ce) l-I(1 + Chi) <~ C. (3.21) 
i=1 

Now, from the definition of E k and ifk we see that 

E k - i f k=  ( E k - , _  ifk-1)( I _ ~ k ) _  Ek-lzk" 

Then, by (3.13) and (3.21), we have for k > 0, 

II E k -  ifkl[~ < II E ~ - ' -  L'k-111;'llI- s'][z " +  IlE~-I [l~llzkl[; 

~< lIE k-1 - ifk-~[I?'+ Chk. (3.22) 
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By iterating (3.22) and the inequality IIE ° - ~o I1~ = II Z ° lit ~ Ce, we find that 

LI e~ - ~1[~" <~ c ~ + Z h~ <~ C(ho + ~). 
k=l  / 

Finally, the desired result follows from Theorem 3.1 and the triangle inequality. [] 

We remark that e can be made arbitrarily small by taking h0 sufficiently small. Thus Theorem 3.3 
means that MG for (2.1) converges (with a rate which can be independent of K) provided that the coarsest 
grid is sufficiently fine. The coarsest grid mesh size can be taken to be independent of K. 

We next discuss Example 4. For this, we first consider the multigrid method for the symmetric problem 
which uses the smoother 

/~k - - - 2 ~  = )~k AIC. (3.23) 

Specifically, we replace Aic by Aic and Rk by Ric in MG for the symmetric problem. While this smoother 
does not satisfy (3.11), we can still show that the error reduction operator ~K resulting from this smoother 
satisfies the estimate in Theorem 3.1 by applying the arguments in [14,18]. We now show the convergence 
rate for MG applied to (2.1) using the smoother given in Example 4. To this end, we need the next lemma. 

Lernma 3.4. For k > O, let Rk be defined by Example 4. Then we have 

IIZicll~ <. Chic, 

where the constant C is independent of k. 

Proof. Note that 

zk  ---2 K =~'k H~ (ATAkFIk K ~ A k  ----2 K -- AkFIK)=~'k H~ (AT(AkH k ,4kH'K k) + (A T -  ,4k),4kH'Kk). (3.24) 

Next, observe that 

b K ( HE AIC I-IkK o , w) = bic ( AIC FIkK v , i ~  w ) 

= bk (/7~. v, ,~,ic ~(KIC W) 

=~K(o, H~ ~icfi,~) + OK(o, H~ ], ic~) 

Consequently, by (3.3), (3.2), and the definition of Xic we see that 

-X[1bK ( H E ( Aicn~ - ],ic~,~ )v, t o ) -~ ;1  DK (V ' HK .~kfikKto ) 

< c ~ / '  II v ll,,,,: II,~icfi~ to II, 
. . . .  " ~ - k  ,, 1 /2  <~ CXic mlIvlILK(AICIT"~to.,KW)IC 

<~ Chk II t, II LK II W II L K .  (3 .25)  
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In an analogous manner, we have 

II~i' n~ (AT -- ,4k) ~'~ Jig" ~< Chk. (3.26) 

Finally, it can be easily shown that 

IIV' ~,K.T~k 
• *k "k ~*K lIE ~< c .  (3.27) 

Now, combine (3.24)-(3.27) and the fact [18] that 

FIA~HkK=I onVk, (3.28) 

to obtain 

Ilz~ /4; A~nKII~-I[X k 14; (&nK lie 
---1 K T__ 

<~ Chk. 

This completes the proof of the lemma. [] 

Now, as in the proof of Theorem 3.3, we have the next convergence estimate for Example 4. 

Theorem 3.5, Let Rk be defined by Example 4. Then, given e > O, there exists an -h > 0 such that for 
O<hk<~h, 

"bK(EV, Ev) <~ ~2bK(I), V) V1) E VK, 

where ~ = "8 + C(hl + ~) and "~ is given by Theorem 3.1 applied to Rk given in (3.23). 

We now consider Example 5. The perturbation analysis is based on the multigrid method for Ak with 
Rk as a smoother given by Example 2. Theorem 3.1 provides an estimate for the operator norm of riS K . 

Theorem 3.6. Let Rk be given by Example 5. Then the result in Theorem 3.5 remains valid, with "~ being 
determined by Theorem 3.1 applied to Rk defined in Example 2. 

Proof. It follows from Examples 2 and 5 and the definition of Pj,k and Pj,k that the perturbation operator 
Z k takes the form 

t(k) t(k) 
Zk=~/~- -~H[(Pj ,kn~--Pj ,k lT"~)=g/y~H~{(Pj ,k - -Pj ,k ) '~+Pj ,k (17~-- '~)} .  (3,29) 

j=l  j=l  

For the first term of (3.29), by the the definition of Pj,k and Pj,k again we have 

g¢(~: ej,~,~, w)= ~ (Pj,~~ ~, ~ )  

= bk (Pj,kH K v, 
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so that 

(Pj,k - w ) =  d ((I - 

Applying (3.3) for d~, the remark following (3.4), (3.17), and (3.15) yields that 

bK ( HK ( Pj,k -- fij,k ) ~'~k v, W) <<. ChkllVl[1,I2;, k I[WH 1,Oy,k. (3.30) 

Hence, we see that 

( l(k) ) l(k) 
bK E H [  (Pj,k - Pj,k)fil~V, w ~ Chk EllVlll,Oj,kllWl[1J2,,k. 

j=l j=l 

By a limited overlap property of the subdomains £2j,k, we have 

t(k) 
Hk K (ej,k -- Pj,k) ~ k  ~ Chk. (3.31) 

j=l 

The second term of (3.29) can be estimated in a similar fashion: 

l(k) 

j=l 

which, together with (3.29), (3.31), and the proof of Theorem 3.3, implies the desired result. [] 

Finally, we consider Example 6. Perturbation is based on the multigrid method for Ak with Rk as a 
smoother given by Example 3. Theorem 3.1 provides an estimate for the resulting operator ~ r .  

Theorem 3.7. Let Rk be given by Exaample 6. Then the result in Theorem 3.5 holds, with "~ being 
determined by Theorem 3.1 applied to Rk defined in Example 3. 

Proof. From the definition of/~k and Rk in Examples 3 and 6, we see that 

Sk = Hff  (I  -- QtCk))II k and Sk = H ~  (I  -- Qt(k))'H k,  

where 

Qj ~- (I  -- Pj,k)(I -- P j - l , k ) " "  (I  -- Po,k), 

Qj ~ - ( I -  P j , k ) ( I -  ej- l ,k)" '"  ( I -  JPO,k), 

Consequently, the perturbation operator is given by 

Z k =  Hk~(I -- Qt(k))FI~ -- H ~  (I  - QI(k))H k 

= Hk r (Qt (k ) -  QtCk)) D'r ~ + Hk r (I  -- Ql(k))(Hkr -- "~k). 

j = 0  . . . . .  l(k), 

j = 0  . . . . .  l(k). 

To estimate the first term of (3.32), note that 

H K (~j  __ ~ j ) f i k  -~- Hk K (I -- Pj,k)(Qj-1 -- ~j-1)~-K k -- H I  (Pj,k -- Pj,k)~j-lfikK • 

Since the last two terms are orthogonal with respect to b r  (', "), we find that 

(3.32) 
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= IIn  ( I  - - + [Ia  - P j ,k)  II 2. 

It follows from (3.28) and the fact that the operator norm of H ~ ( I  - fij,~)H~ is bounded by one that 

I[HK (0J -- QJ)~~I]~ ~< Ilaff(QJ-1 - QJ-,)n~xk [[~+ Ilnff (PJ,k - PJk)QJ-,  ~ k 2 ,  /'/K I[~" 

Summing over j yields that 

l(k) 
~ k  2 IIHk K (Ql ,k ) -  Ql(k,)l~Kl[~< Z I I  HK (?j,k -- P j . k ) ~ j - l ~ k l l  2, 

j=0 

since Q-1 = Q-1 = I. Now, applying (3.30) and a limited interaction property (as in the proof of 
Theorem 5.6 in [7]), we obtain 

Also, using the relation 

"br(H r (FI k - Hk)v ,  w ) =  O r (  (I - H~FI~)v,  H ~ H k w ) ,  

it can be seen that the second term of (3.32) can be bounded by the same estimate: 

I[H[ (I - Qt(k))(H~ - H'~) 1[~" ~< Chk. 

This, together with (3.32), (3.33), and the proof of Theorem 3.3 yields the desired result. [] 

4. The Pl-nonconforming element 

In this section we consider the nonconforming P1 element. Let h0 and Eh0 = E0 be given. For each 
integer 1 ~< k ~< K, let hk = 2-kho and ~hk = Ck be constructed by connecting the midpoints of the edges 
of the triangle in Ei-I. For each k, define the/)l-nonconforming finite element space [21] 

'Ok = {v ~ L2(12): vie is linear for all E ~ ~k, v is continuous at the midpoints of interior edges, 

and v vanishes at the midpoints of edges on 012 }. 

For the Pl-nonconforming element, the inner product (., ")k is defined by 

(v, w)k = h~ ~--~ v(q)w(q),  v, w ~ Vk, 
q 

where the summation is taken over all the midpoints q in Ck. 
Since Vk-1 q~ Vk (i.e., non-nested), we need to introduce intergrid transfer operators to connect them. 

Following [8,9], the coarse-to-fine intergrid transfer operator Ik : Vk-1 ~ Vk for k = 1 . . . .  , K is defined 
as follows. For v ~ Vk-1, let q be a midpoint of an edge of a triangle in £k; then we define Ikv by 

0 i fq  ~ 012, 

(Ikv)(q) = v(q) if q qg OE for any E ~ ~k-1, 

l {V[el (q)+vlez(q)  } i f q E O E l O O E 2 f o r s o m e E 1  E2~E~-l .  
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Now, for the Pl-nonconforming element, (3.1)-(3.4), (3.7), and (3.8) are satisfied [13,19,25]. The upper 
bound in (3.2) was shown under the condition that there meet at most six edges at each interior vertex 
in the initial triangulation C0 and four edges at each boundary vertex in C0 [25]; this condition on C0 
is easily satisfied. Therefore, the convergence estimates for MG proven in Section 3.5 hold for this 
element. 

5. The rotated Q 1-nonconforming element 

In this section we consider the rotated Ql-nonconforming element for (2.1). For this, let Eh0 = Eo be 
a partition of I2 into rectangles having maximum diameter h0 and oriented along the coordinate axes. 
For each integer 1 ~< k ~< K, let hk = 2-kh0 and Ehk = Ck be constructed by connecting the midpoints 
of the edges of the rectangle in Ck-~, and let OCk be the set of all interior edges in Ck. The rotated Q1 
nonconforming space is defined by [11,26] 

Vk= v ~ L2(£2): vie = a ~  + a2ex + a3 y + a 4 ( x  2 - y2), ae ~ IR YE  ~ gk; 

if E1 and E2 share an edge e, then [ ~loe, ds = [ ~[~eEdS; 
e e 

OENF 

For this element, the inner product (., ")k is given as follows. Let { ~  } be the basis functions of Vk such 
that the edge average of ~b~ equals one at exactly one edge and zero at all other edges. Then each v E Vk 
has the representation 

J 

Now, for v, w ~ Vk we define 

w)k =  JwJ. 

J 

By the uniform L2-stability of the basis functions [20], we can easily show that the norm induced by 
(', ")k is equivalent to the standard L2(5"2) norm. 

Since Vk-1 ~ Vk again, following [2,11] we define the coarse-to-fine intergrid transfer operators 
Ik : Vk-1 --+ Vk as follows. If v ~ Vk-1 and e is an edge of a rectangle in Ck, then IkV ~ Vk is defined 
by 

i fe  C 012, 

if e ¢~ 0 E for any E ~ Ck- 1, 

i fe  C OE1 fq OE2 for some El, E2 ~ Ek-1. 

0 

IkVdS = fe Vds 
1 e ~ fe (vie, + vie2) ds 

For the rotated Q 1-nonconforming element, (3.1)-(3.3), (3.7), and (3.8) have been shown in [ 13,20]. The 
upper bound in (3.2) was established for square partitions of a square for the rotated Q 1-nonconforming 
element [20]. Extensions to other domains and triangulations have been discussed in [20]; it holds for 
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polygonal domains if their initial triangulation into quadrilaterals is topologically equivalent to a uniform 
square partition of g2 = (0, 1) 2, for example. It remains to prove (3.4), which is completed in the next 
lemma. 

Lemma 5.1. We assume that the coefficient 13 is continuously differentiable on -~ and piecewise C 2 
with the sum of the second-order derivatives over pieces being bounded. Then there is a constant C 
independent of k such that (3.4) is satisfied. 

Proof. To prove (3.4), we apply integration by parts on each finite element to see that 

Dk(V, w) = Z {(/3. vEv, w)aE -- (V . 13w +13. Vw,  V)E} "}- ((C -- 1)O, W). (5.1) 

Evidently, it suffices to estimate the terms over edges. Let El, E2 6 gk share a vertical edge e with 
midpoint m~; a horizontal edge can be analyzed similarly. Then, by the midpoint rule we find that 

f (B.ve, vw)lel~ + f (t3.ue2vw)le~& 
e e 

= lel{ (B. ve.z vw)le, (m*) + (13. I)E2UW)IE2 (m k) } 

-~-[e[3 [~ ~y2t02 "B VE, VW)IE I 02 ) 
+ (¢() + vE 10w)lE2(  ) (5.2) 

for some points ~ ,  ~k 2 E e .  
To estimate the first term of (5.2), note that, by the midpoint rule again, 

le[ 2 0210 
Vlei (m k) : VelEi 24 Oy 2 [Ei' i = 1,2, 

where 
1 f 

relEi = ~ / 101Ei dy.  
e 

Then, by the continuity of the edge integrals of elements in Vk, we see that 

[e[{ (/3. VE110W)[E 1 (m k) q- (]3. VE210W)lE2 (m k) } 

[el 3 2 { { _  02W'~ Ei {--0210~ Ei [e12(02v02w~[ 
-- 24 iZ=l 13"vei(mk) ~10e'~y2; q- kWe-~y2) 24 \Oy 20y  2 J[e~J" 

Now, let el be another vertical edge of E1 with midpoint mlk. Applying the relation 

B.  VE, (mk)relE, + 13. vE, (m~)re, le, 

= (13" l.lEi (ink) + B.  re, (m k))re]E1 -- ]3" PE, (m~) (rele, -- Ve, ]e,), 

the definition of Vg, and inverse inequalities, we see that 

I ~ lel{(B've,  vw)le, (m*) + (B.ve2vw)le= (mk)} 
I 

<~ Chk(llvllk + Ilvlll,k)(llwllk + IIwllLk) ~< CII1011klIwIILk. (5.3) 
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Applying the same argument to 

82 82 2 ~ - ( B .  vEi)~--7(vw) 
8y2 (B" VEil}W) : ~y2 (B" VEi)•W -q- y 

813 OW I e 82W 821)'\ 
+ 2(B-vEi) '~y"~y + (13. vEi)~,v--~y2 + W~y2) ,  i =  1,2, 

we can show that 

I el3 f 82 82 

 2N-t ~Y 2 (~ " pEt UW) IEI (~lk)"q-~Y 2(~" PE2tlW) IE2 (~2k)}1 ~ C[[VllkllWl[l'k" 
eeO£k 

Combine this, (5.2), and (5.3) to obtain the desired result. [] 

We conclude with a remark that extensions and generalizations of the techniques discussed in this 
paper are possible. These techniques can be applied to three-dimensional problems, other types of 
nonconforming finite elements, and more general boundary conditions, for example. 
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