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Abstract: We introduce a covolume method for approximating the station-
ary Navier-Stokes equations and analyze the convergence of the covolume ap-
proximation. The covolume method uses the primal and dual partitions. The
velocity is approximated using nonconforming piecewise linear functions and
the pressure piecewise constants. We use an abstract theory to the study of the
convergence of the covolume method for the Navier-Stokes equations, which is
based on the results of approximation for branches of nonsingular solutions of
nonlinear problems presented in [10]. Numerical results using a simple Picard
type of iteration for solving the discrete Navier-Stokes equations are provided.
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1. Introduction

Let Ω be a bounded polygonal domain of R
2 with a Lipschitz-continuous bound-

ary Γ. The stationary Navier-Stokes equations with the Dirichlet boundary
condition are:
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−ν ∆u + u · ∇u + grad p = f in Ω, (1.1)

divu = 0 in Ω, (1.2)

u = 0 on Γ, (1.3)

where u : Ω → R
2 is the velocity field and p : Ω → R is the pressure; f represents

the body force and ν > 0 is the viscosity.

If the velocity of the flow is assumed sufficiently small, the convection term
u · ∇u is ignored. Then we have the Stokes problem:

−ν ∆u + grad p = f in Ω, (1.4)

divu = 0 in Ω, (1.5)

u = 0 on Γ. (1.6)

Let H i(Ω), i = 1, 2 be the usual Sobolev spaces, H1
0 (Ω) be the space of

weakly differentiable functions with zero trace, and L2
0(Ω) be the set of all L2

functions over Ω with zero integral mean. Hi(Ω), i = 1, 2 consists of vector
valued functions each of whose components belongs to H i(Ω).

We now define the bilinear forms

a0(u,v) = ν

∫

Ω
grad u : grad v dx for all u,v ∈ H1(Ω), (1.7)

b(v, q) = −

∫

Ω
q divv dx for all v ∈ H1(Ω), q ∈ L2(Ω), (1.8)

and the trilinear form

d(w;u,v) =

∫

Ω
w · ∇u · v dx for all u,v,w ∈ H1(Ω). (1.9)

Here

grad u : grad v :=

2
∑

i,j=1

∂ui

∂xj

∂vi

∂xj
,

and

w · ∇u · v =
2

∑

i,j=1

wj
∂ui

∂xj
vi.

The weak formulation of (1.1)-(1.3) is the following: Given f ∈ H−1(Ω), we
find u ∈ H1

0(Ω) and p ∈ L2
0(Ω) such that

a(u;u,v) + b(v, p) = (f ,v) for all v ∈ H1
0(Ω),

b(u, q) = 0 for all q ∈ L2
0(Ω),

(1.10)

where

a(u;u,v) = a0(u,v) + d(u;u,v)
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and H−1(Ω) denotes the dual space consisting of bounded linear functionals on
H1

0 (Ω).

The following theorem shows the existence of solutions (1.10) which is
proved in [10].

Theorem 1.1. (see [10]) Let N ≤ 3 and let Ω be a bounded domain of

RN with a Lipschitz-continuous boundary Γ. Given f ∈ H−1(Ω), there exists at

least one pair (u, p) ∈ H1
0(Ω)×L2

0(Ω) solution of (1.10) or equivalently solution

of (1.1)-(1.3).

Now, we consider the uniqueness of the solution (u, p) of the problem (1.10).
For this, we define:

N = sup
u,v,w∈H

1
0

d(w;u,v)

|u|1|v|1|w|1
, (1.11)

and

‖f‖H−1 = sup
v∈H

1
0

(f ,v)

|v|1
. (1.12)

Theorem 1.2. Under the hypothesis of Theorem 1.1 and

(N/ν2)‖f‖H−1 < 1, (1.13)

Problem (1.10) has a unique solution (u, p) in H1
0(Ω) × L2

0(Ω).

The general theory for the finite element and mixed finite element methods
for the Navier-Stokes equations are well documented in [1], [2], [3], [10], [11],
[12], [14].

In this paper, we propose a new finite element method to solve the Navier-
Stokes equations which is a variant of covolume scheme. For this purpose, we
use the following conservative form of the Navier-Stokes equations. If we use
the formula

∇ · (uu) = u · ∇u + u(∇ · u)

and divergence free condition (1.2), then (1.1) can be rewritten as

−ν ∆u + ∇ · (uu) + grad p = f in Ω, (1.14)

divu = 0 in Ω, (1.15)

u = 0 on Γ. (1.16)

For the variational formulation, we define the trilinear form:

d∗(u;u,v) =

∫

Ω
∇ · (u2) · v dx for all u,v,w ∈ H1(Ω). (1.17)

Then the weak formulation is: for given f ∈ H−1(Ω), we find u ∈ H1
0(Ω) and
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p ∈ L2
0(Ω) such that

A(u;u,v) − (p,div v) = (f ,v) for all v ∈ H1
0(Ω),

(q,div u) = 0 for all q ∈ L2
0(Ω),

(1.18)

where

A(u;u,v) = a0(u,v) + d∗(u;u,v).

Since (1.18) is equivalent to (1.10) with A(u;u,v) = a(u;u,v), the existence
and uniqueness theorems, i.e. Theorem 1.1, 1.2, hold for (1.18).

2. A Covolume Formulation for the Navier-Stokes Equations

We now describe a covolume method for the stationary Navier-Stokes equations.
One advantage of the covolume method is that the discrete equations are derived
based on local conservation of mass, momentum or energy over control volume.
In [5], Chou first considered a covolume method for the Stokes problem. A
MAC-like covolume method for the Stokes problem was proposed by Chou and
Kwak in [6].

For covolume method, we need to define two partitions of the problem
domain, which are called the primal and dual partition, respectively. Test
functions are piecewise constant on the dual grid.

Let Th =
⋃

KB be a partition of the domain Ω into a union of triangular
elements, where KB stands for the triangle whose barycenter is B. The nodes
of an element are the midpoints of its sides. Let N be the number of nodal
points. We denote by P1, P2, . . . , PNS

those nodes belonging to the interior of
Ω and PNS+1

, ..., PN those on the boundary.

Figure 1: Primal and dual elements
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The finite element space for the velocity H0
h is the Crouzeix-Raviart space

for triangles or nonconforming P1 element [8]:

Hh
0 = {vh ∈ (L2(Ω))2 : vh|KB

∈ (P1(KB))2, ∀KB ∈ Th,

vh are continuous at the midpoints of the triangle edges and

vh = 0 at the midpoints of the edges on ∂Ω},

where P1(KB) denotes the piecewise linear function on the triangle KB and the
finite space for the pressure Lh

0 is:

Lh
0 = {qh ∈ L2

0(Ω) : qh|KB
is constant, ∀KB ∈ Th}.

Similar nonconforming space for rectangular grid is introduced in [13] for which
a parallel covolume method can be described as in [7].

Since Hh
0 is nonconforming, the gradient and divergence operator on it must

be defined piecewise:

(∇hvh)|KB
: = ∇(vh|KB

),

(divh vh)|KB
: = div (vh|KB

).

On the space Hh
0 we define the mesh dependent norms:

‖v‖2
1,h =

1
∑

i=0

|vh|
2
i,KB

and |vh|
2
i,KB

=
∑

KB∈Th

∫

KB

|∂ivh|
2

which are also called broken norms.

Below we shall use ∇ for ∇h and div for divh for our convenience when
there is no confusion.

Next we construct the dual partition T ∗
h and the test function space. The

dual grid is a union of interior quadrilaterals and border triangles.

A1 A2

A3A4

P1

P2

P3

P4

P5

B1

B2

Figure 2:

For example, referring to Figure 2, the interior node P5 belongs to the



344 D.Y. Kwak, D. Bayanjargal

common side of the triangles KB1
= △A1A2A4 and KB2

= △A2A3A4 and the
quadrilaterals B1A2B2A4 is the dual element with node at P5. For a boundary
node like P3 the associated dual element is a triangle △A2A3B2.

We shall denote the dual partition as T ∗
h =

⋃

K∗
p and associate with it the

test function space Yh, the space of certain piecewise constant vector functions.
That is

Yh
0 ={q ∈ (L2(Ω))2 : q|K∗

p
is a constant vector, and

q|K∗

p
= 0 on any boundary dual element K∗

p}.

Denote by χ∗
j the scalar characteristic function associated with the dual element

K∗
Pj

, j = 1, 2, ..., NS . We see that for any vh ∈ Yh
0

vh(x) =

Ns
∑

j=1

vh(Pj)χ
∗
j (x) ∀x ∈ Ω. (2.1)

As for the approximate pressure space Lh
0 ⊂ L2

0(Ω), we define it to be the
set of all piecewise constants with respect to the primal partition since in the
covolume method the pressure is assigned at the centers of triangular elements.

Finally, our test and trial function spaces should reflect the fact that in the
covolume method the momentum equation (1.14) is integrated over the dual
element and the continuity equation (1.15) over the primal element.

Let NT be the number of triangles in the partition Th. For uh ∈ Hh
0 ,vh ∈

Yh
0 , ph, qh ∈ Lh

0 and f ∈ H−1, define the following trilinear form:

d∗(uh;uh,vh) : =

∫

Ω
∇ · (u2

h) · vh dx

=

NS
∑

i=1

vh(Pi)

∫

∂K∗

Pi

u2
h · n ds,

(2.2)

bilinear forms:

a∗0(uh,vh) := −ν

NS
∑

i=1

vh(Pi) ·

∫

∂K∗

Pi

∂uh

∂n
ds, (2.3)

b∗(vh, ph) :=

NS
∑

i=1

vh(Pi)

∫

∂K∗

Pi

phn ds, (2.4)

c∗(uh, qh) := −

NT
∑

k=1

qh(Bk)

∫

KBk

div uhdx, (2.5)
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and

(f , vh) :=

NS
∑

i=1

vh(Pi)

∫

K∗

Pi

f dx. (2.6)

Equation (2.2) and (2.3) are obtained by integrating the second and first terms
of (1.14) against test functions, respectively and then using the second Green’s
identity.

Then the approximate formulation for (1.14)-(1.16) is: Find (uh, ph) ∈
Hh

0 × Lh
0 such that

a∗(uh;uh,vh) + b∗(vh, ph) = (f ,vh), ∀vh ∈ Yh
0 ,

c∗(uh, qh) = 0, ∀qh ∈ Lh
0 ,

(2.7)

where

a∗(uh;uh,vh) = a∗0(uh,vh) + d∗(uh;uh,vh).

Define one to one transfer operator γh from Hh
0 onto Yh

0 by

γhvh =

NS
∑

j=1

vh(Pj)χ
∗
j (x) ∀x ∈ Ω (2.8)

for all vh ∈ Hh
0 . Using the transfer operator γh, we redefine the bilinear and

trilinear forms in (2.7) as follows. For all uh,vh ∈ Hh
0 and qh ∈ Lh

0

A0(uh,vh) := a∗0(uh, γhvh) , (2.9)

D(uh;uh,vh) := d∗(uh;uh, γhvh) (2.10)

B(vh, qh) := b∗(γhvh, qh), (2.11)

and

A(uh;uh,vh) := A0(uh,vh) + D(uh;uh,vh). (2.12)

It is shown in [5] that the bilinear form A0 is symmetric and that the two
bilinear forms B and c∗ are identical. Hence the approximation problem (2.7)
becomes: Find (uh, ph) ∈ Hh

0 × Lh
0 such that

A(uh;uh,vh) + B(vh, ph) = (f , γhvh), ∀vh ∈ Hh
0

B(uh, qh) = 0, ∀qh ∈ Lh
0 .

(2.13)

Since the redefined forms are defined only on the spaces Hh
0 and Lh

0 , reformu-
lations help one to analyze the scheme using finite element techniques.

Chou [5] proved the following theorem for the covolume approximation for



346 D.Y. Kwak, D. Bayanjargal

Stokes equations:

A0(uh,vh) + B(vh, ph) = (f , γhvh), ∀vh ∈ Hh
0

B(uh, qh) = 0, ∀qh ∈ Lh
0 .

(2.14)

Theorem 2.1. (see [5]) Let the triangulation family of the domain Ω be

quasi-uniform, let (uh, ph) be the solution of the problem (2.14), and (u, p) solve

the problem (1.4)-(1.6). Then there exists a positive constant C independent

of h such that

|u − uh|1,h + ‖p − ph‖0 ≤ Ch(‖u‖2 + ‖p‖1 + 1), (2.15)

provided that u ∈ H1
0 (Ω)

⋂

H2(Ω), p ∈ H1(Ω). Furthermore,

‖u− uh‖0 ≤ Ch(‖u‖2 + ‖p‖1 + 1). (2.16)

3. Convergence of the Covolume Approximation

To analyze the covolume scheme for the Navier-Stokes equations, we need some
known frameworks that handle FEM for the Navier-Stokes equations [4], [9],
[10].

Let X and Y be two Banach spaces and Λ a compact interval of the real
line R. We set the following class of problems:

F (λ, u) = u + TG(λ, u), (3.1)

where T ∈ L(Y ;X), G is C2 mapping from Λ × X into Y .

We want to find pairs (λ, u) ∈ Λ × X solutions of

F (λ, u) = 0. (3.2)

We shall assume that there exists a compact interval Λ ⊂ R and a branch
{(λ, u(λ));λ ∈ Λ} of nonsingular solutions of (3.2) which means that λ → u(λ)
is continuous function from Λ into X and

F (λ, u(λ)) = 0. (3.3)

Moreover, we assume that these solutions are nonsingular in the sense that:

DuF (λ, u(λ)) is an isomorphism of X for all λ ∈ Λ. (3.4)

Now we study the approximation of the branch of nonsingular solutions.
For each value of real parameter h > 0 which will tend to zero, we are given a
finite dimensional subspace Xh of the space X and an operator Th ∈ L(Y ;Xh)
intended to approximate T. We set:

Fh(λ, uh) = uh + ThG(λ, uh), λ ∈ λ, uh ∈ Xh. (3.5)
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Then, the approximate problem consists in finding pairs (λ, uh) ∈ Λ × Xh,
solutions of

Fh(λ, uh) = 0. (3.6)

The following theorem shows the sufficient conditions ensuring the existence
and uniqueness of a branch (λ, uh(λ)) ∈ Λ×Xh of solutions of (3.6) in a suitable
neighborhood of the branch solutions of (3.3).

Theorem 3.1. (see [10]) Assume that G is a C2 mapping from Λ×X into

Y and the mapping D2G is bounded on all bounded subsets of Λ×X. Assume

in addition that the following conditions hold:

1. There exists another Banach space Z contained in Y , with continuous

imbedding, such that

DuG(λ, u) ∈ L(X;Z) ∀λ ∈ Λ, ∀u ∈ X. (3.7)

2. We assume that

lim
h→0

‖(Th − T )g‖X = 0 ∀g ∈ Y (3.8)

and

lim
h→0

‖Th − T‖L(Z;X) = 0. (3.9)

Let (λ, u(λ));λ ∈ Λ be a branch of nonsingular solutions of (3.3). Then

there exists a neighborhood O of the origin in X and for h ≤ h0 small enough

a unique C2 function λ ∈ Λ → uh(λ) ∈ X such that:

(λ, uh(λ));λ ∈ Λ is a branch of nonsingular solutions of (3.6), (3.10)

uh(λ) − u(λ) ∈ O ∀λ ∈ Λ. (3.11)

Furthermore, there exists a constant K > 0 independent of h and λ with:

‖uh(λ) − u(λ)‖X ≤ K‖(Th − T )G(λ, u(λ))‖X ∀λ ∈ Λ. (3.12)

Let us define

Xh := Hh
0 × Lh

0 ,

and a Banach space X̃ as:

X̃ := X ⊕ Xh. (3.13)

Although Theorem 3.1 is originally stated for the Navier-Stokes equations when

X = H1
0(Ω) × L2

0(Ω), Y = H−1(Ω) , (3.14)
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and

Hh
0 ⊂ H1

0(Ω), Lh
0 ⊂ L2

0(Ω),

it still holds when X is replaced by X̃ and the norm ‖ · ‖X by the broken norm
which is defined in Section 2.

So we shall apply the theorem to prove our main theorem for the covolume
approximation of the Navier-Stokes equations.

Recall the covolume approximation problem (2.13) for (1.18):

Find a pair (uh, ph) ∈ Hh
0 × Lh

0 solution of

A(uh;uh,vh) − (ph,divvh) = (f , γvh), ∀vh ∈ Hh
0 ,

(qh, divuh) = 0 ∀qh ∈ Lh
0 .

(3.15)

In order to study (3.15) we relate the continuous and discrete spaces by the
following hypotheses:

Hypothesis H1. (Approximation Property of Hh
0) There exists an oper-

ator rh ∈ L([H2(Ω)
⋂

H1
0 (Ω)]2;Hh

0) such that:

‖v − rhv‖1 ≤ Ch‖v‖2 ∀v ∈ H2(Ω). (3.16)

Hypothesis H2. (Approximation Property of Lh
0) There exists an operator

Sh ∈ L(L2(Ω);Lh
0 ) such that:

‖q − Shq‖0 ≤ Ch‖q‖1 ∀q ∈ H1(Ω). (3.17)

Hypothesis H3. (Uniform Inf-Sup Condition) For each qh ∈ Lh
0 there

exists a vh ∈ Hh
0 such that:

(qh,divvh) = ‖qh‖
2
0, |vh|1 ≤ C‖qh‖0, (3.18)

with a constant C > 0 independent of h, qh and vh.

Then we have the following result:

Theorem 3.2. Assume that the hypotheses H1,H2 and H3 hold. Let

{(λ,u(λ), λp(λ));λ = 1/ν ∈ Λ}

be a branch of nonsingular solutions of the Navier-Stokes (1.18). Then there

exists a neighborhood O of the origin in X̃ and for h ≤ h0 sufficiently small a

unique C∞ branch {(λ,uh(λ), λph(λ));λ = 1/ν ∈ Λ} of nonsingular solutions

of (3.15) such that:

(uh(λ), λph(λ)) ∈ (u(λ), λp(λ)) + O ∀λ ∈ Λ.

Moreover, we have the convergence property:

lim
h→0

sup
λ∈Λ

{|uh(λ) − u(λ)|1 + ‖ph(λ) − p(λ)‖0} = 0. (3.19)
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In addition, if the mapping λ → (u(λ), p(λ)) is continuous from Λ into H2(Ω)×
H1(Ω), we have for all λ ∈ Λ:

|uh(λ) − u(λ)|1 + ‖ph(λ) − p(λ)‖0 ≤ Kh. (3.20)

Proof. Before applying Theorem 3.1, let us check all the conditions of the
theorem. In order to do this, we recall:

X̃ := X ⊕ Xh and Y = H−1(Ω), (3.21)

and define a linear operator T ∈ L(Y ; X̃) as follows: for given f ∈ Y , T f =
(us, ps) ∈ X̃ is the solution of the Stokes problem:

−ν∆us + grad ps = f in Ω ,

divus = 0 in Ω ,

us = 0 on Γ.

(3.22)

Since we are using the divergence form of the Navier-Stokes equations, define
the C2 mapping G̃ : R+ × X̃ → Y by

G̃(λ, u) = λ(∇ · u2 − f), u = (u, p) ∈ X̃, (3.23)

and we see that

DuG̃(λ, u) · w = λ(2∇u ·w), w = (w, r) ∈ X̃. (3.24)

Note that these forms are different from those defined in [10].

Let us define the space Z. By the fundamental Sobolev Imbedding Theorem,
the imbedding of H1

0 into Lp(Ω) is compact for p < 6. Therefore for u and w

in H1
0, we have

∇u · w ∈ (L3/2(Ω))2.

So, we can choose

Z = (L3/2(Ω))2 →֒ Y

with a compact imbedding which satisfies (3.7).

Now, let Th ∈ L(Y ;Xh) be the approximate linear operator defined by: for
given f ∈ Y , (us,h, ps,h) = Thf ∈ Xh is the solution of

ν(∇us,h,∇vh) − (ps,h,div vh) = (f , γvh), ∀vh ∈ Hh
0 ,

(rh,div uh) = 0, ∀rh ∈ Lh
0 .

(3.25)

As it is proved for the Stokes problem in [10], under the hypotheses H1, H2

and H3,

lim
h→0

{|us,h − us|1 + ‖ps,h − ps‖0} = 0, (3.26)
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i.e.

lim
h→0

‖(Th − T )f‖X̃ = 0, ∀ f ∈ Y.

Moreover, when (us, ps) belongs to H2(Ω)×H1(Ω) we have the error bound by
the covolume analysis for the Stokes case [5]:

|us,h − us|1 + ‖ps,h − ps‖0 ≤ Ch(‖us‖2 + ‖ps‖1), (3.27)

i.e

‖(Th − T )f‖X̃ ≤ Ch‖T f‖H2(Ω)×H1(Ω).

Therefore the compactness of the imbedding of Z into Y together with (3.26)
imply that

lim
h→0

‖(Th − T )‖L(Z;X̃) = 0.

Thus (3.8) and (3.9) hold. Since

A(uh;uh,vh) = ν(∇uh,∇vh) +
(

∇ · u2
h, γvh

)

for the Navier-Stokes equations, (3.15) can be expressed as follows:

(∇uh,∇vh) − (1/ν)(ph,div vh) = (1/ν)

(

f −∇ · u2
h, γvh

)

, ∀vh ∈ Hh
0 ,

(qh,div uh) = 0 ∀qh ∈ Lh
0 .

By (3.25), uh := (uh, (1/ν)ph) satisfies:

uh = Th

[

(1/ν)
(

f −∇ · u2
h

)

]

= −ThG̃(1/ν, uh).

Thus, an equivalent form of problem (3.15) is: find uh ∈ Xh solution of

Fh(λ, uh) = uh + ThG̃(λ, uh) = 0 with λ = 1/ν.

As a consequence, we can apply the conclusion of Theorem 3.1: for h ≤ h0

sufficiently small there exists a unique branch {(λ, uh(λ) = (uh(λ), λph(λ)));λ ∈
Λ} of nonsingular solutions of (3.15) which is equivalent to the equation

uh + ThG̃(λ, uh) = 0, ∀λ ∈ Λ,

and a real number a > 0, independent of h, such that:

‖uh(λ) − u(λ)‖X̃ ≤ a ∀λ ∈ Λ.

Furthermore, (3.12) implies that

|uh(λ) − u(λ)|1 + |λ|‖ph(λ) − p(λ)‖0 ≤ K‖(Th − T )G̃(λ, u(λ))‖X̃ .

Hence (3.19) follows from (3.26). Since

u(λ) = (u(λ), λp(λ)) ∈ H2(Ω) × H1(Ω)
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is the solution of the Stokes system:

u(λ) = −TG̃(λ, u(λ)),

the error estimate for covolume scheme with G̃(λ, uh(λ)) as right hand side
gives:

‖(Th − T )G̃(λ, u(λ))‖X̃ ≤ Ch{‖u(λ)‖2 + ‖p(λ)‖1}.

Thus (3.20) is satisfied by the continuity of the mapping λ → u(λ) from Λ into
H2(Ω) × H(Ω).

Remark 1. Although we used the divergence form of the Navier-Stokes
equations for the covolume method, the original form with u · ∇u can also be
used to derive another covolume scheme and all the results obtained here hold
similarly.

4. Numerical Results

The discrete system resulting from a covolume scheme for the Navier-Stokes
equations (2.13) constitutes the following nonlinear system of algebraic equa-
tions:

Au + C(u) + Bp = F ,

BTu = 0 ,
(4.1)

where

(u)T = [uT
1 uT

2 ], uT
i = [u1

i · · · uN
i ], i = 1, 2,

for N nodal velocity and

pT = [p1 · · · pL],

where L is the number of elements in discretization.

Matrices A and B are 2N × 2N and 2N ×L, respectively. The force vector
F is 2N × 1 and C(u) is nonlinear term. Just for simplicity, we assume ν = 1.

The literatures on incompressible flows contain a variety of different meth-
ods of solving such nonlinear problems, which are all based on a different lin-
earization of the system. In this paper, we consider a simple Picard type iter-
ation method which is used to solve (4.1) as a sequence of linear problems for
uk,pk at iterate k. Given (u0,p0), for k = 1, 2, ... solve

Auk + Bpk = Fk − C(uk−1)

BTuk = 0
(4.2)

and we have essentially a sequence of Stokes type problems in which the force
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vector on the right is iteratively adjusted to accommodate the convective non-
linear term. To solve system (4.2) in each iteration we use the Uzawa algorithm
with Conjugate directions.

Example. We have chosen the following test problem on the unit rectan-
gular domain Ω̄ = [0, 1] × [0, 1] with exact solution

u1(x, y) = x2(x − 1)2y(y − 1)(2y − 1) ,

u2(x, y) = −x(x − 1)(2x − 1)y2(y − 1)2 ,

p(x, y) = 2(x −
1

2
)(y −

1

2
) .

We compare with FEM solutions. The results are shown in Table.1.

Comparing the nonconforming covolume method with the nonconforming
finite element method, we can conclude that the numerical results are almost
the same but the velocity error with the covolume method is marginally better
than the finite element method.

Nonconforming covolume Nonconforming FEM

‖u− uh‖L2(Ω) ‖p − ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖p − ph‖L2(Ω)

n error order error order error order error order

8 1.428e-03 3.261e-02 1.429e-03 3.257e-02

16 4.416e-04 1.69 1.441e-02 1.18 4.423e-04 1.69 1.441e-02 1.18

32 1.190e-04 1.89 6.536e-03 1.14 1.192e-04 1.89 6.532e-03 1.14

64 3.050e-05 1.96 3.112e-03 1.07 3.057e-05 1.96 3.109e-03 1.07

128 7.68e-06 1.99 1.529e-03 1.03 7.70e-06 1.99 1.524e-03 1.03

Table 1: Errors and orders of convergence for the triangular meshes
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