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Summary. We analyzeV/—cycle multigrid algorithms for a class of per-
turbed problems whose perturbation in the bilinear form preserves the con-
vergence properties of the multigrid algorithm of the original problem. As an
application, we study the convergence of multigrid algorithms for a covol-
ume method or a vertex—centered finite volume element method for variable
coefficient elliptic problems on polygonal domains. As in standard finite el-
ement methods, thE—cycle algorithm with one pre-smoothing converges
with a rate independent of the number of levels. Various types of smoothers
including point or line Jacobi, and Gauss-Seidel relaxation are considered.

Mathematics Subject Classification (19965N15, 65N30

1 Introduction

The purpose of this paper is to analyze some multigrid algorithms for solving
perturbed equations arising from discretizing second order elliptic problems
by a nonstandard method. One such method is the covolume method. Co-
volume methods are efficient and popular finite volume methods for the
discretization of PDEs governing fluid flows in the CFD circle [10,21,15,
16] due mainly to its simplicity and local conservation properties. The co-
volume method used in this paper can also be viewed as a vertex centered
finite volume element method or a generalized finite difference method in
some old literature.
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In [12], a general theory is developed for analyzing covolume meth-
ods as a finite element method resulting from variational crimes. In other
words, each covolume method can be obtained from a nearby finite element
method by adding small perturbation terms to the left side bilinear form and
the right side linear functional corresponding to the weak formulation of
the underlying second order elliptic problem. This also opens up the possi-
bility of analyzing and design multigrid algorithms along the same line of
approach. We carry out this program below. The mathematical analyses of
covolume methods applied to other problems such as the Stokes problems
and convection-diffusion equations can be found in [11,13, 14]. An efficient
way of solving algebraic systems in covolume methods for Navier-Stokes
equations is the dual variable method (DVM) introduced by Porsching and
studied in [15, 16].

For general elliptic problems the multigrid method has proven to be ro-
bust and effective in conjunction with the finite element method. Although
the convergence behavior of multigrid algorithms for standard finite element
methods is by now well understood [1,17,2,5,6], much less is known for
the behavior of multigrid algorithms for covolume or finite volume meth-
ods. For cell centered finite difference methods on rectangular or triangular
meshes, see [3,19, 20]. Inthis paperwe present a rather general theory for the
convergence of multigrid algorithms for perturbed problems(even when the
underlying bilinear form is not variational) and show that covolume method
fits into the general framework. Thus, for the present covolume method (a
vertex-centered finite volume method) [12], the simpléstycle multigrid
algorithm converges with a rate independent of the number of levels, as long
as the coarsest grid is sufficiently small. The requirement for small coarse
grid is necessary for the covolume method to make sense. Yet, it does not
affect the rate of convergence of the multigrid algorithm. Our framework
can be used to show the convergence of other perturbed problems such as
diffusion dominated convection-diffusion problem. The rest of our paper
is organized as follows: In Sect. 2, we present a general framework which
can handle a perturbation of standard variational problems and prove the
V—cycle multigrid convergence of the perturbed problem under certain rea-
sonable assumptions. In Sect. 3, we introduce a covolume method for elliptic
problems and show that the assumptions of Sect. 2 are satisfied, thus estab-
lishing theV/—cycle convergence. Two most important classes of smoothers,
Jacobi type and Gauss—Seidel type, are analyzed.

2 Multigrid algorithms

LetU; € Uy C --- C Uy be a sequence of nested finite dimensional
subspaces of a Hilbert spa¢é and leta(-,-) be a symmetric, coercive
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bilinear form onH x H. Consider the following problem: Finde H such
that
(2.1) a(u,v) = (f,v), YweH

where f is a bounded linear functional aii. The discrete problem corre-
sponding to (2.1) is: Find; € U; such that

(2.2) a(uy,v) = (f,v), YveU,.

Let Ax(k = 1,---,J) be the matrix representations of the forf, -)
on Uy x Uy with respect to a certain discrete inner prodlct),. Define
Py_1:Up — Up_1by

(2.3) (Ap_1Pr_1w,v)p_1 = (Agw, Ixv), forallv,w € Up_q,
wherel; : U,_1 — Uy is the natural injection operator. The restriction
operatorP{ | : Uy — Uj_1 is defined by

(P,?_lw,v)k_l = (w, Iyv)g, forallv,w € Uy_;.
Now the discretized equation (2.1) can be rewritten in the above notation as
(2.4) Ajuy = fJ,

wheref; is the vector representation 6f

We now describe th& —cycle multigrid algorithm for iteratively com-
puting the solution.; of (2.4). Let R, be any smoothing operator such as
Jacobi or Gauss-Seidel. Then tiecycle algorithm is defined as follows:

Multigrid Algorithm 2.1. SetB; = Al‘l. Fork > 2 defineBy, : U, — Uy,
in terms of B;,_; as follows. Letg € Uy.

1. Setz? = 0.
2. Definez! forl =1,...,mby

=2 4 Ry(g — Apa!™h).
3. SetBig = 2™ + g whereq is defined by
q= Bk,lP,?_l(g — Agzx™).

Here we smooth as we go down the coarser levels. Also, the number of
smoothingsn can vary from level to level, although = 1 for all k& suf-
fices in our analysis. The casel or the case with post—-smoothing can be
analyzed similarly.

From the definition ofP,_1, it is straightforward to check that

(2.5) P} Ay = Ay 1Py



444 S.-H. Chou, D.Y. Kwak

Let K, = I — R Ay. ThenKx =z —z'. Nowforz e Uy, k=1,---, J,
we have

(I - BRAp)r =z —a' — ¢
= Kz — By 1Ap 1 Pr 1 Ky
=[I — By—1Ar-1Py1| Ky
= [(I - Pk—l) + (I - Bk—lAk—l)Pk—l]kaE-

The convergence results of the multigrid method will be expressed in terms
of the error operatorBy, := I — B, A, andE := E;. Throughout the paper,

C denotes a generic constant independehtarid can have different values

in different places, unless otherwise stated.

The convergence theory of multigrid algorithms associated with self-
adjoint elliptic problems is well-established in [1,17,2,5,7]. In particular,
for the V—cycle convergence which is closely related to our presentation,
see [2,5,7,4]. Also, when the matriy, is sparse, symmetric positive def-
inite, the convergence analysis can be carried out algebraically under mild
assumptions[7]. For the convergence analysis of the multigrid algorithm,
one needs to impose some conditions on the smoothers, i.e.,

1. There is a constadiy such that

(uv U)k

(C.1) "

< CR(Rku,u)k, forall u € Uy,

whereRy, = (I — K,‘;Kk)A,gl and )\ is the largest eigenvalue of;.
Here the superscripta™ denotes the adjoint with respect to the inner
producta(-, -).

2. LetTy, = (I—K})Py. There exists a positive const@nt 2 independent
of k such that

(C.2) a(Tyv, Tyv) < Oa(Tv,v) Yo € Uy.
Under these assumptions, the following result holds [6, 7].

Theorem 2.1. [7] Let Uy, be the usual conforming finite element space and
let Ry, be any smoother satisfying (C.1) and (C.2). Then there exists
such that the following estimate holds.

(2.6) [Ew]la < dljwlla Vw € Uy,

where the energy norm is defined |py|? := a(v, v).

V—cycles for a perturbed system of the standard Galerkin FEM.In
anticipation of the fact (cf. Section three) that the covolume method can be
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viewed as committing a variational crime on the standard Galerkin method
(3.7), let us consider its perturbed problem: Firjde U; such that

(2.7) ay(uy,v) = f;(v), forallv e Uy,

where for each levek = 1,---,J, a;(-,-) is a possibly non—-symmetric
bilinear form defined o/, x U and f; is a bounded linear form ofi.
Let A} be the matrix representation af with respect ta(-, -),. Then, in
parallel witha(-, -) form, we defineR; and K using A in place of A;.
Also, defineP;_, : Uy — Uj_1 by

(2.8) ap_(Pi_jw,v) = aj(w,Ixv) forallw € Ug,v € Ug_;.
Then the following relation holds.
(2.9) Py A = A Py

Thea;’s are considered as departuresu@k in the sense that the two
conditions(P.1) and(P.2) below are satisfied. Denote the difference be-
tween the two bilinear forms as

di(w,v) = a(w,v) — a(w,v) w,v € Uy
and assume the perturbation condition
(P.1) |di(w,v)| < Chi|lwllal|v]la, w,v € Uy,

whereh;, = 2'7*h, andh is certain parameter to be specified later.
The next condition we assume is that

(P2)  la((Kx— Kp)w,v)| < Chgllwllallolla w,v € U

The multigrid algorithm for (2.7) is the same as Algorithm 2.1 except that
Ay, Br, and Ry, are replaced by their “*” counterpart. Hence we shall not
repeat it here.

Now for a linear operatof” : U, — Uy, let||T||, denote the operator
norm induced by the bilinear forax-, -):

a(Tw,v
(2.10) IT||q:= sup ( )

wety, [[wlallvlla”

Let £} = I — B} A; andE* = E7, the error operators corresponding
to the above modifiedt —cycle scheme. It is reasonable to expect under the
conditions(P.1) and(P.2) that || E} — Ej||, < Chy and hence for suffi-
ciently smallh; the corresponding modifield—cycle converges uniformly
in the levelk. The remainder of this section will make this rigorous (cf.
Theorem 2.2 below).
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Note that conditiorf P.1) implies the coercivity ofi;, with the coercivity
constant independent &fif the parameteh,’s are small enough. Hence
the operato’;_, is well defined. Also, if we leb = P w, then by the
coercivity ofa;_,, we have

allv)Z < ag_y (v,v) = aj(w, Iv)
< Mljwl[al[v][a-

Thus, P}, is stable in the energy norm, a fact that will be used to obtain a
more accurate bound Q% _, ||,

Lemma 2.1. If (P.1) holds, then forw € Uy, v € Up_4
(2.11) |a(Pr_yw,v) = a(Prw,v)| < Chllwlla][v]la,
Proof. We have by(P.1) and the stability o> ,,
la(P_jw,v) — a(Py_1w,v)| = |a(Pi_jw,v) — a(w, Iv)|
= ‘a(Pl:flU% ’U) - GZ('IU, Ikv)
+a(w, Iyv) — a(w, Ixv)|
= la(P_yw,v) — a1 (Py_w,v)
+ay (w, Iyv) — a(w, Iv)|
= |dk—1(Pp_qw, v) — dy(w, )|

(2.12) < Chyllwllal[vla,
O
Thus
(2.13) | Pi_1 — Pr—1lla < Chy

and hence using the fatf; ||, < 1 we have

1Pe=1lla < 1Pe-tlla + P51 = Pr-rlla

(2.14) <1+ Chy.

We now prove the main theorem of this section.

Theorem 2.2. Assume the multigrid algorithm for the original problem
(2.1) has the convergence property given in Theorem 2.1. Suppo$@&thpt
holds and thatR;;, is a smoother satisfyingP.2). Then there exists ahy
such that for allh; < hg,

(2.15) IE* W]l < 6*|wlla Vuw e Uy,

whered* = § + chy < 1 andd is as in Theorem 2.1.
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Proof. We compare the error operators and write their difference as

EZ — B, = (I - BZ—IAZ—IPI:;—I)(KI: - Kk)
—Bj 1Ay (P — Peo1)Ky — (B — Ep—1)Pr1 K.

Thus in terms of the operator norm in (2.10) we have

(2.16) |Ex — Eklla < |1 = Br_1 Ag 1 P llall K — Killa

(2.17) 1 Br-1Ak-1llall Pe-1 = Pe-illal Kklla

(2.18) +Ex—1 — Ex—1llal| Pe—1 Kk la-

We shall show thaf|E}; — Ey|lo < cxhi. For this purpose, let us make
the induction hypothesi$.E} | — Ex_1|l¢ < cx—1h1, wherec,_; a con-

stant independent df to be defined below. By the triangle inequality and
Theorem 2.1

(2.19) HE;;lea <0+ cp_1h
and

We see by the induction hypothesis, (2.13), and (2.14)
1= By 1 Ap 1 Pialla < 1= Pioglla + [T = B 1 Ax 1 llall Pi-1lla

< (14 Chi—1) + 1 Bg 1 lla(1 + Chi—1)
(221) § (1+Chk_1)(1+5+6k_1h1).
Collecting (2.16) through (2.18), and usifig.2), (2.13), (2.21), we see
that
1E; — Exlla < C(1+ Chy—1)(1 + 0 + ck—1h1) by
+C(1 46+ cp—1h1)hg—1 + ck—1h1

1+ Chy,_
< Chy_1(1+ 5+ck1h1)[(+2kl)

< CMhp_1(14 0 + cp—1h1) + cp—1h1,

+ 1] + ck—1h

wherel is a constant such th +C2h’“*1) + 1] < M for all k. LetC :=
CM and in view of the above all we have to do is define

(2.22) k= cp1 +ChT e 1(1 46 + cp_1hy).

To see that the sequenggs uniformly bounded ik, one notes that; < ¢,
for j < k and hence

Ck = Ck—1 + éhfl(l + 0 4 cg—1h1)hk—1
k
=c+ éh;l Z(l + 6+ ijlhl)hjfl
=2
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k
<e¢; +Chit Z(l + 0+ cxh1)hj
j=2
< e +2C(1+6) +2Chycy.

Now move thec;, term to the left to get
cr < (e1+2C(1+0))/(1—2Chy)

provided thath, is small enough or equivalently the coarsest grid is suffi-
ciently fine.
Now the theorem follows from Theorem 2.1 by the triangle inequality.
O

Remark 2.1.Note thatz} (-, -) in the above theorem is only defined Gp x

Uy. If, for all k, aj(-,-) = a*(-,-) for some commom* as in the Galerkin
approach, in reminiscence of [4] one might impose, instead of the condition
(P.1), the weaker conditions:

(P.1) la(w,v) —a”( >;§0Hwnouvna, w,v € U

w, v
la(w,v) — a*(w,v)| < Clw|la|v|lo, w,ve Us.
In this case, we have

di()=d(,"), k=1,--,J

and if we can show that (2.11) holds, we would obtain convergence analysis
again. But it is obvious that conditiaiP.1’) alone will not even guarantee
that the operatoF; is well defined. In view of (2.8), one needs to impose
that

(2.23) ap(v,w) =0 Yw € Uy implies thatv = 0.

Under this condition, we have

|a(Pr_qw,v) = a(Brw,v)| = |d(P_yw,v) — d(w, v)|
= [d((I = Pp_1)w,v)|
< ClI(I = Be_dwlollvlla
< CthwHaHUHaa

provided thatin the last step one can have a first order projection error
estimate forP;_,. This whole framework is very similar to one in [4].
However, for our main result to be presented below, we need the stronger
assumptiori P.1) because the difference operatdg$-, -) at different levels

are incomparable.
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3 Application of perturbation analysis to covolume methods

In this section we apply the result obtained in the previous section to the
covolume method. Now let us first describe standard finite element method
for an elliptic problem.

Let 2 be a convex polygonal domain iR? with boundaryds2 and
consider the general self-adjoint second order elliptic problem

2
0 ou
(3.1) Lu:=—) —(ajj=—)+qu=f x € §2,
Z’Zj: 8SUZ Jaﬂjj

(3.2) u=0, xcdn,

whereq € L™ is nonnegativef ¢ L?(f2), and the matrix of coefficients
A = (ay), ai; = aj;i € WH(£2) is uniformly elliptic, i.e., there exists a
positive constant0 such that

2
> aij(2)&& > (& +63)
i,j=1
(3.3) VE = (£1,&6) € R ae.inf2.

Let H™ = W™?2 be the usual Sobolev space of ordernd let|| - || and
| - | denote the associated norm and the semi-norm.

The natural variational problem associated with (3.1)-(3.2) is: kird
U := H}(£2) such that

(3.4) a(u,v) = (f,v) YveU,
where

2 ou Ov
35 = ji—— — d ,
(3.5) a(u,v) /Q(;jajaxj oz, + quv)dz
(3.6) (f,v) = /vada:.

Under the above assumptions of the problem data, the exact solution
H?(2)N HE($2) [18].

To apply the multigrid algorithms for the finite element equations associ-
ated with the approximation of the above elliptic problem, we first construct
a sequence of nested triangulationg bés follows. Suppose that a coarse
triangulation7; of {2 is given, we define finer triangulatiorg for k > 2
by subdividing a triangle irf,_; into four subtriangles by connecting the
midpoints of the edges. The maximum mesh siz§;0fs denoted by,

Let J be an integer greater than or equal to one, and:fer 1,...,J, let
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Fig. 1. Primal and dual domains

Uy, be the set of continuous piecewise linear functions with respect to the
triangulation7; that vanish oros2. Since the triangulations are nested, it
follows that

Uh1 C Uh2 Cc...C UhJ.

The spacd/;, has the meshsizk, = 2!7%h,. For simplicity, we write
Ui = Uy,.. Then the standard Galerkin finite element formulation of (3.4)
is: Findu; € Uy such that

(3.7) a(uy,v) = (f,v), YveU;.

Next, we describe covolume method. Let< k£ < J. Referring to
Fig. 1, let K stand for the triangle with barycent€). The nodes of a
triangular element are its vertices. Associated with the primal partiion
we define its dual partitioff,” of {2 as follows. LetP, be an interior node
andP;,i = 1,...,6 be its adjacent nodes, ard; := Mj; the midpoint
of Py P;. Connect successively the poidt§ , Q1, Ms, Qo, - - -, Mg, Qg, M1
to obtain the dual polygonal elemeht; . The dual elemenk’y,, based at
a typical boundary nodé is defined by restricting the covolume to the
interior of 2. Let S, andSp, denote respectively the areas of trianglg
and polygonKy, . We shall assume the partitions to be quasi-uniform, i.e.,
there exist two positive constardg, Cs independent ok such that

(3.8) C1hi < Sg < Cohj,  C1hi < Sp, < Cohj,

for all barycenters) and all internal node#’. Corresponding t&; we
define the trial function spack, C H{(£2) as the space of continuous
functions on the closure a? which vanish on the bounda@(? and are

linear on each triangl&q € 7. Let 11}, : C(§2) — Uy, be the usual linear
interpolator, and thus i € H?(2),

(3.9) lw — Hpw|p, < C’hi_m\wb, m =0,1.
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The test function spaci, C L?({2) associated with the dual partitioh*

is defined as the set of all piecewise constants over the dual volumes (co-
volumes) that vanish ofif2. More specifically, le p, be the characteristic
function of the sef(;, we have for, € V;,

(3.10) ve =Y wl(Po)xpy,
Poesy

where(?; is the set of interior nodes @f.
The vertex—centered covolume method we consider is: kjnd Uj,
such that

(3.11) br(ug, yk) = (fiye) Yk € Vi,
where
(3.12) bi(uk, yk) ==Y yk(Po)bji(ur, Xpy)»
Poes2g
and
(3.13) b (uk, xpy) == —/ (AVuyg) - nds +/ qudz,
0K}, Kp,

wheren is outward unit normal t@ K, , andbj(-, -) is bilinear by con-
struction. It should be noted that the above formulation is just another way
of stating that we have an integral conservation form on dual domains us-
ing the divergence theorem. One can turn this Petrov-Galerkin method into
a standard Galerkin method by introducing a one to one transfer operator
I} - Uy, — Vj, connecting the trial and test spaces as

(3.14) Miw =" wi(Po)xpy
Pyes29

which has the approximation property
(3.15) ||lw — I wl|lo < Chglwl|;.

The error estimation along this approach has been carried out in [12].
We sketch it here as it is also relevant to the convergence analysis of our
multigrid schemes. Set

GZ(uk,Uk) = b,’g(uk,ﬂ,’;vk), for Uk, Vi € Uy.

The basic idea is to observe that the standard finite element method for (3.1)
is to findwu € Uy such that

(3.16) a(ug,vi) = (f,vk), for all vy, € Uy,
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whereas the above covolume method is to fifjce Uy such that
(3.17) ay(ur, vx) = (f, Ijvg), for all vy, € Uy.

By (3.15), We anticipate the two problems are close, and indeed the
following estimate of the differencé, = a — aj, between the above two
bilinear forms have been established in [12].

Lemma 3.1. There exists a constant independent of, w; andh; such
that for v, wy, € Uy,

(3.18) |k (v, wi)| < Chyllvgl|1|lwg]]1-

Thus the bilinear formu; is a perturbation of the form. Note that
if vi,w, € Uy have support confined to a subdoma), then we also
have (3.18) where in the right hand side, the norm is taken over the]set
Frequently2; is the support of a single basis function in the case of point
relaxation, or the union of supports of functions along a line in case of line
relaxation.

As a corollary of Lemma 3.1, we have coerciveness of the fafrth;,
small enough) and its boundedness. Furthermore, we have the following
error estimate.

Lemma 3.2. The solution of;;, of the problen{3.11)and the exact solution
u of (3.1) satisfy

(3.19) [lu = ugl[y < Chy|ful]2.

Remark 3.1.The above error estimates for the covolume method was de-
rived in [12] where the domain was required to have a smooth boundary.
But the smoothness requirement on the domain was necessary only for the
max-norm and.? norm error estimates. For the convergence of multigrid
algorithm in this paper, we only nedd' norm estimates and the polygonal
domain assumption shall do for our purpose.

Note that the algebraic equation derived from the covolume scheme is
nonsymmetric even ifthe underlying PDE is symmetric. This makes the anal-
ysis more difficult. Nevertheless, Lemma 3.1 allows us to use the framework
of Section two.

Let us now describe the multigrid algorithm for the covolume method.
For each primaltriangulatiofy,, we define dual triangulatiofy” by connect-
ing the barycenter of a triangle and its midpoint of the edges, as described in
Sect. 2. The dual spaces, k =1, - - -, J, are defined as the set of piecewise
constant functions on dual triangulations. We note that the dual spaces are
not nested because a dual elemjite 7," is not a subset of a dual element
in K;_, € T;_,. In other words, refinements of a dual element at 1
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level do not result in dual elementsfatevel. Instead, the dual elements in
T arise as the dual of refinements of primal triangulatioff,f, . Thus

Vk_ngVk, fork=1,---,J.

In general, the multigrid convergence theory is presented in terms of the
bilinear formsay, involved. When the spacég, are nested and the associated
bilinear forms are inherited(variational), i.e, when

(3.20) ax(lyw, [w) = ag_1(w,w), Yw € Up_1,

wherel}, : U,_1 — Uy is the injection operator, the accompanying multi-
grid algorithms are well analyzed. For examplé;cycle convergence is
established in [2,5,7]. In our case, the associated bilinear form is nonvaria-
tional in nature, because the test function spaces are nonnested, i.e,

ay,(Iyw, [yw) # aj_(w,w), w € Ug_1.

Hence one has to resort to the type of perturbation analysis demonstrated in
Sect. 2.

As usual with multigrid algorithms, we consider two types of smoothers:
the Jacobi type(additive) and Gauss-Seidel type(multiplicative). We shall
present these smoothers in terms of subspace decompositions. Specifically,

we write
!
Up=>_Uj
=1

whereU,i is the one dimensional subspace spanned by the nodal basis func-
tion ¢;, or the subspace spanned by the nodal basis functions along a line.
Let A} ; : Uy — Uy, be defined by

(A} w, Xk = aj(w,x) forall y,w € U}

andQy,; : Uy — U}, be the projection ontd/;; with respect to the inner
product(-, -);. Also, we letP}* : U, — U}, be defined by

(A} Pfw, )k = aj(w,X), X € Ul,w € U,
The corresponding operat#¥. for finite element method is defined by
(ApPiw, ) = a(w,x), x € Up,w € Uy.
We note that

(3.21) a((I — PHw, (P — P{)v) =0 Yw,v € Uy.
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Lemma 3.3. We have, fow € Uy,

(3.22) 1P wllygp < Cllwlh,gp,
(3.23) |1Prwlly,op < Cllwlly g
and ' '

(3.24) 1P = Pet)wllt < Chyllwlly,g;-

Proof. By the coerciveness of the foraj, we have
al| Peiwl|y g < 0 (Pfiw, Piw)

= aj(w, P{'w)
< Clw

1,9;“P;iw|’1,027

which is (3.22). The estimate (3.23) can be obtained similarly.
By (3.22) and (3.23),

a((P{ — P{Yw,v) = a(Piw,v) — a(P;iw, Piv)
= a(Pyw,v) — aj(Pi'w, PLv)
+a} (Pfiw, Piv) — a(Pfw, Piv)
= a(w, P{v) — a}(w, P{v)
+aZ(P,:iw, P,f:,v) — a(Pk”;iw, P,iv)
= di(w, Plv) — di(P'w, Plv).

Taking absolute values and using Lemma 3.1, (3.22) and (3.23), we obtain
(3.24). O

Example 1We consider the additive smoother defined by

!
Ri=7) A7 Qu

=1

The constanty is a scaling factor which is chosen to ensure that (C.2) is
satisfied for the corresponding operaityrfor the finite element method [9,
6]. In this case, we have

l
(3.25) Kj=1-RjA;=v) P
=1

Example 2We next consider the multiplicative smoother. Givere Uy,
we defineRz; by

1. Setyy =0 € Uk.
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2. Definev;, fori =1,...,1, by

v = Vi1 + Azngk,z‘(f — Ajviq).
3. SetR} f = ;.
In this case, we have

l
(3.26) Ki =1-RpA;=]]T - P,
i=1

Theorem 3.1. Let R}, be defined by Examples 1 or 2. Then there exists an
hg such that for allhy < hy,

(3.27) |E*w|q < 0%||wlle, Yw e Uy,
whered* = § + chqy < 1 andé is as in Theorem 2.1.

Proof. By Lemma 3.1 and the discussions in Sect. 2, it suffices to show
(P.2). Let us first consider Example 1. Féi, by definition of P}* and
(3.25) we have

l
K — Ky =~ (P - P)).
1=1

Summing over then using (3.24) and the Cauchy-Schwarz inequality, we
get

l
la((Kj — Ki)w,v)| < Chy y [wlly o 1]l1,0i < Chillwlli][o]l,
1=1

Thus we have
(3.28) K — Killa < Ch.

Now consider Example 2. The perturbation operator for this example is
K- K;=&-&.
where&; is given by (3.26) and
€ = (I =PI =P (I =B = (I - B)EL,
with £ = I. Likewise&; is defined. Note that

i—1
(3.29) I-&,=> PBmE,
m=1

Since

Ei— & = (I = P)(Ei1 = &) — (Pp = BELY,
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we have by (3.21)
1(& = ENwllz = I = PR (Eimr — Epwllz +[|(PL — PEOE wl]3-

By (3.24) and the fact that the operator norn{ bf- P;) is bounded by one,
it follows that

1€ = ENwlla < NI(E&-1 = E)wll + ChNIES wlff g

Summing ovet, sinceéy = &; = I, we obtain

(3.30) (& — & w2 < ChE Z 1€53wll? g
=1

We shall show that

(3.31) ZH ywlf} g < Clluwlf3.

By the arithmetic—geometric mean inequality, the definiign(3.29) and
the limited interaction property [6], it follows that

l

ZHg* w2 g < 2Z||w||1m +2)  llw— & quwllf o
=1

<C\|w\|2+2ZHZ P e, qwlff o

C(Jfwllz + Z Z 1P ywll} )

m=1 i=1
¢
(3.32) < C(wllz + D 1P Erywll2).
m=1

In order to estimate the last term on the right of (3.32) we write

Ilei‘mS%fle?L = a(Py"Enqw, PyME, _qw)
= a((&y, m)w, (Eme1 — Ep)w)
= a((Em_1 — Ep)w, (Emr +Ep)w)

—2a(P*m W, Erw)
=a(&_w, & _jw) —a(&Erw, Ew)
(3.33) —2a(PE, qw, (I = P&y, )w).
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Now by (3.24)

a(PI:m ;1—111}7 (I - Pl:m)g:n—lw)
= a(P" e, (B — P™)Ep_)w)

m—1

(3.34) < Chie| [P €y wllal[E5 -y wl[1,0p-
Hence, combining (3.33) and (3.34), we have

1P Emqwllz < Cla(En_qw, &y qw) — a(Enw, & w)]
+Ch%||5,’;_1w||%7921.

Summing overn we conclude that

4 l
DB Eqwlla < Cllwll + Chi Y (1€ wlF o
m=1

m=1

This together with (3.32) yields (3.31) whén is small enough. Finally,
we obtain from (3.31) and (3.30) that fbi,

H[{l:< - KkHa < Chy.
a

Remark 3.2.1tis possible to analyze other types of smoother. For example,
smoother based oA, not A7 (Examples 2,3 of [4]) or smoothers based on
normal equation(Example 4 of [4]) can be analyzed, but these are not prac-
tical, especially in a covolume method becauses not readily available.

Acknowledgements\We thank the referee whose kind suggestions have led to improvement
of this paper both in style and content.
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