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UNIFORM CONVERGENCE OF
MULTIGRID V-CYCLE ITERATIONS

FOR INDEFINITE AND NONSYMMETRIC PROBLEMS*

JAlOpIES H. BRAIIBLE, DO Y. KWAK$, AND JOSEPtt E. PASCIAK

Dedicated to Seymour Parter on the occasion of his 65th birthday.

Abstract. In this paper, an analysis of a multigrid method for nonsymmetric and/or indefinite
elliptic problems is presented. In this multigrid method various types of smoothers may be used. One
type of smoother considered is defined in terms of an associated symmetric problem and includes point
and line, Jacobi, and Gauss-Seidel iterations. Smoothers based entirely on the original operator are

also considered. One smoother is based on the normal form, that is, the product of the operator
and its transpose. Other smoothers studied include point and line, Jacobi, and Gauss-Seidel. It is
shown that the uniform estimates of [J. H. Bramble and J. E. Pasciak, Math. Comp., 60 (1993), pp.
447-471] for symmetric positive definite problems carry over to these algorithms. More precisely, the
multigrid iteration for the nonsymmetric and/or indefinite problem is shown to converge at a uniform
rate provided that the coarsest grid in the multilevel iteration is sufficiently fine (but not dependent
on the number of multigrid levels).
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1. Introduction. The purpose of this paper is to study certain multigrid meth-
ods for second order elliptic boundary value problems including problems which may
be nonsymmetric and/or indefinite. We consider the solution of the discrete systems
which arises from the application of standard Galerkin finite element methods. For
the resulting solutions to make sense from an approximation point of view, the non-

symmetric and indefinite terms should be well behaved. We consider the case where
the nonsymmetric/indefinite terms are a "compact perturbation." Thus, we do not
allow their coefficients to become large or, conversely, we do not allow the coefficient
of the remaining "elliptic part" to become small. Stable approximations to "singular"
problems of the convection dominated type require alternative fine grid approximation
schemes and will not be considered in this paper.

Multigrid methods are among the most efficient methods available for solving the
discrete equations associated with approximate solutions of elliptic partial differen-
tial equations. Since their introduction by Fedorenko [15], there has been intensive
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research toward the mathematical understanding of such methods. The reader is re-
ferred to [19], [17], [31, and the bibliographies therein. Most of these works concern
symmetric, positive definite elliptic problems although a few consider nonsymmetric
and/or indefinite problems. In particular, [1], [18], [10], and [24] deal with such multi-
grid algorithms and are most closely related to the subject of this paper. All of these
papers share the requirement that the coarse grid be sufficiently fine. We shall briefly
describe their contents.

The paper of Bank [1] derives uniform convergence estimates for the W-cycle
multigrid iteration with both a standard Jacobi smoother and a smoother which uses
the operator times its adjoint. In each case, sufficiently many smoothings are required
and a sufficiently fine coarse grid depending on the number of smoothings is needed.
Some regularity for the elliptic partial differential equation was also required.

Mandel [18] studied the V-cycle iteration and showed that it was effective with
only one smoothing and a sufficiently fine coarse grid. His result requires that the
underlying partial differential equation satisfies the "full elliptic regularity" hypothesis
and generalizes the results of Braess and Hackbusch [2] for the symmetric positive
definite problem.

Bramble, Pasciak, and Xu [10] studied the symmetric smoother introduced by
Bank and showed that the W-cycle and variable V-cycle converged with a rate which
was independent of the number of grids without making the undesirable requirement of
"sufficiently many smoothings." Somewhat more than minimal regularity was needed
as well as a sufficiently fine "coarse" grid.

In [24], Wang showed that, for the standard V-cycle with one smoothing, the
"reduction factor" for the iteration error was bounded by 1 C/J + Chl where J is
the number of levels, h is the size of the coarsest grid, and C and C are constants.
This estimate deteriorates with the number of levels and will be less than one only if
the coarse grid is subsequently finer as the number of levels increase. Minimal elliptic
regularity was assumed.

In this paper uniform iterative convergence estimates for V-cycle multigrid meth-
ods applied to nonsymmetric and/or indefinite problems are proved under rather weak
assumptions (e.g., the domain need not be convex). Uniform estimates were shown to
hold in [6] and [8] for the V-cycle with one smoothing step in the symmetric positive
definite case under such hypotheses. We show that these results carry over to the
nonsymmetric and/or indefinite case for a variety of smoothers. The coarse grid must
be fine enough but need not depend on the number of levels J. Such a condition seems
unavoidable since, in many cases, it is needed even for the approximate problem to
make sense.

In recent years, some other techniques have been proposed to handle the non-

symmetric indefinite case. One approach in [14], [4], and [7] is to precondition with
a symmetric operator and then solve certain normal equations by the conjugate gra-
dient method. One possible advantage of such a method is that some nonsymmetric
problems which are not "compact perturbations" of symmetric ones may be treated.
Of course, the usual normal equations may be formed and then preconditioned (cf.
[7] and [20]); this approach seems to be rather restrictive in that good preconditioners
may be difficult to construct. Other recent approaches have included Schwarz-type
methods [12] and two-level methods in which a "coarse space" is introduced to reduce
the problem to one with a positive definite symmetric part (el. [4], [131, and [25]).

The remainder of the paper is organized as follows: In 2, we describe a model
problem and introduce the multigrid method. In 3, smoothers based on the symmetric
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problem (and used in our nonsymmetric and/or indefinite applications) are defined
and the relevant properties which they satisfy are stated. Section 4 develops smoothers
based on the original problem. The main results of the paper, which provide iterative
convergence rates for the multigrid algorithms with the smoothers of 3 and 4, are

given in 5.
2. The problem and multigrid algorithm. We set up the model nonsym-

metric problem and the simplest multigrid algorithm in this section. We consider, for
simplicity, the Dirichlet problem in two spatial dimensions approximated by piecewise
linear finite elements on a quasi-uniform mesh. The multigrid convergence results hold
for many extensions and generalizations as discussed at the end of 5.

We consider as our model problem the following second order elliptic equation
with homogeneous boundary conditions.

2

O( OU)
2 OU

(2.1) i,Jxj.: aiJ-zi +Ebi-z+aui:l =f inft,

u-0 on Of,

where ft is a polygonal domain (possibly nonconvex) in R2 and {aij(x)} is bounded
symmetric and uniformly positive definite for x E ft. We assume that aij is in the
Sobolev space W(ft) for p > 2/y (see [16] for the definition of W(Vt)). Further, we

assume that bi is continuously differentiable on and that lal is bounded. Finally, we
assume that the solution of (3.1) exists.

Let Hl(ft) denote the Sobolev space of order one on ft (el. [16]) and let
denote those functions in H (ft) whose trace vanishes on 0f. For v, w E H (ft), define

(2.2) A(v, w) i,j aij Ox-- Ox-- dx + Zi=I bi-z w dx + avw dx.

The solution u of (2.1) satisfies

(2.3) A(u, v)= (f, v) for all v

where (., .) denotes the inner product in L2(Vt).
For the analysis, we introduce a symmetric positive definite form .(., .), which

has same second order part as A(.,.). We define (.,.) by

dx + dx.

The difference is denoted by

D(u, v) A(u, v) (u, v).

The form D(., .) satisfies the inequalities

(.) D(,)] CI]] ]] .d lD(,v) C]i I11.
Hr ii’ll nd ll’ll doU th norms in H() nd L2(), respectively. The second
inequality above follows from integration by parts. Here and throughout the paper, c or

C, with or without subscript, will denote a generic positive constant. These constants
can take on different values in different occurrences but will always be independent of
the meshsize and the number of levels in multigrid algorithms.



MULTIGRID FOR INDEFINITE/NONSYMMETRIC PROBLEMS 1749

By the assumptions on the coefficients appearing in the definition of .(., .), it

follows that the norm (v, v) 1/2 for v E Hl(gt) is equivalent to the norm on H(t).
Thus, we take

I[VI[1 A(V, ?))1/2.
We develop a sequence of nested triangulations of in the usual way. We assume

that a coarse triangulation {-} of is given. Successively finer triangulations
for m > 1 are defined by subdividing each triangle (in a coarser triangulation) into
four by connecting the midpoints of the edges. The meshsize of {} will be denoted
to be dl and can be taken to be the diameter of the largest triangle. By similarity,
the meshsize of {7} is 2-dl

From the theoretical point of view, for the Galerkin approximation to the non-

symmetric and indefinite problem to make sense, the approximation grid must be
sufficiently fine. Our theory will require that the coarsest grid in the multilevel iter-

ation also be sufficiently fine. To this end, we let the coarse gridsize be determined
by an integer L and the number of levels in the multigrid algorithm be determined
by J. For L land J ldefineM, for k- 1,...,J, tobethe functions which
re piecewise linear with respect to the triangulation {T+L} continuous on , and
vanish on 0. Since the triangulations are nested, it follows that

M C ’I2 C... C Mj.

The space M has a meshsize of h 21-L-d 2-h.
Remark 2.1. In general, one can only expect that the approximation error depends

in a monotonic way on the meshsize. Consequently, if the fine grid approximation is
of reasonable accuracy, one expects that there is a sequence of coarser grids whose ap-
proixmations make sense. Thus, in practice, the coarse grid can be taken considerably
coarser than the solution grid.

Fix k in {1, 2,... }. Let us temporarily assume that for every u M,

(2.5) A(u, v) 0 for all v a,l implies u 0.

This assumption immediately implies the existence and uniqueness of solutions to
problems of the following form: Given a linear functional F(.) defined on M, find
u M satisfying

A(u,)=F() for allOMk.

In particular, the projection operator P H1() Mk satisfying

A(Pau, v) A(u, v) for all v Ma
is well defined.

Clearly, if (2.2) has a positive definite symmetric part, then (2.5) holds. More
generally, if solutions of (2.1) satisfy regularity estimates of the form

(2.6) I1111+
then, it is well known (cf. [22]) that there exists a constant h0 such that for h h0,
(2.5) holds and furthermore

(2.7) II( P)II cnll(

and finally,

(2.8) IIPulll c Ilulll.
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Even if regularity estimates of the form of (2.6) are not known to hold, then (2.5) is
known from a recent approximation result by Schatz and Wang [23].

LEMMA 2.1 [23]. There ezists an ho such that (2.5) holds for hk <_ ho. Moreover,
given e > O, there ezists an ho(e) > 0 such that for all hk E (0, h0], (2.8) holds and

(2.9)

Remark 2.2. The above e will appear in our subsequent analysis. We note that
e can be taken arbitrarily small if L is large enough. However, L will be taken large
enough so that (2.5), (2.8), and (2.9) hold. Thus, the coarse gridsize (i.e., L) for any
estimate in which e appears will depend on e.

In our analysis, we shall use the orthogonal projectors /5 H(ft) -, Mk and
Q L2(ft) M, which, respectively, denote the elliptic projection corresponding to
(., .) and the L2(f) projection. These are defined by

and

A(/Sku, v)= (u, v) for all v E ]FIk

(Qku, v) (u,v) for allveMk.

The multigrid algorithms will be defined in terms of an additional inner product
(., .) on M x Mk. Examples of this inner product in our applications will be given
in the next section. Additional operators are defined in terms of this inner product as

follows: For each k, define A’Ma M and ,zi Mk M by

(Aku, v)k A(u,v) for allvM

and
(Aku, v)k A(u, v) for all v I.

Finally, the restriction operator P_ M M_ is defined by

(P_lu, v)-i (u, v)k for all v M_.

We seek the solution of

(2.10) A(u, v)= (f, v) for all v Ma.
This can be rewritten in the above notation as

(2.11) Aju=Qjf.

We describe the simplest V-cycle multigrid algorithm for iteratively computing
the solution u of (2.3). Given an initial iterate u0 G Mj, we define a sequence approx-
imating u by

(2.12) Ui+l Mgj(ui, Qjf).

Here Mgj(.,-) is a map of Mj x Mj into Mj and is defined as follows.
DEFINITION MG. Set M91(v, w) Alw. Let k > 1 and v, w be in M. Assum-

ing that Mg_l(., .) has been defined, we define Mgk(v, w) by
(1) x v + R(w Av).
(2) + bv

q Mgk_ (0, P-I (w Akxk)).
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Here Rk M M is a linear smoothing operator. Note that in this V-cycle,
we smooth only as we proceed to coarser grids.

In 3, we define R in terms of smoothing operators defined for the form (., .).
Specifically, the smoothing procedure for the symmetric problem will be denoted/)
M M and we set Rk /. In 4, we consider smoothers, which are directly
defined in terms of the original operator A.

A straightforward mathematical induction argument shows that Mgj(.,.) is a
linear map from Mj x Mj into Mj. Moreover, the scheme is consistent in the sense
that v Mgj(v, Ajv) for all v E Mj. It easily follows that the linear operator
E Mgj(., 0) is the error reduction operator for (2.12); that is,

U- ti+l (U- ti).

Let Tk R,AkPt for k > 1 and set T P. Using the facts that P2_IA
A,-1Pk- and Pk-IPk Pt- and Definition MG, a straightforward inanipulation
gives that for k > 1 and any u E M,

u- Mg(0, AP) (Z- )- Mg_ (0, A_1_1(- )).

Let Eu u- Mg(0, AtPu). In terms of EL, the above identity is the same as

E E_I(I- T).

Moreover, by consistency, E E and hence

(2.13) E (I T1)(I T2)... (I Tj).

The product representation of the error operator given above will be a fundamental
ingredient in the convergence analysis presented in 4. Similar representations in the
case of multigrid algorithms for symmetric problems were given in [9].

The above algorithm is a special case of more general multigrid algorithms in
that we only use presmoothing. Alternatively, we could define an algorithm with just
postsmoothing or both pre- and postsmoothing. The analysis of these algorithms is
similar to that above and will not be presented.

Often algorithms with more than one smoothing are considered [3], [17], [19].
This is not advised in the above algorithm since the smoothing iteration is generally
unstable in the sense that repetitive application of the smoother is a divergent process.
Thus, multigrid algorithms with more than one smoothing per level are less likely to
converge.

3. Smoothers based on the symmetric problem. In this section, we con-
sider smoothers which are based on the symmetric problem. This smoother will be
denoted by/. We state a number of abstract conditions concerning these smoothing
operators. We then give three examples of smoothing procedures which satisfy these
assumptions. In 5, we provide convergence estimates for multigrid algorithms with

R -/ in Definition MG.
The first two conditions are standard assumptions used in earlier Inultigrid anal-

yses. For k > 1, let k I-/)kk (defined on Mk) and 7k --/k/5 (defined on

Mj). We assume that
(1) there is a constant CR such that

(C.1) (u, u) < C([tu, u)k, for all u M,
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where R (I ^-KkKk)A and Ak is the largest eigenvalue of .k. Here and in
the remainder of this paper, , denotes the adjoint with respect to the iimer product
A(., .).

(2) There is a constant 0 < 2 not depending on k satisfying

(C.2) (v, kv) O(v, v) for all v M.

Provided that (C.2) holds, (C.1)is equivalent to

(3.1) (u, u) C(,u) for Ml e M.

When } is symmetric with respect to (., .)}, (C.2) states that the norm of } is less
than or equal to 0. Even in the case of nonsymmetric }, (C.2) implies stability of

(I- }). In fact, for any w Mj, (C.2) implies that

A(( ), ( )) A(,) A(, w) + A(,)
(3.2)

5 A(w, ) (2 0)A(,) 5 A(, ).
The final condition is that for k > 1, there exists a constant C satisfying

(C.3) (u,ku)k CA;A(ku, u) for all u Mk.

A simple change of variable shows that (C.3) is the same as

(kv, kv) 5 c/l(k,) fo al , M.

In the case when k is symmetric, this is equivalent to

(3.3) (v,v) CA[(v,v) for all v M

and is the opposite inequality of (3.1). Note that both (C.2) and (C.3) hold on Mj.
Remark 3.1. If Conditions (C.1)-(C.3) hold for a smoother R, then they hold for

its adjoint R with respect to the inner product (., .). This means that (C.1) holds

for k (I-;); and that (C.2) and (C.3) hold with replacing . In the
case of (C.2) and (C.3), the corresponding inequalities hold with the same constants
as those appearing in the original inequalities.

Example 1. The first example of a smoother is the operator

where I denotes the identity operator on lk and A Ak CAk. In this case, (3.1)
holds with C- /A, (C.2) holds with 0 1, and (3.3) holds with C A/. To
avoid the inversion of L2 Gram matrices in the multigrid algorithm, we use the inner
product

(.4) (,) h (x)(x).

Here the sum is taken over all nodes x of the subspace M. Note that (.,.) is
uniformly (independent of k) equivalent to (., .) on M.

The remaining smoothers correspond to Jacobi and Gauss-Seidel point and line
iteration methods. We shall present these smoothers in terms of subspace decomposi-
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tions. Specifically, we write

(3.5) Mk EM
i--1

where/I is the one-dimensional subspace spanned by the nodal basis function or
the subspace spanned by the nodal basis functions along a line. The number of such
spaces l(k) will often depend on k. These spaces satisfy the following inequality.

(3.6) I[vll <_ Chk IIv]ll for all v e M..
Example 2. For the second example, we consider the additive smoother defined

by

(3.7) /k E ^-1A,Q,i.
i=1

Here , :M M is defined by

(k,v, X) (v, X) for all X M
and Q,: M M is the projection onto M with respect to the inner product (., .).
The constant is a scaling factor which is chosen to ensure that (C.2) is satisfied (see,
e.g., [11], [5]). Note that is symmetric with respect to the inner product (.,.).
In addition, (3.1) and (3.3) are shown to hold in [11] with point Jacobi. When the
subspaces i are defined in terms of lines, (3.1) was proved in [5]. The estimate (3.3)
easily follows in the line case using the support properties of the basis functions and
(3.6). For this example, we take (., .) (., .) for M1 k.

Example 3. We next consider the multiplicative smoother. Given f M, we

define by the following.
(1) Setv0=0M.
(2) Define v, for 1,...,1, by

-1v v_ + A,Q,(f V-l).

(3)
Conditions (C.1) and (C.2) are known for this operator (see, e.g., [5]). The next lemma
shows that (C.3) holds for this choice of . For this case, we also take (-, .) (., .)
for all k.

LEMMA 3.1. (C.3) holds when is defined to be the multiplicative smoother of
Example 3.

Proof. The proof uses the techniques for analyzing smoothers presented in [5].
Fix k > 1 and let

where denotes the (..) projection onto hI and 0 I. Note that (I- k)= t
and 2-1 + P2-l. Hence

i=1
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and for every u E M (cf. [5]),

A((. ),) i(,)-

P3i-lU, $i-lU).
i=1

Since h cA[ i, the proof of the lemma will be complete if we can show that

(3.9) (k, k) ch (Pt3i_l, i-1).
i=1

Expanding the left-hand side of (3.9) gives

(3.10) (k,k) ( i 5i_x,pkj_ ).
=1 j=l

Because of the support properties of {}, the subspaces {M} satisfy a limited in-
teraction property in that for every i, the number of subspaces j for which (v
0, with v M and vJ M is bounded by a fixed constant n0 not depending on k
or 1. Lemma 3.1 of [5] implies that the double sum of (3.10) can be bounded by n0
times its diagonal; i.e.,

(.) (,)0
i=1

Applying (3.6) gives

(3.12) ( Ch(P2 u,

Combining (3.11) and (3.12) proves (3.9).
Remark 3.2. The same analysis could be used for successive overrelaxation-type

iteration. In that case,

where fl (0, 2) is the relaxation parameter.

4. Smoothers based on A. In this section, we consider smoothing operators
R which are defined directly in terms of the nonsymmetric and/or indefinite operator
A. The first smoother is one that was originally analyzed in [1] and subsequently
studied in [10].

Example 4. For our first example of a smoother based on A, we consider
defined by

Here, A is the adjoint of A with respect to the ixmer product (., .) and is as in

Example 1. A possible motivation for such a choice is that, on M, the iteration- + i[A[(f Av-1)
1/is stable in the norm (.,. provided that is greater than or equal to half the

largest eigenvalue of A[A.
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Example 5. This example is closely related to the second example of the previous
section. As in that example, we define the line or point bspaces {M} for 1,... 1.
Note that the form A(., .) satisfies a Grding inequality

c12(t, ) c [[t]l 2 A(u, u) for all u H (Ft).

Consequently, by (3.6),

(51- Ch2k)fft(t, "It) A(u, u) for all u M.
We will assume that h is sufficiently small so that

(4.1) Ch c/2.

This means that A(.,-) restricted to M has a positive definite symmetric part. Hence,
the projector P :M M satisfying

A(Pv, w)= A(v, w) for all w M
is well defined and satisfies

c

The second norm is taken only over the subdomain which is the set of points of
where the functions in M are nonzero. In addition, the operator A,i M M

defined by

(A,iv,) A(v, ) for all v, w M
is invertible. We set R by

i=1

We choose 7 as in Example 2 so that the symmetric smoother defined by (3.7) satisfies
(C.).

Ezample 6. Our final example is that of Gauss-Seidel directly applied to the
nonsymmetric/indefinite equations. We assume that the subspaces {M} satisfy the
conditions of the previous example. The block Gauss-Seidel algorithm (based on A)
is given as follows:

(1) Setv0=0M.
(2) Define v, for 1,...,1, by

#,(f V_l).vi vi_i + A,
(3) Set Rkf vz.

5. Analysis of the multigrid iteration (2.12). We provide an analysis of
the multigrid iteration (2.12) in this section. This analysis is based on the prod-
uct representation of the error operator (2.13). All of the analysis of this section is
based on perturbation from the uniform convergence estimates for multigrid applied
to symmetric problems.

We start by stating a result from [6] estimating the rate of convergence for the
multigrid algorithm applied to the symmetric problem. Specifically, we replace Ak by
k and Rk by k in Definition MG. Set 1 . From the earlier discussion, the error
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operator associated with this iteration applied to finding solution of the symmetric
problem

u=Qf

is given by/ where

(5.1) /gk (I 1)(I- 2)... (I k).
We then have the following theorem.

THEOREM 5.1 [6]. For k > 1, let [{k satisfy (C.1) and (C.2). Under the assump-
tions on the domain and the coecients of (2.1) given in 2, there exists a positive
constant < 1 not depending on J such that

(JU, JU) 2(U, U) for all u Mj.

To analyze the multigrid algorithms using the smoothers of 3, we use the per-
turbation operator

Z-T-.
We note that for any u, v I, for k > 1,

(5.2)

Indeed, by definition,

(Tku, v) (Tan,

(dPu,

d(,;v) (,;v) + D(,;v).

The equality (5.2) immediately follows.
To handle the case of k 1, we have

(.) 2(z, v) D(( ), A).
In fact, by definition,

(P,) (PI, Pl)

(P,)+ D((- 5), PlV).
The following theorem provides an estimate for the multigrid algorithm when the
smoothers of 3 are used.

THEOREM 5.2. Let Rk and assume that (C.1)-(C.3) hold. Given > O,
there exists an ho > 0 such that for h ho,

(Eu, Eu) 52(u, u) for all u Mj,

for + c(h + ). Here is less than one (independently of J) and is given by
Theorem 5.1.

Proof. For an arbitrary operator " Mj M, let A denote its operator
norm; i.e.,

, A(, )/A(,)/"
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Applying (2.4), (2.9), and (2.8) to (5.3) gives

IA(z, )1 _< c I1(I- P)II1 Ilvlll <_ c I111 I[,vll
This means that the operator norm of Z is bounded by Ce. Since the operator norm

of (I-/5) is less than or equal to one, the triangle inequality implies that the operator
norm of (I- P) (I- Pl Z1) is bounded by 1 + Ce.

For k > 1, applying (2.4), (C.3), Remark 3.1, and (3.2) to (5.2) gives

Ifi(Zku, v)l ch IlUlll (kV, V) 1/2

i.e., the operator norm of Z is bounded by ch. Since, by (3.2), the operator norm of
(I- ) is less than or equal to one, the triangle inequality implies that the operator
norm of (I- T) (I- k Z) is less than or equal to 1 + ch. Hence, it follows
that

k

i=2

It is immediate from the definitions that

(.4) E (E_ _)( ) E_IZ.

By (3.2) and the above estimates, for k > 1,

(s.a)
IIE-- -111 + Ch.

Repetitively applying (5.5) and using

I11- 11 -I1111 c
gives that

J

k=2

The theorem follows from the triangle inequality and Theorem 5.1.
Remark 5.1. Note that e can be made arbitrarily small by taking h small enough.

Consequently, Theorem 5.2 shows that the multigrid iteration converges with a rate
which is independent of J provided that the coarse grid is fine enough. The coarse
grid meshsize can also be taken to be independent of J.

We next consider the case of Example 4. For this example, we consider first the
multigrid algorithm for the symmetric problem which uses

(5.6) / i-2A
as a smoother. From the discussion in 2, the iteration (2.12) with/)k (given by (5.6))
and . replacing Rk and A, respectively, in Definition MG gives rise to the error

operator given by (5.1) where, as above, for k > 1, J’ -//Sk. The smoother (5.6)
does not satisfy (C.1) and so the first step in the analysis of the nonsymmetric and/or
indefinite example is to provide a uniform estimate for /j given by (5.1). Such an
estimate is provided in the following theorem. Its proof is given in the Appendix.
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THEOREM 5.3. Let ff,j be given by (5.1) where k kflk and is defined
by (5.6). Then,

(jU, jU) 2A(u, u) for all u lj.

Here is less that one and independent of J.
We can now prove the convergence estimate for multigrid applied to (2.1) using

the smoother of Example 4.
THEOREM 5.4. Let R be defined by Example 4. Given e > O, there exists an

ho > 0 such that for h ho,

(Eu, Eu) 52(u, u) for all u Mj,

for 5 + c(hl + e). Here is less than one (independently of J) and is given by
Theorem 5.3.

Proof. For k > 1, we consider the perturbation operator

Z T ;(AAP AP).

Clearly,

(.7)
As in (5.2),

Z X-2[At(AkP fi) + (At

-IA((AP Ak)u, v) -lD(u, Akkv)
from which it follows using (2.4) that

A similar argument shows that

It is not dicult to show that

Combining the above estimates with (5.7) gives

IIZll IIIAIIIII(AP
+ III(AL A)IIIAiI ch.

The remainder of the proof is exactly the same as that of Theorem 5.2.
We next consider the case of Example 5. We use perturbation from the mu]tigrid

algorithm for which uses the smoother k defined by Example 2. Theorem 5.1
provides a uniform estimate for the operator norm of j.

THEOREM 5.5. Let R be defined by Ezample 5. Given O, there eists an

ho > 0 such that for h ho,

o 5- + (hl + ). tha o(to) a
Theorem 5.1 applied to defined in Ezample 2.

Proof. For this case, the perturbation operator Z is given by

i=1
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As in (5.3),

Applying (2.4), (3.6), and (4.2) gives

(.s)

and hence

A(zu, v) <_ ch I1111, I1111,
=1

Using the limited overlap properties of the domains f gives

The remainder of the proof of the theorem is exactly the same as that given in the
proof of Theorem 5.2.

We finally consider the case of Example 6. We use perturbation from the multigrid
algorithm for which uses the smoother defined by Example 3. Theorem 5.1

provides a uniform estimate for the operator norm of j.
THEOREM 5.6. Let R be defined by Example 6. Given > O, there exists an

ho > 0 such that for h ho,

(Eu, Eu) 52(u, u) for all u Mj,

for 5- + c(hl + e). Here is less than one (independently of J) and is given by
Theorem 5.1 applied with defined as in Example 3.

Proof. The perturbation operator for this example is

z
where t is given by (3.8) and

gi (I- P)(I- p-l)... (I- P)
with g0 I. As in (5.4),

i- i (I- )(2i i ( P)gi-1.

Since the last two terms are orthogonal with respect to (., .) we have that

I( )1- )11I(I P)(i-

Because of (5.8) and the fact that the operator norm of (I- is bounded by one,
it follows that

II(g- )1

Summing over i, since 0 g0 I, we obtain

(5.9) II(g )11 < c] I1{_111
i=1

We shall show that
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By the arithmetic-geometric mean inequality, the definition gi and the limited inter-
action property (see (3.10) and above) it follows that

m=l i=1

m=l

In order to estimate the last term on the right of (5.11) we write

IIP.-lull (P. .-a, Ptrn-1t)

A((’rn-1 rn)t, (rn-1 rn) ?or)

(5.12) 2((’m-1 m)t, (m--1 -Jr- rn)?-t) 2ft(Pg,_lu,
A(e._,._) A(e,
2A(P2e_, ( P2)m-’).

Now, by (5.8),

i(_, (z PF)e_) (P?Z_, (P2 P2)-1)
(5.13)

Hence, combining (5.12) and (5.13), we have

IIPngrn lttll 2 % C[t(rn l?,m--ltt) 2(rntt m)] + Ch llm_lll 2

A 1,fl

Summing over m we conclude that

This together with (5.11) yields (5.10) when hk is small enough. Finally, we obtain
from (5.10) and (5.9) that for k > 1,

The remainder of the proof of this theorem is the same as that of Theorem 5.2.
Remark 5.2. The same analysis could be used for successive overrelaxation-type

iterations. In that case,, (I P)(I 13P-’) (I 13P))

where t E (0, 2) is the relaxation parameter.
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Remark 5.3. Many extensions and generalizations of the techniques given above
are possible. These techniques lead to uniform estimates for multigrid iteration meth-
ods for solving nonsymmetric and/or indefinite problems for the following applica-
tions.

(1) Approximations using higher-order nodal finite element spaces.
(2) Three-dimensional problems.
(3) Problems with discontinuous coefficients as discussed in [6].
(4) More general boundary conditions.
(5) Problems with local mesh refinement as described in [11].
(6) Finite element approximation of problems on domains with nonpolygonal

boundaries as discussed in [6].
In addition, the perturbation analysis given above can be combined with results

for additive multilevel algorithms, for example, Theorem 3.1 of [6]. This leads to new
estimates for additive multilevel preconditioning iterations applied to indefinite and
nonsymmetric problems. Provided that the coarse grid is sufficiently fine, the operator

J

has a uniformly (independent of J) positive definite symmetric part with respect to
the inner product (., .) and has a uniformly bounded operator norm. These results
extend to all of the applications discussed in Remnrk 5.3.

6. Appendix. We provide a proof of Theorem 5.3 in this Appendix. We will
apply the analysis given in the proof of Theorem 3.2 of [6]. Note that we cannot

directly apply Theorem 3.2 of [6] since the smoother /k -2k does not satisfy
(C.1). We note, however, that Theorem 5.3 will follow from the proof of Theorem 3.2
of [6] if we show that (C.2) holds as well as (4.5) and (4.6) of [6] with T replaced
by k defined above. Clearly, (C.2) holds with 0 1. The remaining two inequalities
corresponding to (4.5) and (3.6)of [6] are

(6.1) ft(kv, v)

_
(rlk-t)2ft(v, v) for all v e lt, < k

and

J

(6.2) (v, v) _< CE (kv, v) for all v E Mj.
k=l

Here is less than one and independent of k and 1.
From the definition of Xk, we obviously have

2(’kV, V) -12(2kV, V) (’kV, V).

As in [6], we have set 7 X-12k. Inequality (6.1) follows from Lemma 4.2 of [6].
Inequality (6.2) can be rewritten,

J

k--2
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To prove this we proceed as follows. Let u E ’:J and Q0 O. Then

J

i(, U) E (U, (Ok Ok-1)u)
k=l

(6.4) <_ ft(Plu, u) + X; AkPku A(QlU, Qiu)
k=2

J

)
/

+ X(I(# _),( _))
k=2

Now, for k > 1,

(AI( -1),( -))

(A-1/2(Qk Qk 1)t )2
sup
,M (,)

(( _),( _))
sp

By well-known approximation properties,

1/ < c II(- Q-l)ll < Ch [llll.((Q Q-I), (Q Q:-I))
Combining the above estimates giv

J

A(I,) + X(A;I(Q ,-1),( -1))
k=2

(.5)

k=2

cA(u, ).
The last inequality of (6.5) is (4.5) of [6] and also can be found in [21]. Combining
(6.4) and (6.5) proves (6.3) and hence completes the proof of the theorem.
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