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Summary. We analyzeV –cycle multigrid algorithms for a class of per-
turbed problems whose perturbation in the bilinear form preserves the con-
vergence properties of themultigrid algorithmof the original problem.As an
application, we study the convergence of multigrid algorithms for a covol-
umemethod or a vertex–centered finite volume element method for variable
coefficient elliptic problems on polygonal domains. As in standard finite el-
ement methods, theV –cycle algorithm with one pre-smoothing converges
with a rate independent of the number of levels. Various types of smoothers
including point or line Jacobi, and Gauss-Seidel relaxation are considered.

Mathematics Subject Classification (1991):65N15, 65N30

1 Introduction

Thepurposeof this paper is to analyze somemultigrid algorithms for solving
perturbed equations arising from discretizing second order elliptic problems
by a nonstandard method. One such method is the covolume method. Co-
volume methods are efficient and popular finite volume methods for the
discretization of PDEs governing fluid flows in the CFD circle [10,21,15,
16] due mainly to its simplicity and local conservation properties. The co-
volume method used in this paper can also be viewed as a vertex centered
finite volume element method or a generalized finite difference method in
some old literature.
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In [12], a general theory is developed for analyzing covolume meth-
ods as a finite element method resulting from variational crimes. In other
words, each covolumemethod can be obtained from a nearby finite element
method by adding small perturbation terms to the left side bilinear form and
the right side linear functional corresponding to the weak formulation of
the underlying second order elliptic problem. This also opens up the possi-
bility of analyzing and design multigrid algorithms along the same line of
approach. We carry out this program below. The mathematical analyses of
covolume methods applied to other problems such as the Stokes problems
and convection-diffusion equations can be found in [11,13,14]. An efficient
way of solving algebraic systems in covolume methods for Navier-Stokes
equations is the dual variable method (DVM) introduced by Porsching and
studied in [15,16].

For general elliptic problems the multigrid method has proven to be ro-
bust and effective in conjunction with the finite element method. Although
the convergence behavior ofmultigrid algorithms for standard finite element
methods is by now well understood [1,17,2,5,6], much less is known for
the behavior of multigrid algorithms for covolume or finite volume meth-
ods. For cell centered finite difference methods on rectangular or triangular
meshes, see [3,19,20]. In this paperwepresent a rather general theory for the
convergence of multigrid algorithms for perturbed problems(even when the
underlying bilinear form is not variational) and show that covolumemethod
fits into the general framework. Thus, for the present covolume method (a
vertex-centered finite volumemethod) [12], the simplestV –cycle multigrid
algorithm converges with a rate independent of the number of levels, as long
as the coarsest grid is sufficiently small. The requirement for small coarse
grid is necessary for the covolume method to make sense. Yet, it does not
affect the rate of convergence of the multigrid algorithm. Our framework
can be used to show the convergence of other perturbed problems such as
diffusion dominated convection-diffusion problem. The rest of our paper
is organized as follows: In Sect. 2, we present a general framework which
can handle a perturbation of standard variational problems and prove the
V –cycle multigrid convergence of the perturbed problem under certain rea-
sonable assumptions. InSect. 3, we introduce a covolumemethod for elliptic
problems and show that the assumptions of Sect. 2 are satisfied, thus estab-
lishing theV –cycle convergence. Twomost important classes of smoothers,
Jacobi type and Gauss–Seidel type, are analyzed.

2 Multigrid algorithms

Let U1 ⊂ U2 ⊂ · · · ⊂ UJ be a sequence of nested finite dimensional
subspaces of a Hilbert spaceH and leta(·, ·) be a symmetric, coercive
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bilinear form onH×H. Consider the following problem: Findu ∈ H such
that

a(u, v) = (f, v), ∀v ∈ H(2.1)

wheref is a bounded linear functional onH. The discrete problem corre-
sponding to (2.1) is: FinduJ ∈ UJ such that

a(uJ , v) = (f, v), ∀v ∈ UJ .(2.2)

Let Ak(k = 1, · · · , J) be the matrix representations of the forma(·, ·)
onUk × Uk with respect to a certain discrete inner product(·, ·)k. Define
Pk−1 : Uk → Uk−1by

(Ak−1Pk−1w, v)k−1 = (Akw, Ikv)k, for all v, w ∈ Uk−1,(2.3)

whereIk : Uk−1 → Uk is the natural injection operator. The restriction
operatorP 0

k−1 : Uk → Uk−1 is defined by

(P 0
k−1w, v)k−1 = (w, Ikv)k, for all v, w ∈ Uk−1.

Now the discretized equation (2.1) can be rewritten in the above notation as

AJuJ = fJ ,(2.4)

wherefJ is the vector representation off .
We now describe theV –cycle multigrid algorithm for iteratively com-

puting the solutionuJ of (2.4). LetRk be any smoothing operator such as
Jacobi or Gauss-Seidel. Then theV –cycle algorithm is defined as follows:

Multigrid Algorithm 2.1. SetB1 = A−1
1 . Fork ≥ 2 defineBk : Uk → Uk

in terms ofBk−1 as follows. Letg ∈ Uk.

1. Setx0 = 0.
2. Definexl for l = 1, . . . ,m by

xl = xl−1 +Rk(g −Akx
l−1).

3. SetBkg = xm + q whereq is defined by

q = Bk−1P
0
k−1(g −Akx

m).

Here we smooth as we go down the coarser levels. Also, the number of
smoothingsm can vary from level to level, althoughm = 1 for all k suf-
fices in our analysis. The casem1 or the case with post–smoothing can be
analyzed similarly.

From the definition ofPk−1, it is straightforward to check that

P 0
k−1Ak = Ak−1Pk−1.(2.5)
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LetKk = I −RkAk. ThenKkx = x− x1. Now forx ∈ Uk, k = 1, · · · , J,
we have

(I −BkAk)x = x− x1 − q
= Kkx−Bk−1Ak−1Pk−1Kkx
= [I −Bk−1Ak−1Pk−1]Kkx
= [(I − Pk−1) + (I −Bk−1Ak−1)Pk−1]Kkx.

The convergence results of the multigrid method will be expressed in terms
of the error operatorsEk := I−BkAk andE := EJ . Throughout the paper,
C denotes a generic constant independent ofk and can have different values
in different places, unless otherwise stated.

The convergence theory of multigrid algorithms associated with self-
adjoint elliptic problems is well-established in [1,17,2,5,7]. In particular,
for theV –cycle convergence which is closely related to our presentation,
see [2,5,7,4]. Also, when the matrixAk is sparse, symmetric positive def-
inite, the convergence analysis can be carried out algebraically under mild
assumptions[7]. For the convergence analysis of the multigrid algorithm,
one needs to impose some conditions on the smoothers, i.e.,

1. There is a constantCR such that

(C.1)
(u, u)k

λk
≤ CR(R̄ku, u)k, for all u ∈ Uk,

whereR̄k = (I − Ka
kKk)A−1

k andλk is the largest eigenvalue ofAk.
Here the superscript “a” denotes the adjoint with respect to the inner
producta(·, ·).

2. LetTk = (I−Kk)Pk. Thereexists apositive constantθ < 2 independent
of k such that

(C.2) a(Tkv, Tkv) ≤ θa(Tkv, v) ∀v ∈ Uk.

Under these assumptions, the following result holds [6,7].

Theorem 2.1. [7] Let Uk be the usual conforming finite element space and
letRk be any smoother satisfying (C.1) and (C.2). Then there exists aδ < 1
such that the following estimate holds.

‖Ew‖a ≤ δ‖w‖a ∀w ∈ UJ ,(2.6)

where the energy norm is defined by‖v‖2
a := a(v, v).

V –cycles for a perturbed system of the standard Galerkin FEM.In
anticipation of the fact (cf. Section three) that the covolume method can be
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viewed as committing a variational crime on the standard Galerkin method
(3.7), let us consider its perturbed problem: Findu∗

J ∈ UJ such that

a∗
J(u∗

J , v) = fJ(v), for all v ∈ UJ ,(2.7)

where for each levelk = 1, · · · , J , a∗
k(·, ·) is a possibly non–symmetric

bilinear form defined onUk × Uk andfk is a bounded linear form onUk.
Let A∗

k be the matrix representation ofa∗
k with respect to(·, ·)k. Then, in

parallel witha(·, ·) form, we defineR∗
k andK∗

k usingA∗
k in place ofAk.

Also, defineP ∗
k−1 : Uk → Uk−1 by

a∗
k−1(P

∗
k−1w, v) = a∗

k(w, Ikv) for all w ∈ Uk, v ∈ Uk−1.(2.8)

Then the following relation holds.

P 0
k−1A

∗
k = A∗

k−1P
∗
k−1.(2.9)

Thea∗
k’s are considered as departures ofak’s in the sense that the two

conditions(P.1) and(P.2) below are satisfied. Denote the difference be-
tween the two bilinear forms as

dk(w, v) = a(w, v) − a∗
k(w, v) w, v ∈ Uk

and assume the perturbation condition

(P.1) |dk(w, v)| ≤ Chk‖w‖a‖v‖a, w, v ∈ Uk,

wherehk = 21−kh1 andh1 is certain parameter to be specified later.
The next condition we assume is that

(P.2) |a((Kk −K∗
k)w, v)| ≤ Chk‖w‖a‖v‖a, w, v ∈ Uk.

The multigrid algorithm for (2.7) is the same as Algorithm 2.1 except that
Ak, Bk andRk are replaced by their “*” counterpart. Hence we shall not
repeat it here.

Now for a linear operatorT : Uk → Uk, let ‖T‖a denote the operator
norm induced by the bilinear forma(·, ·):

‖T‖a := sup
w,v∈Uk

a(Tw, v)
‖w‖a‖v‖a

.(2.10)

Let E∗
k = I − B∗

kA
∗
k andE

∗ = E∗
J , the error operators corresponding

to the above modifiedV –cycle scheme. It is reasonable to expect under the
conditions(P.1) and(P.2) that‖E∗

k − Ek‖a ≤ Ch1 and hence for suffi-
ciently smallh1 the corresponding modifiedV –cycle converges uniformly
in the levelk. The remainder of this section will make this rigorous (cf.
Theorem2.2 below).
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Note that condition(P.1) implies the coercivity ofa∗
k with the coercivity

constant independent ofk if the parameterhk’s are small enough. Hence
the operatorP ∗

k−1 is well defined. Also, if we letv = P ∗
k−1w, then by the

coercivity ofa∗
k−1, we have

α‖v‖2
a ≤ a∗

k−1(v, v) = a∗
k(w, Ikv)

≤ M‖w‖a‖v‖a.

Thus,P ∗
k−1 is stable in the energy norm, a fact that will be used to obtain a

more accurate bound for‖P ∗
k−1‖a.

Lemma 2.1. If (P.1) holds, then forw ∈ Uk, v ∈ Uk−1

|a(P ∗
k−1w, v) − a(Pk−1w, v)| ≤ Chk‖w‖a‖v‖a,(2.11)

Proof. We have by(P.1) and the stability ofP ∗
k−1,

|a(P ∗
k−1w, v) − a(Pk−1w, v)| = |a(P ∗

k−1w, v) − a(w, Ikv)|
= |a(P ∗

k−1w, v) − a∗
k(w, Ikv)

+a∗
k(w, Ikv) − a(w, Ikv)|

= |a(P ∗
k−1w, v) − a∗

k−1(P
∗
k−1w, v)

+a∗
k(w, Ikv) − a(w, Ikv)|

= |dk−1(P ∗
k−1w, v) − dk(w, Ikv)|

≤ Chk‖w‖a‖v‖a,(2.12)

�
Thus

‖P ∗
k−1 − Pk−1‖a ≤ Chk(2.13)

and hence using the fact‖Pk−1‖a ≤ 1 we have

‖P ∗
k−1‖a ≤ ‖Pk−1‖a + ‖P ∗

k−1 − Pk−1‖a

≤ 1 + Chk.(2.14)

We now prove the main theorem of this section.

Theorem 2.2. Assume the multigrid algorithm for the original problem
(2.1) has the convergence property given in Theorem2.1. Suppose that(P.1)
holds and thatR∗

k is a smoother satisfying(P.2). Then there exists anh0
such that for allh1 < h0,

‖E∗w‖a ≤ δ∗‖w‖a ∀w ∈ UJ ,(2.15)

whereδ∗ = δ + ch1 < 1 andδ is as in Theorem2.1.
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Proof. We compare the error operators and write their difference as

E∗
k − Ek = (I −B∗

k−1A
∗
k−1P

∗
k−1)(K

∗
k −Kk)

−B∗
k−1A

∗
k−1(P

∗
k−1 − Pk−1)Kk − (E∗

k−1 − Ek−1)Pk−1Kk.

Thus in terms of the operator norm in (2.10) we have

‖E∗
k − Ek‖a ≤ ‖I −B∗

k−1A
∗
k−1P

∗
k−1‖a‖K∗

k −Kk‖a(2.16)

+‖B∗
k−1A

∗
k−1‖a‖P ∗

k−1 − Pk−1‖a‖Kk‖a(2.17)

+‖E∗
k−1 − Ek−1‖a‖Pk−1Kk‖a.(2.18)

We shall show that‖E∗
k − Ek‖a ≤ ckh1. For this purpose, let us make

the induction hypothesis:‖E∗
k−1 − Ek−1‖a ≤ ck−1h1, whereck−1 a con-

stant independent ofk to be defined below. By the triangle inequality and
Theorem2.1

‖E∗
k−1‖a ≤ δ + ck−1h1(2.19)

and
‖B∗

k−1A
∗
k−1‖a ≤ 1 + δ + ck−1h1.(2.20)

We see by the induction hypothesis, (2.13), and (2.14)

‖I −B∗
k−1A

∗
k−1P

∗
k−1‖a ≤ ‖I − P ∗

k−1‖a + ‖I −B∗
k−1A

∗
k−1‖a‖P ∗

k−1‖a

≤ (1 + Chk−1) + ‖E∗
k−1‖a(1 + Chk−1)

≤ (1 + Chk−1)(1 + δ + ck−1h1).(2.21)

Collecting (2.16) through (2.18), and using(P.2), (2.13), (2.21), we see
that

‖E∗
k − Ek‖a ≤ C(1 + Chk−1)(1 + δ + ck−1h1)hk

+C(1 + δ + ck−1h1)hk−1 + ck−1h1

≤ Chk−1(1 + δ + ck−1h1)[
(1 + Chk−1)

2
+ 1] + ck−1h1

≤ CMhk−1(1 + δ + ck−1h1) + ck−1h1,

whereM is a constant such that[ (1+Chk−1)
2 + 1] ≤ M for all k. Let Ĉ :=

CM and in view of the above all we have to do is define

ck := ck−1 + Ĉh−1
1 hk−1(1 + δ + ck−1h1).(2.22)

To see that the sequenceck is uniformly bounded ink, one notes thatcj ≤ ck
for j ≤ k and hence

ck = ck−1 + Ĉh−1
1 (1 + δ + ck−1h1)hk−1

= c1 + Ĉh−1
1

k∑
j=2

(1 + δ + cj−1h1)hj−1
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≤ c1 + Ĉh−1
1

k∑
j=2

(1 + δ + ckh1)hj−1

≤ c1 + 2Ĉ(1 + δ) + 2Ĉh1ck.

Now move theck term to the left to get

ck ≤ (c1 + 2Ĉ(1 + δ))/(1 − 2Ĉh1)

provided thath1 is small enough or equivalently the coarsest grid is suffi-
ciently fine.

Now the theorem follows from Theorem2.1 by the triangle inequality.
�

Remark 2.1.Note thata∗
k(·, ·) in the above theorem is only defined onUk ×

Uk. If, for all k, a∗
k(·, ·) = a∗(·, ·) for some commona∗ as in the Galerkin

approach, in reminiscence of [4] one might impose, instead of the condition
(P.1), the weaker conditions:

(P.1′) |a(w, v) − a∗(w, v)| ≤ C‖w‖0‖v‖a, w, v ∈ Uk

|a(w, v) − a∗(w, v)| ≤ C‖w‖a‖v‖0, w, v ∈ Uk.

In this case, we have

dk(·, ·) = d(·, ·), k = 1, · · · , J
and if we can show that (2.11) holds, we would obtain convergence analysis
again. But it is obvious that condition(P.1′) alone will not even guarantee
that the operatorP ∗

k is well defined. In view of (2.8), one needs to impose
that

a∗
k(v, w) = 0 ∀w ∈ Uk implies thatv = 0.(2.23)

Under this condition, we have

|a(P ∗
k−1w, v) − a(Pk−1w, v)| = |d(P ∗

k−1w, v) − d(w, v)|
= |d((I − P ∗

k−1)w, v)|
≤ C‖(I − P ∗

k−1)w‖0‖v‖a

≤ Chk‖w‖a‖v‖a,

provided thatin the last step one can have a first order projection error
estimate forP ∗

k−1. This whole framework is very similar to one in [4].
However, for our main result to be presented below, we need the stronger
assumption(P.1) because the difference operatorsdk(·, ·) at different levels
are incomparable.
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3 Application of perturbation analysis to covolume methods

In this section we apply the result obtained in the previous section to the
covolume method. Now let us first describe standard finite element method
for an elliptic problem.

Let Ω be a convex polygonal domain inR2 with boundary∂Ω and
consider the general self-adjoint second order elliptic problem

Lu := −
2∑
i,j

∂

∂xi
(aij

∂u

∂xj
) + qu = f x ∈ Ω,(3.1)

u = 0, x ∈ ∂Ω,(3.2)

whereq ∈ L∞ is nonnegative,f ∈ L2(Ω), and the matrix of coefficients
A := (aij), aij = aji ∈ W 1,∞(Ω) is uniformly elliptic, i.e., there exists a
positive constantr0 such that

2∑
i,j=1

aij(x)ξiξj ≥ r(ξ2
1 + ξ2

2)

∀ξ := (ξ1, ξ2) ∈ R2 a.e. in Ω.(3.3)

LetHm = Wm,2 be the usual Sobolev space of orderm and let‖ · ‖ and
| · | denote the associated norm and the semi-norm.

The natural variational problem associated with (3.1)-(3.2) is: Findu ∈
U := H1

0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ U,(3.4)

where

a(u, v) :=
∫

Ω
(

2∑
i,j

aij
∂u

∂xj

∂v

∂xi
+ quv)dx,(3.5)

(f, v) =
∫

Ω
fvdx.(3.6)

Under the above assumptions of the problem data, the exact solutionu ∈
H2(Ω) ∩H1

0 (Ω) [18].
To apply themultigrid algorithms for the finite element equations associ-

ated with the approximation of the above elliptic problem, we first construct
a sequence of nested triangulations ofΩ as follows. Suppose that a coarse
triangulationT1 of Ω is given, we define finer triangulationsTk for k ≥ 2
by subdividing a triangle inTk−1 into four subtriangles by connecting the
midpoints of the edges. The maximum mesh size ofTk is denoted byhk.
Let J be an integer greater than or equal to one, and fork = 1, . . . , J , let
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M
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Fig. 1. Primal and dual domains

Uhk
be the set of continuous piecewise linear functions with respect to the

triangulationTk that vanish on∂Ω. Since the triangulations are nested, it
follows that

Uh1 ⊂ Uh2 ⊂ . . . ⊂ UhJ
.

The spaceUhk
has the meshsizehk = 21−kh1. For simplicity, we write

Uk = Uhk
. Then the standard Galerkin finite element formulation of (3.4)

is: FinduJ ∈ UJ such that

a(uJ , v) = (f, v), ∀v ∈ UJ .(3.7)

Next, we describe covolume method. Let1 ≤ k ≤ J . Referring to
Fig. 1, letKQ stand for the triangle with barycenterQ. The nodes of a
triangular element are its vertices. Associated with the primal partitionTk

we define its dual partitionT ∗
k of Ω as follows. LetP0 be an interior node

andPi, i = 1, . . . , 6 be its adjacent nodes, andMi := M0i the midpoint
ofP0Pi. Connect successively the pointsM1, Q1,M2, Q2, · · · ,M6, Q6,M1
to obtain the dual polygonal elementK∗

P0
. The dual elementK∗

P2
based at

a typical boundary nodeP2 is defined by restricting the covolume to the
interior ofΩ. LetSQ andS∗

P0
denote respectively the areas of triangleKQ

and polygonK∗
P0
.We shall assume the partitions to be quasi-uniform, i.e.,

there exist two positive constantsC1, C2 independent ofh such that

C1h
2
k ≤ SQ ≤ C2h

2
k, C1h

2
k ≤ S∗

P0
≤ C2h

2
k,(3.8)

for all barycentersQ and all internal nodesP0. Corresponding toTk we
define the trial function spaceUk ⊂ H1

0 (Ω) as the space of continuous
functions on the closure ofΩ which vanish on the boundary∂Ω and are
linear on each triangleKQ ∈ Tk. LetΠk : C(Ω̄) → Uk be the usual linear
interpolator, and thus ifw ∈ H2(Ω),

|w −Πkw|m ≤ Ch2−m
k |w|2, m = 0, 1.(3.9)
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The test function spaceVk ⊂ L2(Ω) associated with the dual partitionT ∗
k

is defined as the set of all piecewise constants over the dual volumes (co-
volumes) that vanish on∂Ω. More specifically, letχP0 be the characteristic
function of the setK∗

P0
we have forvk ∈ Vk

vk =
∑

P0∈Ω◦
k

vk(P0)χP0 ,(3.10)

whereΩ◦
k is the set of interior nodes ofTk.

The vertex–centered covolume method we consider is: Findu∗
k ∈ Uk

such that
b∗k(u

∗
k, yk) = (f, yk) ∀yk ∈ Vk,(3.11)

where
b∗k(uk, yk) :=

∑
P0∈Ω◦

k

yk(P0)b∗k(uk, χP0),(3.12)

and

b∗k(uk, χP0) := −
∫

∂K∗
P0

(A∇uk) · nds+
∫

K∗
P0

qukdx,(3.13)

wheren is outward unit normal to∂K∗
P0
, andb∗k(·, ·) is bilinear by con-

struction. It should be noted that the above formulation is just another way
of stating that we have an integral conservation form on dual domains us-
ing the divergence theorem. One can turn this Petrov-Galerkin method into
a standard Galerkin method by introducing a one to one transfer operator
Π∗

k : Uk → Vk connecting the trial and test spaces as

Π∗
kw :=

∑
P0∈Ω◦

k

wk(P0)χP0 ,(3.14)

which has the approximation property

||w −Π∗
kw||0 ≤ Chk|w|1.(3.15)

The error estimation along this approach has been carried out in [12].
We sketch it here as it is also relevant to the convergence analysis of our
multigrid schemes. Set

a∗
k(uk, vk) = b∗k(uk, Π

∗
kvk), for uk, vk ∈ Uk.

The basic idea is to observe that the standard finite element method for (3.1)
is to finduk ∈ Uk such that

a(uk, vk) = (f, vk), for all vk ∈ Uk,(3.16)
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whereas the above covolume method is to findu∗
k ∈ Uk such that

a∗
k(u

∗
k, vk) = (f,Π∗

kvk), for all vk ∈ Uk.(3.17)

By (3.15), We anticipate the two problems are close, and indeed the
following estimate of the differencedk = a − a∗

k between the above two
bilinear forms have been established in [12].

Lemma 3.1. There exists a constantC independent ofvk, wk andhk such
that forvk, wk ∈ Uk,

|dk(vk, wk)| ≤ Chk‖vk‖1‖wk‖1.(3.18)

Thus the bilinear forma∗
k is a perturbation of the forma. Note that

if vk, wk ∈ Uk have support confined to a subdomainΩi
k, then we also

have (3.18) where in the right hand side, the norm is taken over the setΩi
k.

Frequently,Ωi
k is the support of a single basis function in the case of point

relaxation, or the union of supports of functions along a line in case of line
relaxation.

As a corollary of Lemma 3.1, we have coerciveness of the forma∗
k (hk

small enough) and its boundedness. Furthermore, we have the following
error estimate.

Lemma 3.2. The solution ofuk of the problem(3.11)and the exact solution
u of (3.1)satisfy

||u− uk||1 ≤ Chk||u||2.(3.19)

Remark 3.1.The above error estimates for the covolume method was de-
rived in [12] where the domain was required to have a smooth boundary.
But the smoothness requirement on the domain was necessary only for the
max-norm andL2 norm error estimates. For the convergence of multigrid
algorithm in this paper, we only needH1 norm estimates and the polygonal
domain assumption shall do for our purpose.

Note that the algebraic equation derived from the covolume scheme is
nonsymmetriceven if theunderlyingPDE issymmetric.Thismakes theanal-
ysismore difficult. Nevertheless, Lemma 3.1 allows us to use the framework
of Section two.

Let us now describe the multigrid algorithm for the covolume method.
Foreachprimal triangulationTk,wedefinedual triangulationT ∗

k byconnect-
ing the barycenter of a triangle and its midpoint of the edges, as described in
Sect. 2. The dual spacesVk, k = 1, · · · , J , are defined as the set of piecewise
constant functions on dual triangulations. We note that the dual spaces are
not nested because a dual elementK∗

k ∈ T ∗
k is not a subset of a dual element

in K∗
k−1 ∈ T ∗

k−1. In other words, refinements of a dual element atk − 1
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level do not result in dual elements atk level. Instead, the dual elements in
T ∗

k arise as the dual of refinements of primal triangulation ofT ∗
k−1. Thus

Vk−1 �⊂ Vk, for k = 1, · · · , J.
In general, the multigrid convergence theory is presented in terms of the

bilinear formsak involved.When the spacesUk arenestedand theassociated
bilinear forms are inherited(variational), i.e, when

ak(Ikw, Ikw) = ak−1(w,w), ∀w ∈ Uk−1,(3.20)

whereIk : Uk−1 → Uk is the injection operator, the accompanying multi-
grid algorithms are well analyzed. For example,V –cycle convergence is
established in [2,5,7]. In our case, the associated bilinear form is nonvaria-
tional in nature, because the test function spaces are nonnested, i.e,

a∗
k(Ikw, Ikw) �= a∗

k−1(w,w), w ∈ Uk−1.

Hence one has to resort to the type of perturbation analysis demonstrated in
Sect. 2.

As usual withmultigrid algorithms, we consider two types of smoothers:
the Jacobi type(additive) and Gauss-Seidel type(multiplicative). We shall
present these smoothers in terms of subspace decompositions. Specifically,
we write

Uk =
l∑

i=1

U i
k

whereU i
k is the one dimensional subspace spanned by the nodal basis func-

tion φi
k or the subspace spanned by the nodal basis functions along a line.

LetA∗
k,i : U i

k → U i
k be defined by

(A∗
k,iw,χ)k = a∗

k(w,χ) for all χ,w ∈ U i
k

andQk,i : Uk → U i
k be the projection ontoU i

k with respect to the inner
product(·, ·)k. Also, we letP ∗i

k : Uk → U i
k be defined by

(A∗
kP

∗i
k w,χ)k = a∗

k(w,χ), χ ∈ U i
k, w ∈ Uk.

The corresponding operatorP i
k for finite element method is defined by

(AkP
i
kw,χ)k = a(w,χ), χ ∈ U i

k, w ∈ Uk.

We note that

a((I − P i
k)w, (P

i
k − P ∗i

k )v) = 0 ∀w, v ∈ Uk.(3.21)
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Lemma 3.3.We have, forw ∈ Uk,

‖P ∗i
k w‖1,Ωi

k
≤ C‖w‖1,Ωi

k
,(3.22)

‖P i
kw‖1,Ωi

k
≤ C‖w‖1,Ωi

k
,(3.23)

and
‖(P i

k − P ∗i
k )w‖1 ≤ Chk‖w‖1,Ωi

k
.(3.24)

Proof. By the coerciveness of the forma∗
k, we have

α‖P ∗i
k w‖1,Ωi

k
≤ a∗

k(P
∗i
k w,P ∗i

k w)

= a∗
k(w,P

∗i
k w)

≤ C‖w‖1,Ωi
k
‖P ∗i

k w‖1,Ωi
k
,

which is (3.22). The estimate (3.23) can be obtained similarly.
By (3.22) and (3.23),

a((P i
k − P ∗i

k )w, v) = a(P i
kw, v) − a(P ∗i

k w,P i
kv)

= a(P i
kw, v) − a∗

k(P
∗i
k w,P i

kv)
+a∗

k(P
∗i
k w,P i

kv) − a(P ∗i
k w,P i

kv)
= a(w,P i

kv) − a∗
k(w,P

i
kv)

+a∗
k(P

∗i
k w,P i

kv) − a(P ∗i
k w,P i

kv)
= dk(w,P i

kv) − dk(P ∗i
k w,P i

kv).

Taking absolute values and using Lemma 3.1, (3.22) and (3.23), we obtain
(3.24). �

Example 1.We consider the additive smoother defined by

R∗
k = γ

l∑
i=1

A∗−1
k,i Qk,i.

The constantγ is a scaling factor which is chosen to ensure that (C.2) is
satisfied for the corresponding operatorRk for the finite element method [9,
6]. In this case, we have

K∗
k = I −R∗

kA
∗
k = γ

l∑
i=1

P i∗
k .(3.25)

Example 2.We next consider the multiplicative smoother. Givenf ∈ Uk,
we defineR∗

k by

1. Setv0 = 0 ∈ Uk.
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2. Definevi, for i = 1, . . . , l, by

vi = vi−1 +A∗−1
k,i Qk,i(f −A∗

kvi−1).

3. SetR∗
kf = vl.

In this case, we have

K∗
k = I −R∗

kA
∗
k =

l∏
i=1

(I − P ∗i
k ).(3.26)

Theorem 3.1. LetR∗
k be defined by Examples 1 or 2. Then there exists an

h0 such that for allh1 < h0,

‖E∗w‖a ≤ δ∗‖w‖a, ∀w ∈ UJ ,(3.27)

whereδ∗ = δ + ch1 < 1 andδ is as in Theorem2.1.

Proof. By Lemma 3.1 and the discussions in Sect. 2, it suffices to show
(P.2). Let us first consider Example 1. Fork1, by definition ofP ∗i

k and
(3.25) we have

K∗
k −Kk = γ

l∑
i=1

(P ∗i
k − P i

k).

Summing overi then using (3.24) and the Cauchy-Schwarz inequality, we
get

|a((K∗
k −Kk)w, v)| ≤ Chk

l∑
i=1

‖w‖1,Ωi
k
‖v‖1,Ωi

k
≤ Chk‖w‖1‖v‖1,

Thus we have
‖K∗

k −Kk‖a ≤ Chk.(3.28)

Now consider Example 2. The perturbation operator for this example is

Kk −K∗
k = El − E∗

l .

whereE∗
l is given by (3.26) and

E∗
i = (I − P ∗i

k )(I − P ∗i−1
k ) · · · (I − P ∗1

k ) = (I − P ∗i
k )E∗

i−1

with E∗
0 = I. LikewiseEi is defined. Note that

I − E∗
i−1 =

i−1∑
m=1

P ∗m
k E∗

m−1(3.29)

Since

Ei − E∗
i = (I − P i

k)(Ei−1 − E∗
i−1) − (P i

k − P ∗i
k )E∗

i−1,
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we have by (3.21)

||(Ei − E∗
i )w||2a = ||(I − P i

k)(Ei−1 − E∗
i−1)w||2a + ||(P i

k − P ∗i
k )E∗

i−1w||2a.
By (3.24) and the fact that the operator norm of(I−P i

k) is bounded by one,
it follows that

||(Ei − E∗
i )w||2a ≤ ||(Ei−1 − E∗

i−1)w||2a + Ch2
k||E∗

i−1w||21,Ωi
k
.

Summing overi, sinceE0 = E∗
0 = I, we obtain

||(El − E∗
l )w||2a ≤ Ch2

k

�∑
i=1

||E∗
i−1w||21,Ωi

k
.(3.30)

We shall show that

�∑
i=1

||E∗
i−1w||21,Ωi

k
≤ C||w||2a.(3.31)

By the arithmetic–geometric mean inequality, the definitionE∗
i , (3.29) and

the limited interaction property [6], it follows that

�∑
i=1

||E∗
i−1w||21,Ωi

k
≤ 2

�∑
i=1

||w||21,Ωi
k

+ 2
�∑

i=1

||w − E∗
i−1w||21,Ωi

k

≤ C||w||2a + 2
�∑

i=1

||
i−1∑
m=1

P ∗m
k E∗

m−1w||21,Ωi
k

≤ C(||w||2a +
�∑

m=1

�∑
i=1

||P ∗m
k E∗

m−1w||21,Ωi
k
)

≤ C(||w||2a +
�∑

m=1

||P ∗m
k E∗

m−1w||2a).(3.32)

In order to estimate the last term on the right of (3.32) we write

||P ∗m
k E∗

m−1w||2a = a(P ∗m
k E∗

m−1w,P
∗m
k E∗

m−1w)
= a((E∗

m−1 − E∗
m)w, (E∗

m−1 − E∗
m)w)

= a((E∗
m−1 − E∗

m)w, (E∗
m−1 + E∗

m)w)
−2a(P ∗m

k E∗
m−1w, E∗

mw)
= a(E∗

m−1w, E∗
m−1w) − a(E∗

mw, E∗
mw)

−2a(P ∗m
k E∗

m−1w, (I − P ∗m
k )E∗

m−1)w).(3.33)
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Now by (3.24)

a(P ∗m
k E∗

m−1w, (I − P ∗m
k )E∗

m−1w)
= a(P ∗m

k E∗
m−1w, (P

m
k − P ∗m

k )E∗
m−1)w)

≤ Chk||P ∗m
k E∗

m−1w||a||E∗
m−1w||1,Ωm

k
.(3.34)

Hence, combining (3.33) and (3.34), we have

||P ∗m
k E∗

m−1w||2a ≤ C[a(E∗
m−1w, E∗

m−1w) − a(E∗
mw, E∗

mw)]

+Ch2
k||E∗

m−1w||21,Ωm
k
.

Summing overm we conclude that

�∑
m=1

||P ∗m
k E∗

m−1w||2a ≤ C||w||2a + Ch2
k

�∑
m=1

||E∗
m−1w||21,Ωm

k
.

This together with (3.32) yields (3.31) whenhk is small enough. Finally,
we obtain from (3.31) and (3.30) that fork1,

||K∗
k −Kk||a ≤ Chk.

�
Remark 3.2.It is possible to analyze other types of smoother. For example,
smoother based onAk notA∗

k(Examples 2,3 of [4]) or smoothers based on
normal equation(Example 4 of [4]) can be analyzed, but these are not prac-
tical, especially in a covolume method becauseAk is not readily available.
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