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Abstract. We consider a covolume or finite volume method for a system of first-order PDEs
resulting from the mixed formulation of the variable coefficient-matrix Poisson equation with the
Neumann boundary condition. The system may represent either the Darcy law and the mass con-
servation law in anisotropic porous media flow, or Fourier law and energy conservation. The velocity
and pressure are approximated by the lowest order Raviart–Thomas space on triangles. We prove its
first-order optimal rate of convergence for the approximate velocities in the L2-and H(div; Ω)-norms
as well as for the approximate pressures in the L2-norm. Numerical experiments are included.
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1. Introduction. Consider the variable coefficient Poisson equation in a poly-
gonal domain Ω ⊂ R2 { −∇ · K∇p = f in Ω,

K∇p · n = 0 in ∂Ω,
(1.1)

where K = K(x) = diag(τ−1
1 (x), τ−1

2 (x)) is a symmetric positive definite diagonal
matrix function and its entries are bounded from below and above by positive con-
stants. The function f satisfies the compatibility condition

∫
Ω
fdx = 0. Furthermore,

we shall assume that τ1, τ2 are locally Lipschitz.
Let us introduce a new variable u = −K∇p and write the above equation as the

system of first-order partial differential equations K
−1u = −∇p,

divu = f,
u · n = 0 on ∂Ω.

(1.2)

This system can be interpreted as modeling an incompressible single phase flow in a
reservoir, ignoring gravitational effects. The matrix K is the mobility κ/µ, the ratio
of permeability tensor to viscosity of the fluid—u is the Darcy velocity and p the
pressure. The first equation is the Darcy law and the second represents conservation
of mass with f standing for a source or sink term. Since κ is in general discontinuous
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due to different rock formations, separating the Darcy law from the second-order
equation and discretizing it directly together with the mass conservation may lead to
a better numerical treatment on the velocity than just computing it from the pressure
via the Darcy law. This approach is well known in the finite element circle [19], but
the same approach can be applied in conjunction with the finite volume method as
well (see [4, 7, 10, 20]).

The associated weak formulation of our first-order system is: Find (u, p) ∈ H0×
L2

0 such that

(K−1u,v) = (p,div v), ∀v in H0,
(divu, q) = (f, q), ∀q in L2

0,
(1.3)

where H0 := H(div; Ω) ∩ {u · n = 0} and L2
0 := {q ∈ L2 :

∫
Ω
qdx = 0}. The space

H(div; Ω) is the set of all vector-valued functions w ∈ L2(Ω)2 such that div w ∈
L2(Ω).

We will use a covolume method to approximate this system. In a covolume
method for differential systems one uses two staggered irregular grids—a primal grid
consisting of primal volumes (elements) and a dual grid consisting of covolumes (dual
elements). The associated discretization equations are derived by integrating the
differential equations over the volumes and using the divergence theorem or the Stokes
theorem when proper. The balance between the numbers of unknowns and equations
depends on a judicious placement of the degrees of freedom for the unknown functions.
A well-known example of this approach in the fluid dynamics is the marker and cell
(MAC) method [14] on staggered rectangular grids for the Navier–Stokes equations.
In the MAC method one places the velocity degree of freedom on the boundary
of the volumes in the primal partition and the pressure degree of freedom at the
centers. The MAC method actually preceded the covolume method, and there are
many generalizations of the MAC method to irregular grids, e.g., [13, 15, 16] for the
Navier–Stokes equations, among others. In our covolume method we will adopt the
same type of MAC variable placement for the pressure and velocity variables, although
we are not dealing with the Navier–Stokes equations. The covolume approach can
also be applied to other systems such as the div-curl system arising from the Maxwell
equations. We refer the reader to the survey paper by Nicolaides, Porsching, and
Hall [17] for other applications and status of the covolume method up to 1995. The
reader can also find therein other interpretations of the covolume approach.

One recent emphasis in the development has been to put the convergence and
stability analysis of the covolume method into a general framework [5, 6, 7, 8, 9, 10].
In these papers the covolume method was viewed as a Petrov–Galerkin scheme. The
basic technique was to relate the scheme to a standard finite element Galerkin or
mixed method through an introduction of the transfer operator that maps the trial
function space into the test function space. However, the transfer operator played no
essential role in the implementation of the method itself.

The purpose of this paper is to consider a covolume method on triangular-
quadrilateral grids which makes essential use of the transfer operator. In other words,
the operator is not only used as an analysis tool, but also defines the scheme itself. To
ease the description let us define two partitions on the domain Ω, a primal partition
over which to integrate the continuity equation, and a dual partition for integrating
the Darcy law.

Referring to Fig. 1, let Th = {KB} be a partition of the domain Ω into a
union of triangular elements, where KB stands for the triangle whose barycenter is
B. We define the nodes of a triangular element to be its midpoints and denote by
P1, P2, . . . , PNS those nodes belonging to the interior of Ω and PNS+1, . . . , PN those
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Fig. 1. Primal and dual domains.

nodes on the boundary. The trial function space Hh associated with the approxi-
mation of the fluid velocity is the lowest-order Raviart–Thomas space for triangles,
i.e.,

Hh := {vh ∈ H0 : vh|K = (a+ bx, c+ by), K ∈ Th},

and the trial space associated with the pressure is

Lh := {qh ∈ L2
0 : qh|K is constant ∀K ∈ Th}.

Next we construct the dual partition T ∗h and the test function space. The dual grid
is a union of interior quadrilaterals and border triangles. Referring to Fig. 1, the
interior node P3 belongs to the common side of the triangles KB1

= ∆A1A2A3 and
KB2 = ∆A1A3A5, and the quadrilateral A1B2A3B1 is the dual element with node at
P3. For a boundary node like P6 the associated dual element is a triangle (∆A5B3A4

in this case).

In general, let K∗p (dashed quadrilateral in Fig. 1) be an interior dual element
that is the union of two primal elements KL (the triangle ∆A1B2A3 in Fig. 1) and
KR (the triangle ∆A1B2A3). Define the operator γh : Hh → L2(Ω)2

γhwh =

NS∑
j=1

(
wh|KL(Pj)χK∗

j
∩KL + wh|KR(Pj)χK∗

j
∩KR

)
,(1.4)

where χQ is the characteristic function of the set Q and NS is the number of interior
edges of Th. The test space associated with the Darcy law is defined as

Yh := R(γh) = the range of γh.

Thus, by (1.4) a function wh ∈ Yh is a piecewise constant vector function, which
can take on different constant vector values on the left and right pieces of an interior
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dual element and is zero on any boundary dual element. Note that the two constant
vector values wh|KL and wh|KR must satisfy

wh|KL · n = wh|KR · n,
where n is a fixed normal unit vector to the common edge of KL and KR. It is
now easy to see that the transfer operator γh sets up a one-to-one correspondence
between the trial and test spaces and dimYh =dim Hh. We mention in passing that
the space Yh is also very natural for defining upwinding mixed finite volume methods
[10, 11, 12].

The standard mixed method on the primal grid is: Find (ũh, p̃h) ∈ Hh×Lh such
that

(K−1ũh,vh)− (divvh, p̃h) = 0, ∀vh in Hh,
(divũh, qh) = (f, qh), ∀qh in Lh.

(1.5)

A natural Petrov–Galerkin method which corresponds to the above method and which
obeys the MAC placement of variables is to replace vh ∈ Hh by wh ∈ Yh. To this
end, let us define the bilinear forms a(·, ·) on Hh ×Yh, b(·, ·) on Yh ×Lh, and c(·, ·)
on Hh × Lh as follows:

a(vh,wh) :=

∫
Ω

K−1vh ·whdx, vh ∈ Hh,wh ∈ Yh,(1.6)

b(wh, ph) = −
NS∑
1

vh(Pi)|KL ·
∫
∂K∗

Pi
∩KL

qhndσ(1.7)

−
NS∑
1

vh(Pi)|KR ·
∫
∂K∗

Pi
∩KR

qhndσ,

c(vh, qh) =
T∑
k=1

qh(Bk)

∫
KB

divvhdx(1.8)

=

∫
Ω

qhdivqhdx.(1.9)

Then the covolume method we consider is: Find (uh, ph) ∈ Hh × Lh such that

a(uh, γhvh) + b(γhvh, ph) = 0, ∀vh in Hh,
c(uh, qh) = (f, qh), ∀qh in Lh.

(1.10)

Set

A(uh,vh) := a(uh, γhvh) = (K−1uh, γhvh), uh,vh ∈ Hh(1.11)

and

B(vh, qh) = b(γhvh, qh), ∀vh ∈ Hh, qh ∈ Lh.(1.12)

We show in Lemma 2.1 that B = −c so that (1.10) becomes

A(uh,wh) +B(wh, ph) = 0, ∀wh in Hh,(1.13)

B(uh, qh) = − (f, qh), ∀qh in Lh,(1.14)

which differs from the standard mixed method (1.5) only in the bilinear form A. The
first-order convergence of the solutions of (1.13)–(1.14) is established in Theorem 3.1
by comparing the two methods.



1854 S.-H. CHOU, D. Y. KWAK, AND P. S. VASSILEVSKI

The organization of this paper is as follows. In section 2 we establish some
preliminary lemmas. We prove our main theorem in section 3, which demonstrates
the first-order convergence of the velocity in the H(div) norm and of the pressure
in the L2-norm. We provide numerical results in the last section and compare them
with the standard mixed method.

2. Saddle-point formulation. In this section the symbol C will denote a pos-
itive generic constant independent of h that may take on different values in different
places.

Lemma 2.1. The following holds.

B(vh, qh) = b(γhvh, qh) = −c(vh, qh), ∀vh ∈ Hh, qh ∈ Lh.

Proof.

−B(vh, qh) =

NS∑
1

(
vh(Pi)|KL ·

∫
∂K∗

Pi
∩KL

qhndσ + vh(Pi)|KR ·
∫
∂K∗

Pi
∩KR

qhndσ

)
=
∑
K∈Th

IK .

Then

IK =

3∑
j=1

∫
Aj+1BAj

qhvh(Pj) · ndσ

=

3∑
j=1

[∫
∆Aj+1BAj

div (qhvh(Pj))dσ −
∫
AjAj+1

qhvh(Pj) · ndσ
]

=

3∑
j=1

[
0−

∫
AjAj+1

qhvh(Pj) · ndσ
]

= −
3∑
j=1

(qhvh(Pj) · n)|AjAj+1|

= −
3∑
j=1

qh

(
vh(Aj) + vh(Aj+1)

2

)
· n|AjAj+1|

= −
3∑
j=1

∫
AjAj+1

qhvh(x) · ndσ

= −qh
∫
K

div (vh(x)) dx.

We next show the coercivity of A.
Lemma 2.2. There exists a constant C independent of h such that

A(vh,vh) ≥ C‖vh‖2H(div), ∀v ∈ Hh

with divvh = 0.
Proof. Since on each K, vh is of the form (a + bx, c + by), divvh = 0 implies

b = 0. Thus we have uh = (a, c) and γuh = uh on K and the result is trivial.
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Then the problem becomes

A(uh,wh) +B(wh, ph) = 0, ∀wh in Hh,(2.1)

B(uh, qh) = −(f, qh), ∀qh in Lh(Ω).(2.2)

Now by Lemma 2.1, B becomes a well-known bilinear form and we have the
following inf-sup condition.

Lemma 2.3. There exists a positive constant β independent of h such that

sup
wh 6=0

B(wh, qh)

|wh|H(div)
≥ β‖qh‖0.(2.3)

Note that by the previous lemmas and the boundedness of A and B, the covolume
method (2.1)–(2.2) is well posed. Next we show some crucial approximation properties
of γh. Let us first define a discrete seminorm for wh = (wh, vh) ∈ Hh:

|wh|21,h :=
∑
K∈Th

||∇wh||20,K + ||∇vh||20,K(2.4)

and the full norm

||wh||21,h = ||wh||20 + |wh|21,h.

We also use ||wh||1,h;K for the corresponding restriction. Since the bilinear form a(·, ·)
of (1.6) involves only L2-functions, we can extend it accordingly.

Lemma 2.4. The transfer operator γh is bounded

‖γhwh‖0 ≤ ‖wh‖0, ∀wh ∈ Hh.(2.5)

There exists a constant C independent of h such that

‖(I − γh)wh‖0 ≤ Ch||wh||1,h, ∀wh ∈ Hh,(2.6)

|(γhuh,wh)− (uh, γhwh)| ≤ Ch
(
|uh|H(div)‖wh‖0 + ‖uh‖0|wh|H(div)

)
,(2.7)

a(uh, (I − γh)wh) ≤ Ch||uh||1,h||wh||H(div), ∀uh,wh ∈ Hh,(2.8)

a(uh, (I − γh)wh) ≤ Ch||uh||H(div)||wh||H(div), ∀uh,wh ∈ Hh.(2.9)

Proof. The relation (2.5) is easily proved by noting that the midpoint quadrature
rule ∫

K

φdx =
1

3
|K|

3∑
i=1

φ(Pi),

where Pi are the midpoints of sides of K, is exact for quadratic polynomials. Now
with K = A1A2A3 denoting a typical triangle (cf. Fig. 2), ∆j = ∆Aj+1BAj , we
have

‖γwh‖20 =

∫ ∣∣∣∣∣∣
NS∑
j=1

wh

∣∣∣∣∣∣
KL

(Pj)χ
∗
K∗
j
∩KL + wh

∣∣∣KR(Pj)χ
∗
K∗
j
∩KR

∣∣∣2 dx(2.10)
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Fig. 2. An element K and its dual subdivision.

≤
∑
K

3∑
j=1

|wh,K(Pj)|2Area(∆j)

=
∑
K

1

3

3∑
j=1

|wh,K(Pj)|2Area(K)

≤ ‖wh‖20.

The proof of (2.6) is straightforward by the Bramble–Hilbert lemma.
To prove (2.7), let K = A1A2A3, (cf. Fig. 2), ∆j = ∆Aj+1BAj , and cj be the

centroid of ∆j . Then

(uh, γhwh)∆j
− (γhuh,wh)∆j

=

∫
∆j

[uh(x)wh(Pj)− uh(Pj)wh(x)]dx

= [uh(cj)wh(Pj)− uh(Pj)wh(cj)]Area(∆j)

= [(uh(cj)− uh(Pj)) ·wh(Pj) + uh(Pj) · (wh(Pj)−wh(cj))]Area(∆j)

= [Duh(cj − Pj) ·wh(Pj) + uh(Pj) ·Dwh(Pj − cj)]Area(∆j)

=
1

2
(divuh(cj − Pj) ·wh(Pj) + divwh(Pj − cj) · uh(Pj))Area(∆j)

≤ Ch (|divuh||wh(Pj)|+ |divwh||uh(Pj)|)Area(∆j)

≤ Ch
(
|uh|H(div),∆j

‖wh‖K + ‖uh‖K |wh|H(div),∆j

)
.

Summing over all j and K, we obtain (2.7).
To prove (2.8), observe

a(uh, (I − γh)wh) = a((I − γh)uh,wh) + [a(γhuh,wh)− a(uh, γhwh)]

= S1 + S2.

We shall show that S1 and S2 are bounded by the right-hand side of (2.8). For
S1, first note that by (2.6)

|S1| = |a((I − γh)uh,wh)|
= |(K−1(I − γh)uh,wh)|
= |((I − γh)uh,K−1wh)|
≤ C||K−1||∞h||uh||1,h‖wh‖.
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We next show how to bound S2. Write K−1 =diag(τ1(x), τ2(x)) with 0 < tmin ≤
τ1, τ2 ≤ tmax. We need to estimate

∑
K

3∑
j=1

(K−1γhuh,wh)∆j − (K−1uh, γhwh)∆j .

Now by (2.6), Lipschitz continuity of K−1, and (2.7), we have

S2 =
∑
K

3∑
j=1

((K−1(x)−K−1(Pj))γhuh,wh)∆j − ((K−1(x)−K−1(Pj))uh(x), γhwh(x))∆j

+
∑
K

3∑
j=1

K−1(Pj)
[
(γhuh,wh)∆j

− (uh, γhwh)∆j

]
implies

|S2| ≤Mh‖uh‖0‖wh‖0 + Ch‖K−1‖∞
[
|uh|H(div)‖wh‖0 + ‖uh‖|wh|H(div)

]
,

where we also used the boundedness of γh in the L2-norm to estimate the first term
on the right. Finally, (2.9) follows from (2.8), since ||uh||1,h ≤ ||uh||H(div), which is

a direct consequence of (2.4).

3. Error estimates. We now prove the main theorem of this paper.
Theorem 3.1. Let the triangulation of the domain Ω be regular, and let

{uh, ph} be the solution of the problem (2.1)–(2.2) and {u, p} of the problem (1.3).
Then there exists a positive constant C independent of h but dependent on ||K−1||∞,
‖u‖1, ‖divu‖1, and ‖p‖1 such that

‖u− uh‖H(div) + ‖p− ph‖0 ≤ Ch(3.1)

provided that u ∈ H1,div u ∈ H1, p ∈ H1.
Proof. Introduce the auxiliary mixed formulation to (1.3): Find (ũh, p̃h) ∈ Hh×

Lh such that

a(ũh,wh) +B(wh, p̃h) = 0, ∀wh in Hh,(3.2)

B(ũh, qh) = −(f, qh), ∀qh in Lh.(3.3)

This system has the following well-known convergence result [18]:

‖u− ũh‖H(div) + ‖p− p̃h‖0 ≤ Ch(‖u‖1 + ‖divu‖1 + ‖p‖1)(3.4)

provided that u ∈ H1,div u ∈ H1, p ∈ H1. On the other hand, we have

a(uh, γhwh) +B(wh, ph) = 0, ∀wh ∈ Hh,(3.5)

B(uh, qh) = −(f, qh), ∀qh ∈ Lh.(3.6)

Since u− uh = (u− ũh) + (ũh − uh), it suffices to estimate the second term on the
right. Subtracting (3.6) from (3.3), we have

B(ũh − uh, qh) = 0, ∀qh ∈ Lh.(3.7)

Subtracting (3.5) from (3.2) yields

a(ũh − uh, γhwh) + a(ũh, (I − γh)wh) +B(wh, ph − p̃h) = 0.(3.8)



1858 S.-H. CHOU, D. Y. KWAK, AND P. S. VASSILEVSKI

Replace the wh above by ẽh := ũh − uh and use (3.7) to obtain

a(ẽh, γhẽh) = −a(ũh, (I − γh)ẽh).

By Lemma 2.2, (2.9), and (3.4)

α‖ẽh‖2H(div)
≤ Ch||ẽh‖H(div),

where C is independent of h but dependent on ||K−1||∞, ‖u‖1, ‖divu‖1, and ‖p‖1.
Hence

‖ẽh‖H(div) ≤ Ch.

An application of the triangle inequality completes the proof for the velocity. The
error in the pressure is estimated by invoking the inf-sup condition.

4. Numerical experiments. First note that the error estimate in the main
theorem is still valid in the case of the Dirichlet problem. Let us now present some
numerical results that illustrate the error behavior of the studied mixed covolume
method. The problem was

∇ · (−K∇p) = f(x, y), (x, y) ∈ Ω = (0, 1)2.(4.1)

The exact solution was chosen p = x(1−x)y(1−y) and Dirichlet boundary conditions
were imposed. The coefficients of the operator were K = diag(k1, k2), k1 = 1+10x2 +
y2, k2 = 1 + x2 + 10y2.

For the flux variable u = (u1, u2) we used the lowest-order Raviart–Thomas
piecewise polynomial space Hh on isosceles right-angled triangles of size h, for h =
2−4, 2−5, 2−6, 2−7. The pressure variable p corresponded to piecewise constants on
the same triangular elements. The space of piecewise constant is denoted by Lh.

The stiffness matrix and right-hand sides were computed using the following
quadrature formula: ∫

K

ψ ≈ |K|
3

(ψ(m1) + ψ(m2) + ψ(m3)) .(4.2)

Here K is either a primal or a dual triangle (cf. Fig. 2); |K|, its area; and m1, m2

and m3, the midpoints of its edges. After the discretization one ends up with the
following linear system of equations to be solved:

A
 U1

U2

P

 = f =

 rhsU1

rhsU2

rhsP

 ,(4.3)

with the saddle-point-like stiffness matrix

A =

[
A BT

B 0

]
·(4.4)

We used the fact that A satisfies the inf-sup condition,

sup
v,p

(Au, p; v, q)[
‖v‖2

H(div)
+ ‖q‖20

] 1
2

≥ β
[
‖u‖2

H(div)
+ ‖p‖20

] 1
2

, ∀u, p ∈ Hh × Lh,(4.5)
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Table 1
Error behavior and iteration counts for the covolume scheme.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 2.45e-4 6.17e-5 1.54e-5 3.86e-6 2
δu1 5.21e-3 1.25e-3 3.07e-4 7.61e-5 2
δu2 5.21e-3 1.25e-3 3.07e-4 7.61e-5 2
δuint

3.03e-3 7.70e-4 1.93e-4 4.84e-5 2

# unknowns 1312 5184 20 608 82 176
# iterations 22 22 23 22

% 0.37 0.37 0.39 0.38
κ 2.00 2.09 2.20 2.25

which in matrix form reduces to the spectral equivalence relations:(ATA−1
0 Ax,x

) ≥ β(A0x,x), ∀x = (U1,U2,P).(4.6)

Here, A0 = [
A0 0
0 I

] where A0 corresponds to the stiffness matrix arising from

the H(div)-bilinear form
∫ K−1u ·v +

∫
divu divv, restricted to the Raviart–Thomas

space for the velocity variable.
Then from a general reason it is clear that any preconditioner M of optimal order

for A0 will define an optimal order preconditioner M = [
M 0
0 I

] for A. Recall that

A is nonsymmetric and indefinite. So one can either use M as a preconditioner in
the GMRES or GCG-LS method for A or one can use M as a preconditioner to
ATM−1A in the standard CG method. We have chosen in our experiments the first
approach. We used a generalized conjugate gradient least squares method (GCG-LS)
as derived in [2] (for a mathematically-equivalent-to-the-GMRES method, see Saad
[21]).

Choices of M , a preconditioner for the H(div)-bilinear form are found in [3, 22, 1].
We used in the experiments reported in Table 1 an algebraically stabilized version
of the hierarchical method from [3]. Details on the algebraic stabilization of the HB
methods are found, for example, in [23].

The stopping criterion in the GCG-LS method was

‖M− 1
2Ar‖ ≤ 10−9‖M− 1

2Ar0‖,
where ‖v‖2 = vTv, and r0 stands for the initial residual, r is the current one. The
initial iterate was chosen as x0 = M−1f , where f was the right-hand side of the
discrete problem Ax = f .

We show in Table 1, in addition to the error behavior of the covolume discretiza-
tion method, also %, κ and the number of iterations, where

% =

(
‖M− 1

2Ar‖
‖M− 1

2Ar0‖

)1/# iterations

(4.7)

was an average reduction factor, and κ was the condition number ofM−1A0. Recall

that A0 = [
A0 0
0 I

], where A0 stands for the matrix corresponding to the H(div)-

bilinear form (K−1u,v)+(divu, divv) computed from the triangular Raviart–Thomas
velocity space.

More specifically, denote xi = ihx, yj = jhy, i = 0, 1, 2, . . . , nx, j = 0, 1, 2, . . . , ny,
hx = hy = h, nx = ny = n = 1/h, for a given h = 2−4, 2−5, 2−6, 2−7. In Table 1, we
show
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Table 2
Error behavior and iteration counts for the standard mixed finite element scheme.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 2.84e-4 7.14e-5 1.79e-5 4.47e-6 2
δu1 5.21e-3 1.25e-3 3.07e-4 7.61e-5 2
δu2 5.21e-3 1.25e-3 3.07e-4 7.61e-5 2
δuint

3.03e-4 7.70e-4 1.93e-4 4.84e-5 2

# unknowns 1312 5184 20 608 82 176
# iterations 22 22 23 22

% 0.37 0.38 0.39 0.38
κ 2.00 2.09 2.20 2.25

(i)

δp = ‖Ihp− ph‖h

:=

 nx∑
i=1

ny∑
j=1

hxhy

(
p
(
xi − 1

2
hx, yj − 1

2
hy

)
− ph

(
xi − 1

2
hx, yj − 1

2
hy

))2
 1

2

,

i.e., a discrete L2-norm of the error p− ph;

(ii)

δu1 = ‖Ihu1 − uh, 1‖h

:=

 nx∑
i=0

ny∑
j=1

hxhy

(
u1

(
xi, yj − 1

2
hy

)
− uh, 1

(
xi, yj − 1

2
hy

))2
 1

2

,

i.e., a discrete L2-norm of the error u1 − uh,1;

(iii)

δu2 = ‖Ihu2 − uh, 2‖h

:=

 nx∑
i=1

ny∑
j=0

hxhy

(
u2

(
xi − 1

2
hx, yj

)
− uh, 2

(
xi − 1

2
hx, yj

))2
 1

2

,

i.e., a discrete L2-norm of the error u2 − uh, 2;

(iv)

δuint
= ‖Ih(u− uh)‖h

:=

 nx∑
i=1

ny∑
j=0

hxhy

(
(u · n)

(
xi − 1

2
hx, yj − 1

2
hy

)
− (uh · n)

(
xi − 1

2
hx, yj − 1

2
hy

))2
 1

2

,

i.e., a discrete L2-norm of the error u ·n−uh ·n, where n is the unit normal
vector to the edge (xi−1, yj−1), (xi, yj);

(v) the number of iterations of the preconditioned GCG-LS method;
(vi) the average reduction factors %, (4.7);
(vii) the condition number κ of M−1A0;
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(viii) the total number of unknowns (for both U and P).
It turns out that our experiments suggest second-order approximation in all vari-

ables. Notice also the constant number of iterations (and corresponding average
reduction factors %) in the preconditioned GCG-LS method.

For comparison, in Table 2, we have included the same kind of results as reported
in Table 1, now for the standard mixed finite element scheme. One can observe that
the schemes differ very little; the covolume one admits slightly better error behavior
for the pressure variable p.
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