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Abstract

We present a covolume method for the modified Stokes problem using the simplest approximation spaces, Q;—F. This scheme turns
out the stabilized covolume method for the Stokes problem. We prove that the covolume method in this paper has a unique solution
and O(h) convergence order in H'! semi-norm for the velocity and in L? norm the pressure approximants, respectively. We also present
numerical results corresponding to our analysis. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Various stabilized finite element methods for solving the Stokes problem have been introduced and
analyzed successfully [3,7,10,11,15]. For example, Hughes et al. [11] developed stabilized finite element
methods using pairs of arbitrary order as approximations for the velocity and the pressure. The stability
was achieved by the addition of least-square forms of residual. In the case of continuous pressure ap-
proximations, Brezzi and Douglas [3] proved the stability and the convergence for the Stokes problem by
adding a penalty term.

On the other hand, finite volume methods or covolume methods have been developed as effective dis-
cretization scheme for fluid flow problems [1,9,13,14]. One advantage of these methods is that the discrete
equations are derived based on local conservation of mass, momentum or energy over control volumes. In
particular, Chou [4] and Chou and Kwak [5,6] proposed new covolume methods which are successfully
applied to the generalized Stokes problem. In their works, the formulations are derived through the design
of primal and dual partitions of the domain. Various finite element spaces satisfying the inf-sup condition
are used as trial function spaces for this incompressible fluid problem. The inf-sup condition plays an
important role in their analysis. The test functions are piecewise constant on the dual grid. Thus these
methods can be viewed as locally and globally conservative Petrov—Galerkin methods.

The simplest pair of approximation spaces is Q;—F,, the conforming piecewise bilinears for the velocity
and piecewise constants for the pressure on rectangular elements. It is well known [2] that this pair of
approximation spaces does not satisfy the inf-sup condition. Such drawback can be overcome by stabilized
techniques [3,7,11,12]. The emphasis of stabilized mixed finite element methods for Q,—F, is the control of
the pressure approximation by introducing a pressure jump operator.

In this paper, we introduce a covolume scheme for the stabilized mixed method using 0,—F,. Integrating
a modified incompressible condition gives us a stabilized covolume formulation. We shall compute the
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approximation of the velocity which locally permits a small compressibility on each primal element. This
scheme is different from [5] in that the macro-elements are not necessary. We represent our covolume
formulation as Petrov—Galerkin method and obtain linear convergence in H' semi-norm for the velocity
and in L? norm for the pressure approximants.

2. Stabilized mixed finite element methods

We consider the two-dimensional Stokes Problem:

—uAu+Vp=f in QCR (2.1)
V.u=0 inQ, (2.2)
u=0 on 0Q, (2.3)

where u is the viscosity of the fluid. For the sake of simplicity, we shall assume u = 1 in this paper. Let
H, () be the space of weakly differentiable functions with zero trace, H'(Q), i = 1,2 be the usual Sobolev
spaces, and L}(Q) be the set of all L? functions over Q with zero integral mean. Let us denote
H) = (H/(Q))*, | -|, and || - ||, be the usual (H'(Q))* semi-norm and the L? norm, respectively.

The weak formulation associated with (2.1)~(2.3) is: Find (u,p) € Hj x L2(Q)

(Vu, Vv) — (div v,p) = (f,v) Vv H,, (2.4)
(div u,q) =0 Vg€ L3(Q).

The unique solvability of this problem is well known [2].

Assume that Q is a polygonal domain whose sides are parallel to the coordinate axis. Let %, = UK be a
partition of the domain £ into a union of rectangular elements K. We denote # = max hgx where Ay is the
diameter of K. We shall assume throughout this paper that the primal partition is regular in the usual sense,
ie.

Ch* < |K|<h VK € Ay,

where |K| is the area of K. We also assume that %, is quasi-uniform, i.e., there exists a positive constant C
such that

h/hg < C

for all K € #,. For simplicity, we assume that the partition %, is equally divided along each axis. Let I, be
the set of all interior edges of #, and A, the length of e € I';,.
Define the finite element subspace of the velocity by

Hh = {V;, S H(l) : V;,|K € (Ql(K))z VK € 9?;,},

where Q) (K) denotes the piecewise bilinear functions on the rectangle K. For the finite element subspace for
the pressure, define

Ly = {qy € LX(Q) : qul, is constant VK € Z,}.

With these subspaces, H, and L,, a stabilized finite element formulation of (2.4) and (2.5) is: Find
(4, p,) € Hy, x Ly, such that

(Vﬁh, VV;,) — (le Vh,ﬁh) = (f, Vh) Vv, € Hy, (26)
(div w,, g,) + /32 he/@h}e[ﬁlhhds =0 Vg, €Ly, (2.7)
ecl)y e

where [-], stands for the jump operator across e € I', and f is an arbitrary positive constant. Standard
mixed finite element methods require a pair of approximation spaces satisfying the inf-sup condition in
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order to be stable [8]. In this point of view, the pair (Hj, L;) is unstable. This phenomenon occurs due to the
relatively large degrees of freedom of the pressure approximation in comparison with that of the velocity.
This can be overcome by the jump operator in (2.7) which controls pressure jumps across all interior edges.
These types of stabilization techniques are developed in [7,11,12].

3. Covolume formulation

In this section, we introduce a covolume method for Q;—P, pair. Two partitions of the problem domain
are necessary to describe the covolume method for the Stokes problem. We call the partition %, which is
defined in Section 2, the primal partition. Next, we construct the dual partition #;. Given the primal
partition, we can further subdivide the domain Q by adding horizontal and vertical grid lines through the
midpoints of the elements in %#,. These are the dashed lines in Fig. 1.

Let Py be an arbitrary node, a vertex of some rectangles. The dual element based at the interior node P is
made up of the gray colored rectangle as in Fig. 1. We make the obvious modification at boundary nodes.
Carrying out the construction for every node in the primal partition generates a dual partition for the
domain. We denote the dual element based at P as K and the dual partition as %) = UK}.

Associated with the partitions %, the trial function spaces for the velocity and the pressure approxi-
mations are defined by H, and L,, respectively. In our covolume scheme, the velocity nodes are assigned at
the vertices and the pressure nodes at the center of each rectangular element K € %,,. On the other hand, the
test function space Y, is defined by the space of certain piecewise constant vector functions

Y, = {we (L}(Q): w| K is a constant vector, w k; = 0 on any boundary dual element K} }.
Denote by y; the scalar characteristic function associated with the dual element Ky, j= 1,...,N;, where N;
is the number of interior nodes of %;. We see that for any w, € ¥,

Ni
w(x) = Z wi(Py)xp,(x)  Vx € Q.
1

We are now ready to describe a covolume formulation for stabilized mixed methods. This formulation can
be achieved by integrating the momentum equation (2.1) over the dual element and the modified continuity
equation with the artificial compressible term

div u = a(x)Ap (3.1)

over the primal elements. In (3.1), the homogeneous Neumann boundary condition is imposed on the
pressure and a(x) = f|K|, x € K for an arbitrary positive constant . Note that div u approaches zero as /
tends to zero.

Define the bilinear forms a* :H, xY, —= R, b*:Y, xL, — R and c¢: H, x L, — R as follows. For
v, e H,, w, €Y, qn € Ly and f € (Lz(Q))z

o

L

Fig. 1. Primal and dual elements.
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0
Vh,Wh Z Wh / % dS (32)
2

b*(Va, qn) == X:Vh(P) / gsnds, (33)
C(Vh,qh) : QJ / div Vh (34)

(f,w) : iwh P) / (3.5)

where N denotes the number of elements in %, and Q; is the center of K;. Eq. (3.2) is the result of inte-
grating the first term of (2.1) against the test functions and using the second Green’s identity.

Next, we shall approximate the integral of a(x)Ap over K by cell centered finite differences: Integrate
o(x)Ap against test function y, € L;, where y, stands for characteristic function associated with the primal
element K. Use the divergence theorem to get

/ X)Apdx = / Pds (3.6)

and then use cell centered finite difference scheme to approximate (3.6). Referring to Fig. 2, we approximate
(3.6) as

~2 —2
ﬂhxhy<pl zf P 4 f - h) (3.7)
x v

where £, is the width of K and 4, is the height of K'and p;, i = 0,1, ..., 4 are the values of p, in the element
K;. Define the bilinear form d : L, x L, — R associated with (3.7) by

d(pnai) = ﬁzqh ) |1 2pu(B) = pu(Por) = Pu(Pie)) + B (2Pu(B) = Pu(P) = pu(Prs)|

Vph;qh EL},, (38)

where Py g s stand for the centers of four adjacent rectangles of X;.
We now can present a covolume formulation for the modified Stokes problem: Find (u,, p;) € H, x L,
such that

Ll*(llh,Vh) + b*(Vh,ph) = (f, Vh) Vv, € Yy, (39)
c(ur,qn) +d(pr,qn) =0 Vqu € Ly. (3.10)
.P4
.Pl .po ps.
opz

Fig. 2. The value of p, on each element.
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It turns out that we can reformulate this system into a stabilized method as (2.6) and (2.7). Let us start the
reformulation by introducing the one-to-one transfer operator y, from H, onto Y, defined by

N
yva(x) =Y wi(P)y;(x) VxeQ
j=1

for all v, € H;,. With this transfer operator, define the following bilinear forms:

a(Vi, Wi) == a" (Vi 7,Wa) V3, Wy, € Hy,
b(V}”qh) = b*(’))hV}”qh) th € Hh th c Lh

For the stability and the convergence analysis of the covolume method, we shall need some lemmas.
Lemmas 3.1-3.3 are derived in [5].

Lemma 3.1. There exists a positive constant Cy independent of h such that

75V = Vallo < Cohlvil;  ¥vi € Hy. (3.11)

Lemma 3.2. For v, w € H,, the bilinear form a(-,-) has the following properties:
(1) a is symmetric;
(1) a is bounded and coercive, i.e.,

la(v,w)| < C|v|,|w|, VYv,weH,
and
a(v,v) = C|v|? Vv € H,

for some positive constant C independent of h.
(iii) a(vy, wy) differs from (Nv,,V'wy,) only by a quadrature term, i.e.,

a(v,w) = (Vv,Vw) + O(v,w), (3.12)

where
1
——42 (he + hy) (Vi - W)
K

Here, v, stands for the partial derivative with respect to Xx.

Lemma 3.3. For all v, € H, and q; € L,

b(vh7qh) = b*(’yhvthh) = —C(Vlz7Qh)~ (313)

The bilinear form d(-, ), corresponding to the artificial compressible term, is not only symmetric but also
positive semi-definite. It plays an important role for the stability of our covolume method.

Lemma 3.4. For p,, q, € Ly,
d(pn,qn) = /[Ph [q1], (3.14)
eel"h

where [py), is the jump of py across the edge e.
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Proof. Let K;, i = 1,2, 3,4 be four elements having the common edge e; with K, as Fig. 2. Setting ¢, = i,
we have

4
BY he/LUh]e[qh]edS = Br((po — p1) + (po — p3)) + PR ((po — p2) + (po — pa)) = d(pn, i) -
= ¢
Hence the summation over all K gives (3.14). O

By Lemmas 3.2-3.4, the covolume scheme (3.9) and (3.10) becomes: Find (u;, p;) € H, x L, such that

a(u,, Vi) — (i, pu) = (£,7,v4)  Vvi € Hy, (3.15)
c(ur,qn) +d(pn,qn) =0 Vqu € Ly. (3.16)

Now the stability and convergence analysis of (3.15) and (3.16) can be carried out in the framework of the
stabilized finite element methods.
Define a mesh-dependent norm on Hj, x L, by

2 2
1Cvn gn) 117 = 1valy + [1lTgalllfo.r,»

where

ol = 85 b [ lailas.

ecl’y

Note that if |||[q’t]|||§,rh =0, then ¢, = constant on Q. From the fact that ¢, € L}, we have ¢;, = 0.
Let us introduce a bilinear form @ defined on H;, x L, by

D((Viy qn); (Way 7)) = a(Vi, Wi) — (Wi, gn) + (i, 74) + d(qn, 7a)

for (vi,q1), (Wy, 1) € H, x L;,. The covolume formulation (3.15) and (3.16) can be rewritten in the following
form: Find (w,, p,) € H, x L, such that

D((wp, pn); (Viyqn)) = (£,7,%)  V(¥a, qn) € Hy X Ly

It is easy to see that

D((Viy @1); Vi gi)) = Cll| Vs g)[IIF Y (Vi gn) € Hy % Ly

for some positive constant C. It follows from the coercivity of the bilinear form @ that the problem (3.15)
and (3.16) is uniquely solvable.

4. Convergence analysis
We now prove the main theorem of this paper.

Theorem 4.1. Let the primal partition family of the domain Q be quasi-uniform, and (w,, p,) be the solution of
the problem (3.15) and (3.16), and (u, p) solve the problem (2.4) and (2.5). Then there exists a positive constant
C independent of h such that

[u—w|, + [lp = pallo < Ch([full, + [Ipll, + 1), (4.1)
provided that u € Hy(Q) NH*(Q), p € H'(Q).
Proof. We first introduce an auxiliary Stokes approximation problem: Find (uy, p,) € H, x L, such that

(Vay, Vvi) = c(vi, p) = (£,vi) Vv, € Hy, (4.2)
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(W, qn) +d(Pyqn) =0 Vg € Ly (4.3)

This problem is the same stabilized finite element method as (2.6) and (2.7). The following convergent result
for this problem is well known [7]:

u— |, + [lp = pullo < Ch[lull, + lill), (4.4)

for some positive constant C, provided that u € Hj(Q) NH*(Q), p € H'(Q).
Subtracting (4.3) from (3.16), we have

c(uy — Uy, q4) = —d(py — Py qn) = —ﬁz he/[Ph = Pulelgnl.ds Vau € Ly. (4.5)

ecl’y
Subtracting (4.2) from (3.15), we have
(Vw, — Va,, Vv,) — c(vi, pr — p,) = (£, 7,v0 — Vi) — O(uy, vi,) Vv, € H. (4.6)
Define
€y =W — Wy, &y 1= D — Dy

Replace v, in (4.6) with €, and use (4.5) to obtain

€unlt + B he / lepalz ds = (£, 7,€un — €us) — O(wi, &u). (4.7)

=
Observe that
—O(uy,€,) = —O(€up; €u) — Oy, €,) < [O(Us, €,)]-
From the positiveness of the second part on the left-hand side of (4.7) and Lemma 3.1, we obtain
[€lt < Cohfllo &, + 1O, &)l (4.8)

Let us estimate the bound for |O(t;, €,,)|. We shall need a further partition of the domain. Divide each
rectangular element K into two triangles by connecting the diagonal with positive slope. Denote the re-
sulting triangular partition as 7 ,. Let u; be a piecewise linear interpolation of u such that u; is a piecewise
linear functions on each T € 7,. For this w;,, it holds that Q(u;,w,) =0 for all w, € H, and
|u — u;|, < Chljul|,. By inverse estimates, we obtain

OV, —u, wy)| < Clv, —w|y[Wi|; YV, W, € Hy (4.9)
Using (4.9), we have

|00, €0p)| = QW —uy, &) < Clay — |y [@0nl, < CJwy —ufy + u—w)[€,4], < Chley,l,.  (4.10)
Hence we have the following estimate:

[€unly < Ch, (4.11)

for some constant C which depends on f, u, but not on 4. The estimates (4.11), (4.4) and the triangle in-
equality give

u—w|, < Ch([full, + [lpll, +1). (4.12)

For the estimation of the pressure, let us consider the following problem: Find (¥, y) € H x L}(Q) such
that
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—AP+Vy=0 inQ, (4.13)
div ¥ =¢,, inQ, (4.14)
¥ =0 on 0Q. (4.15)

Since e,;, € L3(€), it is well known [7] that the problem (4.13)—(4.15) has a unique solution which satisfies
the a priori estimate

|1y + llxllo < Cliepnllo- (4.16)

Let ¥’ € H, be a piecewise bilinear interpolation of ¥. Since 2, is quasi-uniform, it is easy to derive

1/2
< /| Y — )| ds> <C|?|,. (4.17)
ecly,

by the inverse inequality. Then it follows from (4.14) that

lepalls = (div ‘I’,epﬁh):Z/'I’-n[ep,h}eds:Z/(‘I’—‘Iﬂ)- nle, ], ds+Z/ nle, ], ds

= Il +Iz

From (4.7) and (4.11), we have

> he /eph 2ds < Ch°. (4.18)

ecl’y,

Using Cauchy-Schwarz inequality, (4.16)—(4.18), we obtain

12
< (Zh /|q/ ¥ . n| ds> <Zh/eph s) < CH|P|, < Chlle,ul,. (4.19)

In order to estimate /,, we make use of the divergence theorem

Zeph 0) /le P dx = (¥, e,n).

K;

From (4.6), we have

L] = [(V&un, V) + 0@, V') + Oy, 1) — (£,7, V" — V) < Clewsl, |¥'], + Chl '],
+ Coh\|f||0|‘P1\1 < Ch|qjl|1 < Ch|lp|1 < ChHep«,hHo- (4.20)

Here, we used the convergence result for the velocity approximants |€,,|, < Ch and the estimate for
|01, ¥")| similar to (4.10). Combining (4.19) with (4.20), we have

||Ph —ﬁhHo < Ch.

The triangle inequality gives

1P = pullo < Ch(llull, + llpll; + 1),

for some constant C which depends on f, u, but not on ~. O

Remark 1. We can also apply the stabilized covolume method to the Pi—F, pair, the conforming piecewise
linears and piecewise constants for triangular partitions.
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Table 1
Covolume method for = 0.1

2531

h fu, — u|, llp = pally
1/4 2.0790 x 107! 6.2154 x 107!
1/8 8.0375 x 1072 (2.5751) 2.7405 x 107! (2.2680)
1/16 2.6304 x 1072 (3.0693) 1.2237 x 107! (2.2395)
1/32 8.8081 x 1073 (3.2554) 5.7487 x 1072 (2.1287)
1/64 2.4544 x 1073 (3.2921) 4.6143 x 1072 (2.0526)
Table 2
Stabilized FEM for ff = 0.1
h ol P~ pill
1/4 2.1881 x 107! 6.1111 x 107!
1/8 8.2364 x 1072 (2.6479) 2.7158 x 107! (2.2502)
1/16 2.6637 x 1072 (3.1022) 1.2195 x 107! (2.4044)
1/32 8.1441 x 1073 (3.2707) 5.7425 x 1072 (2.1236)
1/64 2.4672 x 1073 (3.3009) 2.7999 x 1072 (2.0501)
Table 3
Covolume method for f = 0.01
h fu, — w], llp = pally
1/4 1.0837 x 107! 4.6168 x 107!
1/8 3.5854 x 1072 (3.0225) 2.2433 x 107! (2.0580)
1/16 9.6045 x 1073 (3.7730) 1.1099 x 107! (2.0212)
1/32 2.4796 x 1073 (3.8734) 5.5315 x 1072 (2.0065)
1/64 6.3868 x 107 (3.8824) 2.7631 x 1072 (2.0019)
Table 4
Stabilized FEM for f# = 0.01
h w, — [, lp = pall
1/4 1.2385 x 107! 4.5445 x 107!
1/8 3.9638 x 1072 (3.1245) 2.2311 x 107! (2.0369)
1/16 1.0580 x 1072 (3.7465) 1.1083 x 107! (2.0131)
1/32 2.7224 x 1073 (3.8863) 5.5295 x 1072 (2.0043)
1/64 6.9813 x 107* (3.8996) 2.7629 x 1072 (2.0013)

5. Numerical results

We solve the Stokes problem on the unit square Q = [0, 1] x [0, 1] with the following exact solution

ux,y) = 60x*(x — 1)*p(y — 1)(2y — 1),
o(x,y) = 60x(x — 1)(2x — 1)y*(y — 1)?,
p(x,y) =15(x = 1/2)(y — 1/2).

We test both the covolume method and the stabilized finite element method for Q,—F,.
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The matrix system corresponding to these two method is of the form
A —B
5 ) s
where A is the symmetric positive matrix associated with the Laplacian, B the divergence and D is the
stabilized term or artificial compressible term. Multiplying the second row of (5.1) by —1 gives the sym-
metric version of the system. Thus we may use the preconditioned conjugate gradient method as an iter-
ation method.

Tables 1-4 represent the numerical results for 4 and various constant parameter = 0.1, 0.01. The
discrete H' semi-norm of the velocity are computed by a(u, — u’,u, — u’ )1/ ? for the bilinear interpolation u’
of the exact solution u in case of the covolume method. In case of the stabilized finite element method, we
compute ||V (@, — u')|,. The numbers in the parentheses stand for the convergence order at the mesh size /
against 24. Tables 1 and 3 show the results of the covolume method while Tables 2 and 4 show that of the

stabilized finite element method. The tables show that convergence orders are nearly same for the two
methods.
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