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Abstract. We consider an upwinding covolume or control-volume method for a system of first
order PDEs resulting from the mixed formulation of a convection-diffusion equation with a variable
anisotropic diffusion tensor. The system can be used to model the steady state of the transport of a
contaminant carried by a flow. We use the lowest order Raviart–Thomas space and show that the
concentration and concentration flux both converge at one-half order provided that the exact flux
is in H1(Ω)2 and the exact concentration is in H1(Ω). Some numerical experiments illustrating the
error behavior of the scheme are provided.
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1. Introduction. The purpose of this paper is to extend the previous results or
techniques of covolume conservative schemes developed and analyzed for Stokes and
diffusion equations by the authors (see Chou [7]; Chou and Kwak [9], [10]; and Chou,
Kwak, and Vassilevski [11]) to convection-diffusion problems, including the practically
interesting convection-dominated limit case. The ensuing new scheme combines the
covolume methodology from the previous papers and the upwinding strategy to han-
dle the convective term. The present paper deals with the derivation of the scheme,
provides error analysis with limiting conditions on the smoothness of the solution,
and illustrates the method with numerical experiments. The error analysis is pro-
vided economically in the sense that we could have done it the long and direct way
(i.e., purely within the finite volume framework); instead, we adapt an existing error
analysis in a general mixed finite element setting given in Liu, Wang, and Yan [20].
The bridge of the error analysis lies in the construction of a certain transfer operator
(further denoted by γh) between the standard Raviart–Thomas (trial) spaces and the
piecewise constant test spaces commonly used in the finite volume literature. The
covolume scheme simultaneously treats, as in the mixed method, the vector quantity
(flux) and the original scalar one (concentration), and provides O(h

1
2 ) order approx-

imation to both of them in the L2 norm. This seems a reasonable approximation for
piecewise constant test functions. Also, as for the vector unknown, a one-half order
accuracy (at worst) may be acceptable since it is a gradient of the scalar one. In
the case of no convection a first order approximation is possible, and even a second
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order is possible if the mesh subdivision allows for superconvergence. If one departs
from the finite volume (covolume) methodology, i.e., allowing higher-order piecewise
polynomial spaces similar to the mixed method, then a higher order of convergence
is also possible. Those topics, however, are not central to the present paper. The
focus here is the extension of the covolume methodology to the convection-diffusion
problems that works in a convection-dominated limit. Another topic that we are not
concerned with is a local refinement of meshes, an important task we shall pursue in
a later paper.

1.1. Problem formulation. Consider the convection-diffusion problem on an
axiparallel rectangular (bounded) domain Ω ⊂ R2, −∇ · K∇p+∇ · (bp) + αp = f in Ω,

K∇p · n = 0 on Γ+ = {x ∈ ∂Ω : b · n ≥ 0},
p = 0 on Γ− = {x ∈ ∂Ω : b · n < 0}.

(1.1)

One can instead have only Dirichlet boundary condition, i.e., p = 0 on ∂Ω. The
latter boundary condition simplifies the exposition; hence in most of the technical
part of the analysis, only the Dirichlet boundary condition will be assumed. Here
K = K(x) = diag (τ−1

1 (x), τ−1
2 (x)) is a positive definite diagonal matrix function

whose entries are bounded from below and above by positive constants. Furthermore,
we shall assume that τ1, τ2 are locally Lipschitz. The vector function b is in the
Sobolev space [W 1,∞(Ω)]2, f ∈ L2(Ω) and α ∈ L∞(Ω). We impose the following two
conditions so that (1.1) is convection-dominated and uniquely solvable.

(H1) There exist two positive constants ε1 and ε2 such that the two constants are
small and proportional:

ε2 � ||b||∞, ε2/ε1 = O(1),(1.2)

with

ε1 ≤ τ−1
1 , τ−1

2 ≤ ε2 in Ω.(1.3)

(H2) There exists a positive constant γ0 such that

α+
1

2
∇ · b ≥ γ0 in Ω.(1.4)

Problem (1.1) can be used to model the steady state of the transport of a con-
taminant in a porous or anisotropic medium flow. The variable p stands for the
concentration of the contaminant, and b stands for the velocity field of the flow car-
rying it. In this context, the molecular diffusion tensor K (assumed to be diagonal
for simplicity) has less effect on the physics than the convection term b · ∇p, but the
diffusion term contributes to the smoothness of the solution.

Let us introduce a new variable u = −K∇p and write (1.1) as the system of first
order partial differential equations (PDEs),{ K−1u = −∇p,

divu + div(bp) + αp = f,
(1.5)

together with the boundary conditions,

u · n = 0 on Γ+ = {x ∈ ∂Ω : b · n ≥ 0},
p = 0 on Γ− = {x ∈ ∂Ω : b · n < 0}.
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Fig. 1.1. Primal and dual domains.

For ease of reference, we shall also refer to the variable u as the flux or velocity
variable and p as the concentration variable. The main purpose of this new system is
twofold. In the context of the mixed method we can then approximate both variables
to the same order. While in the context of finite volume or difference methods, we
can derive conservative schemes from these first order equations because one of them
represents a conservation law and the other a constitutive law.

We shall need three domain partitions for the approximation problem. More
specifically, let the domain Ω be partitioned (cf. Figure 1) into a union of rectangles
Qi,j with centers ci,j . This is the primal partition which we shall call Rh. The
subindices {i + 1, j}, {i − 1, j}, {i, j + 1}, and {i, j − 1} are assigned to the eastern,
western, northern, and southern adjacent rectangles, respectively, if they exist. Given
Qi,j , the two midpoints of its vertical edges are denoted as ci±1/2,j , and the two
midpoints of horizontal edges as ci,j±1/2. Let ci,j = (xi, yj) and ci+1/2,j = (xi+1/2, yj)
etc., define

Qi+1/2,j := [xi, xi+1]× [yj−1/2, yj+1/2] ∩ Ω̄,

Qi,j+1/2 := [xi−1/2, xi+1/2]× [yj , yj+1] ∩ Ω̄

and

Qi,j := [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2].

Remark 1.1. Note that at the boundary the Qi+1/2,j or Qi,j+1/2 is half the size
of a typical interior volume.

Let

H0 := H(div; Ω) ∩ {u · n = 0 on Γ+},(1.6)
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where H(div; Ω) is the space of all vector-valued functions w ∈ L2(Ω)2 such that
div w ∈ L2(Ω), and also define

L := {q ∈ L2 : q|Q ∈ H1(Q) ∀ Q ∈ Rh}.(1.7)

The associated weak formulation of our first order system is as follows.
Find (u, p) ∈ H0 × L such that

(K−1u,v) = (p, div v) ∀ v in H0,

(divu, q) + d̃h(p, q) = (f, q) ∀ q in L,(1.8)

where the bilinear form

d̃h(p, q) :=
∑
Q∈Rh

[
−
∫
Q

pb · ∇q dx dy +

∫
∂Q

b · npq dσ
]

+ (αp, q).(1.9)

Note that the first two terms on the right are a modification of the expression
(div(bp), q), which does not make sense for nonsmooth p.

Define the trial space as the lowest order Raviart–Thomas space:

Hh := {(uh, vh) ∈ H0 : uh(x, y) = a+ bx,

vh(x, y) = c+ dy on Qi,j}

and

Lh := {qh ∈ L : q is constant over Qij}.

Then the natural (upwinding) mixed finite element method [20] corresponding to (1.8)
deals with the primal grid only. Find (ũh, p̃h) ∈ Hh × Lh such that

(K−1ũh,vh)− (divvh, p̃h) = 0 ∀ vh in Hh,
(divũh, qh) + dh(p̃h, qh) = (f, qh) ∀ qh in Lh,(1.10)

where dh(p̃h, qh) is the discretization of the bilinear form d̃h(p, q) of (1.9) involving
the upwinding concept

dh(ph, qh) =
∑
Q∈Rh

[∫
∂Q

(b · n)+p
i
hq
i
hdσ +

∫
∂Q

(b · n)−pohq
i
hdσ

]
+(αp̃h, qh),(1.11)

where

(b · n)+ := max(b · n, 0), (b · n)− := min(b · n, 0),

and pih is the trace of ph on ∂Q taken from the interior of Q and poh is that from
the exterior of Q. Therefore, at the inflow boundary Γ−, poh = 0 and hence in (1.11)
integration over edges of ∂Q that intersect Γ− is not actually performed.

We will not use the finite element method (1.10) except in the error analysis.
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1.2. The construction of the covolume scheme. Since there are many ex-
isting hydrodynamic codes in either finite difference or finite volume methods, we are
motivated to design and analyze a finite volume mixed method using the upwinding
concept. We will adapt a covolume methodology for the generalized Stokes problem
[7] to approximate this system. The basic idea of creating a covolume method is to
find a good combination of the finite volume method and the marker and cell (MAC)
[17] placements of flow variables. (A balanced survey of the covolume method liter-
ature up to 1995 is given by Nicolaides, Porsching, and Hall [21].) For an analysis
of the MAC scheme for Stokes problem (see Girault and Lopez [15]). In the MAC
scheme, the concentration variable is assigned to the centers of the rectangular vol-
umes and the normal components of the velocity or fluxes are assigned to the edges of
the rectangular volumes. The normal approximate velocity is assumed to be constant
along any edge. There are several ways [4, 8, 9, 16, 23] to exactly or nearly accomplish
this; here we will use the lowest order Raviart–Thomas space Hh for the approximate
velocity field [4, 10]. Note that within each Qi,j the horizontal component of the
velocity is linear in x and constant in y, whereas the vertical component is linear in
y and constant in x. Thus we have four degrees of freedom assigned at midpoints of
edges. For example, on the eastern vertical edge of Qi,j , we have only one unknown;
the accompanying equation is taken by integrating the first component of the vector
equation (1.5)1 over Qi+1/2,j . Similarly, to determine the unknown at the northern
edge, we integrate (1.5)2 over Qi,j+1/2. In other words, if we write the velocity field
as uh = (uh, vh), then Qi,j+1/2 is for the determination of vh and Qi+1/2,j for uh. We
will sometimes call Qi+1/2,j (Qi,j+1/2) as a u-volume (v-volume). These volumes are
also called the covolumes of Qi,j in the literature.

Throughout this paper the primal partition {Qij} is quasi-regular; i.e., there
exists a positive constant C1 independent of h such that

C1h
2 ≤ area{Qi,j} ≤ h2 ∀Qi,j ∈ Rh,

where h := maxi,j{hxi,j , hyi,j}, hxi,j , hyi,j are, respectively, the width and height of Qi,j .
We now describe the present covolume method. Let uh = (uh, vh) ∈ Hh and

ph ∈ Lh be the approximate solution obtained as follows. Integrate the x-component
of the first equation of (1.5) over the volume Qi+1/2,j to get∫

Qi+1/2,j

τ1uh dxdy = −(pi+1,j − pi,j)
∫ yj+1/2

yj−1/2

dy,(1.12)

where pi,j = ph(xi, yj), pi+1,j = ph(xi+1, yj). Integrate the y-component of the first
equation of (1.5) over the (control) volume Qi,j+1/2 to get

∫
Qi,j+1/2

τ2vhdxdy = −(pi,j+1 − pi,j)
xi+1/2∫
xi−1/2

dx,(1.13)

where pi,j+1 = ph(xi, yj+1). Near the boundary of Ω one has to keep in mind that the
covolumes are half of the interior covolumes (see Remark 1.1). That is, we then use
the Dirichlet boundary value of p at the inflow boundary. Also, if we have boundary
conditions of Neumann type (at the outflow boundary) we do not integrate over
boundary covolumes; then the Neumann conditions are essential conditions for the
flux variable.
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Denote the four edges of the boundary of Qi,j as ei+1/2,j , ei,j+1/2, ei−1/2,j , and
ei,j−1/2. Now integrate the second equation of (1.5) over the volume Qi,j and use the
upwinding to get∫

Qi,j

∇ · uh dxdy +

∫
Qi,j

αp dxdy(1.14)

+pi,j

∫
ei+1/2,j

(b · n)+dσ + pi+1,j

∫
ei+1/2,j

(b · n)− dσ

+pi,j

∫
ei−1/2,j

(b · n)+dσ + pi−1,j

∫
ei−1/2,j

(b · n)− dσ

+pi,j

∫
ei,j+1/2

(b · n)+dσ + pi,j+1

∫
ei,j+1/2

(b · n)− dσ

+pi,j

∫
ei,j−1/2

(b · n)+dσ + pi,j−1

∫
ei,j−1/2

(b · n)− dσ

=

∫
Qi,j

fdxdy.

Temporarily, we shall assume all integrals are evaluated exactly. See the last section
for final discretization of them using quadratures.

Equations (1.12)–(1.14) are quite intuitive from a physical point of view, but for
the error analysis it is more convenient if we state them in terms of bilinear forms.
Define the test space

Yh := {w = (uh, vh) : uh piecewise constant on u-volumes,(1.15)

vh piecewise constant on v-volumes ,

w · n = 0 on covolumes near the outflow boundary Γ+}
which is used to pick out the control volumes. Here, n is a normal vector to Γ+.
Furthermore, define the following bilinear forms:

a(uh,vh) =

∫
Ω

K−1uh · vhdx, uh ∈ Hh,vh ∈ Yh;(1.16)

b(vh, ph) :=
∑

(v1
h(ci+1/2,j), 0)t · ∫

∂Qi+1/2,j
phndσ

+
∑

(0, v2
h(ci,j+1/2))t · ∫

∂Qi,j+1/2
phndσ, vh ∈ Yh, ph ∈ Lh;

(1.17)

c(uh, qh) :=
∑

qh(ci,j)

∫
Qi,j

divuhdx, uh ∈ Hh, qh ∈ Lh;(1.18)

dh(ph, qh) :=
∑
Qij∈Rh

[∫
∂Qij

(b · n)+p
i
hq
i
hdσ +

∫
∂Qij

(b · n)−pohq
i
hdσ

]
+(αph, qh), ph, qh ∈ Lh,

(1.19)

where pih is the trace of ph on ∂Qij taken from the interior of Qij and poh is that from
the exterior of Qij . Note that there is no integration over edges of Qi,j near the inflow
boundary (or we may formally let poh = 0) and at the outflow boundary (b · n)− = 0,
hence we do not have to specify poh there.
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Define the transfer operator γh : Hh → Yh connecting the trial space to the test
function space in the following equation:

γhwh := (γhuh, γhvh) wh = (uh, vh)

:=
(∑

uh(ci+1/2,j)χi+1/2,j ,
∑

vh(ci,j+1/2)χi,j+1/2

)
,

where χi+1/2,j and χi,j+1/2 are the characteristic function of Qi+1/2,j and Qi,j+1/2,
respectively. Note that we used the same notation γh in the component-wise definition
and that γh is one-to-one and onto.

1.3. Relation to the mixed finite element discretization. The covolume
method (1.12)–(1.14) is equivalent to the problem of finding {uh, ph} ∈ Hh×Lh such
that

a(uh, γhvh) + b(γhvh, ph) = 0 ∀ vh in Hh,
c(uh, qh) + dh(ph, qh) = (f, qh) ∀qh in Lh.(1.20)

Here the substitution of γhvh for a test function wh ∈ Yh is due to the surjectivity of
the operator γh. This simple observation turns the original Petrov–Galerkin statement
into a standard Galerkin one.

We can reformulate (1.20) into a saddle-point problem by further introducing

A(u,v) := a(u, γhv) = (K−1u, γhv), u,v ∈ Hh,

B(wh, qh) := b(γhwh, qh), wh ∈ Hh, qh ∈ Lh
and noting that B = −c (cf. Lemma 2.3) so that problem (1.20) becomes

A(uh,vh) +B(vh, ph) = 0 ∀ vh in Hh,
B(uh, qh)− dh(ph, qh) = −(f, qh) ∀qh in Lh.(1.21)

It is interesting to note that based on the transfer operator γh, the forms A and B are
bilinear, and hence the above system is in standard form. Nevertheless, the standard
(conforming in H(div; Ω) ) mixed method analysis cannot be used here. This is so
because the original PDE cannot be put into the same form: the transfer operator γh
in the definition of the bilinear form A cannot be extended to the space H(div; Ω).
However, upon closer examination we see that the standard mixed method (1.10)
for the convection-dominated problem (1.5) differs from the mixed covolume method
(1.21) only in the bilinear form A. Thus we can treat the covolume method as one
resulting from a “variational crime” of the standard mixed method. A careful analysis
of the transfer operator γh in connection to this deviation then leads to our error
estimate in Theorem 3.1 which demonstrates the one-half order error estimate in the
flux variable, as well as in the concentration variable, under the minimal regularity
assumption that u ∈ H1(Ω)2 and p ∈ H1(Ω). The starting point of the proof is a
good error equation (3.10) that plays the role of Cea’s lemma in the standard finite
element analysis. This methodology was initiated in Chou [7] for the generalized
Stokes problem on triangular grids, in Chou and Kwak [8, 9] for the same problem on
rectangular grids, and in Chou and Li [12] for the “point-centered” or vertex-centered
schemes for the variable-coefficient Poisson equation. The diffusion problem (i.e.,
b = 0 and α = 0 in (1.5)) was treated in Chou and Kwak [10] by a mixed covolume
method.
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Fig. 2.1. Neighboring primal volumes Q+
e and Q−e associated with a pair of edge and a normal

vector, (e, ne).

1.4. Summary of results in the remaining part of the paper. We sum-
marize now the results of the present paper. In section 2, we study the properties of
our discretization scheme. In particular, we show that the saddle-point formulation
(1.20) is uniquely solvable for sufficiently small h. The constraint on h is determined
by the local Lipschitz constants of the coefficient matrix K. In section 3 we modify
the analysis from Liu, Wang, and Yan [20] in the present context to derive our main
error estimates. Finally, in section 4 we present extensive numerical experiments that
illustrate the error behavior of our discrete solutions. We comment that for the partic-
ular case of diagonal diffusion coefficient K, the saddle-point problem can be reduced
(implicitly) to a problem only for the concentration variable ph, which can be solved
by a preconditioned iterative method. In fact, due to the upwinding, the reduced
problem can be well approximated by an M -matrix, for which good approximate ILU
factorization preconditioners are available. Details are found in the last section.

2. Properties of the saddle point formulation. In this section we prove
some preliminary lemmas. Let || · ||j , j = 0, 1 denote the usual L2 and H1 norms,
respectively, and we also use || · || for the L2 norm when there is no confusion. The
symbol C will be used as a generic positive constant independent of h and the ε1 of
(1.3), and may have different values at different places.

The following two lemmas are slightly more general than the original ones in Liu,
Wang, and Yan [20]. To clearly indicate the influence of the boundary conditions we
include our proof. Also, the two lemmas below hold in a general setting (2-D and 3-D
rectangular or triangular elements; in 3-D, edges should be accordingly replaced by
faces of volumes). That is why we have purposely rotated the elements in Figure 2.1.

We adopt now the following notation; for each edge e of a primal volume Q we
assign a unit normal vector ne. Then, given the pair (e, ne) with e an interior edge,
one can uniquely define the neighboring primal volumes Q+

e and Q−e with the common
edge e so that ne points towards Q+

e , see, e.g., Figure 2.1. A vector n (without
subscript) will be considered “outward” to a underlying domain (or volume).

Lemma 2.1. Let E0 be the collection of interior edges of elements in Rh. Then
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the bilinear form dh(·, ·) of (1.19) can be rewritten as follows:

dh(p, q) =
1

2

∑
e∈E

∫
e

[p] [q] |b · n| dσ

+
1

2

∑
e∈E0

∫
e

b · ne(pQ+
e

+ pQ−e )(qQ−e − qQ+
e

) dσ

+(αp, q) +

∫
Γ+

b · npiqi dσ,

(2.1)

where for each interior edge e, i.e., e ∈ E0, [p] denotes the jump of the discontinuous
function p.

Proof. For completeness we provide a proof of the lemma. We start from the
definition of dh(p, q); see (1.19). The idea is to rewrite the corresponding sums over
the edges E . For a given interior edge e and a pre-assigned unit normal vector ne, one
has two neighboring primal volumes Q+

e and Q−e that contribute in the rearranged
sum. Also, Q+

e will contribute with the vector n ≡ −ne and Q−e will contribute with
the vector n = ne. Hence, denoting by E0 the set of interior edges, one gets

dh(p, q) =
∑

Q∈Rh

∫
∂Q

[
(b · n)+p

iqi + (b · n)−poqi
]
dσ + (αp, q)

=
∑
e∈E0

∫
e

[
(b · ne)+pQ−e qQ−e + (b · ne)−pQ+

e
qQ−e

+(b · −ne)+pQ+
e
qQ+

e
+ (b · −ne)−pQ−e qQ+

e

]
+(αp, q) +

∫
Γ+

b · npiqi dσ.

Using now the relations (b · −ne)+ = −(b · ne)− and (b · −ne)− = −(b · ne)+ and
the abbreviations wQ−e = pl, wQ+

e
= wr with w = p, q, one arrives at

dh(p, q)− (αp, q)− ∫
Γ+

b · npiqi dσ

=
∑
e∈E0

∫
e

[(b · ne)+pl(ql − qr) + (b · ne)−pr(ql − qr)] dσ

=
∑
e∈E0

∫
e

[((b · ne)+ − (b · ne)−) pl(ql − qr)

+(b · ne)−(pr + pl)(ql − qr)] dσ

=
∑
e∈E0

∫
e

[|b · ne|(pl − pr)(ql − qr) + |b · ne|pr(ql − qr)

+(b · ne)−(pr + pl)(ql − qr)] dσ

=
∑
e∈E0

∫
e

[
1
2 |b · ne|(pl − pr)(ql − qr)

+(ql − qr)
(

1
2 |b · ne|(pl − pr) + |b · ne|pr + (b · ne)−(pr + pl)

)]
dσ

=
∑
e∈E0

∫
e

[
1
2 |b · ne|(pl − pr)(ql − qr)

+(ql − qr)
(

1
2 |b · ne|(pl + pr) + (b · ne)−(pr + pl)

)]
dσ

=
∑
e∈E0

∫
e

[
1
2 |b · ne|(pl − pr)(ql − qr) + b · ne 1

2 (pr + pl)(ql − qr)
]
dσ.
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Substituting p = q in the formula (2.1), noticing that −ne is an outward normal to
Q+
e and ne is an outward normal to Q−e , and that

∫
Q

div(bp2) dx dy =
∫
∂Q

b ·np2 dσ

(since pQ = const), one easily gets the next result.
Lemma 2.2. For any q ∈ Lh the bilinear form of (1.19) satisfies

dh(q, q) =

((
α+

1

2
∇ · b

)
q, q

)
+

1

2
|||q|||2,(2.2)

where

|||q|||2 =
∑
e∈E0

∫
e

[q]2|b · n| dσ.(2.3)

The next lemma can be proved by direct evaluation [13].
Lemma 2.3. The following holds:

B(wh, qh) = b(γhwh, qh) = −c(wh, qh) ∀ wh ∈ Hh, qh ∈ Lh.
Now by Lemma 2.3 problem (1.20) becomes

A(uh,wh) +B(wh, ph) = 0 ∀ wh in Hh,(2.4)

B(uh, qh)− dh(ph, qh) = −(f, qh) ∀ qh in Lh.(2.5)

The fact that γh is a bounded self-adjoint operator with respect to the L2 inner
product can be found in [13].

Lemma 2.4. The following relations hold:

(γhuh,wh) = (uh, γhwh) ∀ uh,wh ∈ Hh.(2.6)

There also exists a positive constant C independent of h such that

||γhuh||0 ≤ C||uh||0 ∀ uh ∈ Hh.(2.7)

We next show that A(wh,wh) is coercive for sufficiently small h.
Lemma 2.5. There exists a constant h0 such that for all h ≤ h0

A(wh,wh) ≥ Cε−1
1 ‖wh‖20 wh ∈ Hh,

where the constant C is independent of h and ε1.
Proof. Write wh = (uh, vh) ∈ Hh. Then

a(wh, γwh) =
∑

uh(ci+1/2,j)

∫
Qi+1/2,j

τ1(x, y)uh(x, y)dxdy(2.8)

+
∑

vh(ci,j+1/2)

∫
Qi,j+1/2

τ2(x, y)vh(x, y)dxdy(2.9)

= I + II.(2.10)

It suffices to show that I ≥ Cε−1
1 ‖uh‖20. Let Q−ij := Qi−1/2,j ∩ Qij and Q+

ij :=
Qi+1/2,j ∩Qij . Then

I =
∑

uh(ci−1/2,j)

∫
Q−
ij

τ1(x, y)uh(x, y)dxdy

+
∑

uh(ci+1/2,j)

∫
Q+
ij

τ1(x, y)uh(x, y)dxdy

= III + IV,



UPWINDING MIXED COVOLUME METHOD 155

where

III =
∑

uh(ci−1/2,j)

∫
Q−
ij

(τ1(x, y)− τ1(cij))uh(x, y)dxdy

+
∑

uh(ci−1/2,j)τ1(cij)

∫
Q−
ij

uh(x, y)dxdy

= V + V I

IV =
∑

uh(ci+1/2,j)

∫
Q+
ij

(τ1(x, y)− τ1(cij))uh(x, y)dxdy

+
∑

uh(ci+1/2,j)τ1(cij)

∫
Q+
ij

uh(x, y)dxdy

= V II + V III.

Using the linearity of uh in x and constant in y, we can easily derive by direct com-
putation that

V I + V III ≥ Cε−1
1 ‖uh‖20,

while by Lipschitz continuity of τ1 and the Simpson’s rule that

V + V II ≤Mε−1
1 h

(∑∫
Q−
ij

|uh(ci−1/2,j)uh(x, y)|dxdy

+

∫
Q+
ij

|uh(ci+1/2,j)uh(x, y)|dxdy
)

= Mε−1
1 h

(∑
‖uh(ci−1/2,j)‖Q−

ij
‖uh‖Q−

ij
+ ‖uh(ci+1/2,j)‖Q+

ij
‖uh‖Q+

ij

)
≤ 6Mε−1

1 h
∑
‖uh‖2Qij

= 6Mε−1
1 h‖uh‖20.

Thus we have

I ≥ Cε−1
1 ‖uh‖20 − Cε−1

1 h‖uh‖20
and so

I ≥ Cε−1
1 ||uh||20

for h sufficiently small.
Now note that the bilinear form a of (1.16) is also well defined over Hh ×Hh.

With this in mind we state the following approximation property of γh, whose simple
proof can be found in [10] or directly verified.

There exists a constant C independent of h and ε1 such that

‖(I − γh)wh‖0 ≤ Ch||wh||1,h,(2.11)

where

||wh||21,h = ||wh||20 + |wh|21,h
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and the discrete seminorm wh = (wh, xh) ∈ Hh is defined as

|wh|21,h :=
∑
Q

||∇wh||20,Q + ||∇xh||20,Q.

Lemma 2.6. There exists a constant C independent of h and ε1 such that

a(u, (I − γh)wh) ≤ Cε−1
1 h||u||1||wh||0 ∀ wh ∈ Hh(2.12)

and ∀u ∈ H1.
Proof. Let Eh be the familiar interpolation operator from H1(Ω) to Hh with∫

e
q · nde, flux across edge, as its degrees of freedom ([22], pp. 550–554). Then

||q− Ehq||0 ≤ Ch|q|1 ∀ q ∈ H1(Ω).(2.13)

Denoting by K0 the piecewise constant average of K, one has

a(u, (I − γh)wh) = ((K−1 −K−1
0 )u, (I − γh)wh) + (K−1

0 u, (I − γh)wh)

≤ Cε−1
1 h‖u‖0‖wh‖0 + (u,K−1

0 (I − γh)wh)

= Cε−1
1 h‖u‖0‖wh‖0 + (u, (I − γh)K−1

0 wh)

= Cε−1
1 h‖u‖0‖wh‖0 + (u− Ehu, (I − γh)K−1

0 wh)

+((I − γh)Ehu,K−1
0 wh),

where we have used the symmetry and boundedness of γh. Also, we used the fact
that the coefficient K−1 is locally Lipschitz. Now the second term on the right side of
the last equation can be bounded by Cε−1

1 h‖u‖1‖wh‖0 using (2.13) and boundedness
of I − γh, and the third term can be bounded using (2.11) and the fact that

||Ehu||1,h ≤ C||u||1.
This completes the proof.

We next show that our covolume method (1.21) has a unique solution.
Lemma 2.7. For h sufficiently small, there is a unique (uh, ph) ∈ Hh × Lh for

the system:

A(uh,wh) +B(wh, ph) = 0 ∀ wh in Hh,

B(uh, qh)− dh(ph, qh) = −(f, qh) ∀qh in Lh.

Proof. Define the bilinear form on Hh × Lh:

A(zh, s; wh, t) := A(zh,wh) +B(wh, s)−B(zh, t) + dh(s, t).

Obviously the above system is equivalent to

A(uh, ph; wh, qh) = φ(wh, qh) ∀(wh, qh) ∈ Hh × Lh,
where

φ(wh, qh) := (f, qh)
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is a linear functional on Hh × Lh. By Lemma 2.2

A(wh, qh; wh, qh) = a(wh, γhwh) +
((
α+

1

2
∇ · b

)
qh, qh

)
+

1

2
|||qh|||2.(2.14)

It suffices to show that A(wh, qh; wh, qh) = 0 admits only a zero solution, which
can be inferred by the coercivity of A(wh, qh; wh, qh) implied by Lemma 2.5 and
(1.4).

3. Error estimates. We now prove our main convergence result.
Theorem 3.1. Let the rectangular partition family {Qij} of the domain Ω be

quasi-regular, and let {uh, ph} be the solution of the problem (1.21) and {u, p} of the
problem (1.8). Then there exists a positive constant C independent of h and ε1,

‖u− uh‖0 + ε
1/2
1 ‖p− ph‖0 ≤ Ch(‖u‖1 + h−1/2ε

1/2
1 ||p||1),(3.1)

provided that u ∈ H1 and p ∈ H1.
Proof. We will use, as a bridge of error analysis, the mixed method (1.10). Find

(ũh, p̃h) ∈ Hh × Lh such that

a(ũh,wh) +B(wh, p̃h) = 0 ∀ wh in Hh,(3.2)

B(ũh, qh)− dh(p̃h, qh) = −(f, qh) ∀qh in Lh.(3.3)

Let

Ã(zh, s; wh, t) := a(zh,wh) +B(wh, s)−B(zh, t) + dh(s, t)(3.4)

be a bilinear form on Hh×Lh. Then (3.2)–(3.3) is equivalent to the problem of finding
(ũh, p̃h) ∈ Hh × Lh such that

Ã(ũh, p̃h; wh, qh) = φ(wh, qh) ∀(wh, qh) ∈ Hh × Lh,(3.5)

where

φ(wh, qh) := (f, qh)

is a linear functional on Hh × Lh.
This system has the following known convergence result (unscaled version of Eq.

5.3 in [20]):

||u− ũh||0 + ε
1/2
1 ||p− p̃h||0 ≤ Ch(||u||1 + ε

1/2
1 h−1/2||p||1),(3.6)

provided that u ∈ H1, p ∈ H1. (Note that the proof of this estimate depends on
Lemma 2.2, which we have proved even for the mixed boundary condition case not
covered by [20].)

On the other hand, our covolume method is equivalent to the problem of finding
(uh, ph) ∈ Hh × Lh such that

A(uh, ph; wh, qh) = φ(wh, qh) ∀(wh, qh) ∈ Hh × Lh,(3.7)

where

A(zh, s; wh, t) := A(zh,wh) +B(wh, s)−B(zh, t) + dh(s, t).(3.8)
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Using the bilinearity of A and B, (3.7), (3.5) , we have

A(ũh − uh, p̃h − ph; wh, qh) = A(ũh, p̃h; wh, qh)−A(uh, ph; wh, qh)

= A(ũh, p̃h; wh, qh)− Ã(ũh, p̃h; wh, qh).

Hence by (3.8) and (3.4) we have

A(ũh − uh, p̃h − ph; wh, qh) = a(ũh, γhwh)− a(ũh,wh).(3.9)

Since the total error eh = (u− ũh) + (ũh − uh), by the triangle inequality it suffices
to estimate ũh − uh. Now set wh = ẽh := ũh − uh and qh = τ̃h := p̃h − ph in the
above equation to get the error equation

A(ẽh, τ̃h; ẽh, τ̃h) = a(ũh, (γh − I)ẽh)(3.10)

= a(ũh − u, (γh − I)ẽh) + a(u, (γh − I)ẽh)(3.11)

≤ Cε−1
1 ||ũh − u||0||ẽh||0 + Cε−1

1 h||u||1||ẽh||0(3.12)

≤ Chε−1
1

[
||u||1 + ε

1/2
1 h−1/2||p||1

]
||ẽh||0,(3.13)

where we have used the boundedness of γh − I, (2.12) in deriving (3.12), and (3.6) in
deriving (3.13). Applying (2.14) to the left side of (3.10), we get from (3.13) that

a (ẽh, γhẽh) +
((
α+

1

2
∇ · b

)
τ̃h, τ̃h

)
+

1

2
|||τ̃h|||2(3.14)

≤ Cε−1
1 h

[
||u||1 + h−1/2ε

1/2
1 ||p||1

]
||ẽh||0.(3.15)

Invoking (1.4) and Lemma 2.5 completes the estimate for ẽh. As for the estimate for
p − ph, it suffices to estimate τ̃h = p̃h − ph due to the triangle inequality and (3.6).
From (3.14), we have

||τ̃h||20 ≤ Cε−1
1 h

[
||u||1 + h−1/2ε

1/2
1 ||p||1

]
||ẽh||0.

Now applying the just-obtained upper bound of ||ẽh||0 completes the proof.

4. Numerical results. In this section we use quadratures to obtain the final
discretization equations and show some numerical results to demonstrate the error
behavior of the studied mixed covolume method. We shall deviate from the notation
of the previous sections slightly for the convenience of reporting numerical results.
We consider in this section the error behavior of the following problem:

∇ · (−εK∇p+ bp) + c0p = f(x, y), (x, y) ∈ Ω = (0, 1)2.(4.1)

The exact solution chosen is p = x(1− x)y(1− y) and Dirichlet boundary conditions
are imposed. The coefficients of the operator are K = diag(k1, k2), k1 = 1+10x2 +y2,
k2 = 1 + x2 + 10y2, c0 = 1, and b = (b1, b2), where

b1 = − cosα(1− x cosα),
b2 = − sinα(1− y sinα),

(4.2)

for angles α = −π2 ,−π4 , 0, π4 , π2 . Note that ∇·b = 1 so that condition (1.4) is satisfied
and that ε = 1, 10−2, 10−4, 10−6.
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For the flux variable u = (u1, u2) we used the lowest order Raviart–Thomas
piecewise polynomial spaces on isosceles rectangles (squares) of size h × h, for h =
2−4, 2−5, 2−6, 2−7. The concentration variable p corresponded to piecewise constants
on the same rectangular elements.

In general, to evaluate the integrals∫
Qi+1/2,j

k−1
1 (x, y)u1(x, y)dxdy =

∫ xi+
1
2hxi+1

xi

∫ yj+1/2

yj−1/2

k−1
1 (x, y)u1(x, y)dxdy

+

∫ xi+1

xi+
1
2hxi+1

k−1
1 (x, y)u1(x, y)dxdy,

where Qi+1/2,j = [xi, xi+1]× [yj−1/2, yj+1/2], hxr = xr − xr−1, we used the midpoint
quadrature formula in y-direction and the trapezoidal rule in x-direction. This led,
for example, for the first integral above, to the following expression:

≈ hxhy
4

[
k−1

1 (ci,j)u1(ci,j) + k−1
1 (ci+1/2,j)u1(ci+1/2,j)

]
=
hxhy

4

[
k−1

1 (ci,j)
u1(ci−1/2,j) + u1(ci+1/2,j)

2
+ k−1

1 (ci+1/2,j)u1(ci+1/2,j)

]
Note that the definition of Qi+1/2,j at the boundary needs to be modified and we take
either the left half or the right half, depending on the location of the boundary. One
of the pressures in (1.12) is taken from the boundary value.

We remark that the above quadrature formula actually symmetrizes the bilinear
form a(uh,vh), for uh ∈ Hh, vh ∈ Yh; namely, the resulting matrix A is symmetric.
Also, we note that A is block-diagonal (diagonal blocks Ai, i = 1, 2, corresponding to
the variables u1 and u2, respectively) and each block Ai is block-diagonal itself, with
tridiagonal (band) matrices if the unknowns corresponding to u1 are ordered linewise
along the x-direction (each horizontal line giving rise to a block) and the unknowns
corresponding to u2 are ordered linewise along y-directions (with blocks being the
unknowns grouped on a given vertical line).

The edge integrals involving b · n are computed exactly, which is simple for our
particular choice of the field b.

After the discretization one ends up with the following linear system of equations
to be solved,

A
 U1

U2

P

 =

 rhsU1

rhsU2

rhsP

 ,(4.3)

with the saddle-point–like stiffness matrix:

A =

[
A BT

B −C
]
·(4.4)

We use the fact that A has simple structure, block-diagonal with blocks being tridiag-
onal matrices (assuming the linewise ordering explained as above), to effectively com-

pute the inverse actions of A. That is, one can eliminate the unknown U =

[
U1

U2

]
and solve the reduced system,

(C +BA−1BT )P = −rhsP +BA−1

[
rhsU1

rhsU2

]
·(4.5)
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Table 4.1
Error behavior for α = 0, ε = 1.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 5.33e-5 3.62e-5 2.07e-5 1.10e-5 1
δu1 2.72e-3 9.09e-4 3.49e-4 1.49e-4 > 1
δu2 3.04e-3 1.06e-3 4.29e-4 1.90e-4 > 1

# unknowns 800 3 136 12 416 49 408
# iterations 17 23 45 112

% 0.28 0.40 0.62 0.83

We do not compute the reduced Schur matrix S ≡ C + BA−1BT explicitly, but
rather take advantage of the fact that the actions of S on vectors are inexpensively
available through solutions of tridiagonal problems to get the inverse action of A. To
solve the reduced problem, we used a generalized conjugate gradient least squares
method (GCG-LS) as derived in Axelsson [1] (a mathematically-equivalent-to-the-
GMRES method, see Saad [24]) with block-ILU preconditioning. The preconditioned
matrix M was obtained from C+A0, where A0 was a simple five-point finite difference
approximation of the term −∇ · εK∇(.) on the given cell-centered grid.

We use the block partition of A0 + C, using as blocks the unknowns within
each strip of width hx along the vertical direction. Let A0 + C = CD − L − U ,
where CD, −L, and −U stand for the respective block-diagonal, lower triangular, and
upper triangular parts of A0 + C. Then, since both C and the thus-obtained finite
difference matrix A0 were M -matrices, the construction of M = (D−L)D−1(D−U)
with blocks of D = diag[D1, D2, . . . , Dn] being banded matrices was well-defined and
turned out to be very effective preconditioners. For the construction of such block-
factorization preconditioners we refer to Concus, Golub, and Meurant [14] when Di

are tridiagonal matrices, and for general banded blocks Di, to Axelsson and Polman
[3]; see also, Vassilevski [25] for some particular constructions of approximate band
inverses to band matrices that are required in the block-ILU methods. Other block-
ILU type preconditioners (not necessarily only for M -matrices) are found in Chan
and Vassilevski [6].

The stopping criterion in the GCG-LS method was

‖M−1r‖ ≤ 10−9‖M−1r0‖,

where ‖v‖2 = vTv; r0 stands for the initial residual and r stands for the current one.

The initial iterate was chosen as x0 = M−1f , where f ≡ −rhsP + BA−1

[
rhsU1

rhsU2

]
was the right-hand side of the reduced problem (4.5).

We show in Tables 4.1–4.14, in addition to the error behavior of the covolume
discretization method, also % and the number of iterations, where

% =

( ‖M−1r‖
‖M−1r0‖

) 1

# iterations
(4.6)

was an average reduction factor.
More specifically, denote xi = ihx, yj = jhy, i = 0, 1, 2, . . . , nx, j = 0, 1, 2, . . . , ny,

hx = hy = h, nx = ny = n = 1/h, for a given h = 2−4, 2−5, 2−6, 2−7. In Tables
4.1–4.14, for a given ε and angle α, we show the following items:
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Table 4.2
Error behavior for α = π

4
, ε = 1.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 9.86e-5 6.07e-5 3.33e-5 1.74e-5 1
δu1 3.56e-3 1.33e-3 5.64e-4 2.57e-4 > 1
δu2 3.56e-3 1.33e-3 5.64e-4 2.57e-4 > 1

# unknowns 800 3 136 12 416 49 408
# iterations 17 23 45 111

% 0.28 0.40 0.62 0.82

Table 4.3
Error behavior for α = π

2
, ε = 1.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 5.33e-5 3.62e-5 2.07e-5 1.10e-5 1
δu1 3.04e-3 1.06e-3 4.29e-4 1.90e-4 > 1
δu2 2.72e-3 9.09e-4 3.49e-4 1.49e-4 > 1

# unknowns 800 3 136 12 416 49 408
# iterations 17 22 45 113

% 0.28 0.39 0.62 0.83

Table 4.4
Error behavior for α = 0, ε = 0.01.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 1.77e-3 9.09e-4 4.62e-4 2.33e-4 1
δu1 4.09e-4 2.09e-4 1.03e-4 5.00e-5 1
δu2 3.46e-4 1.67e-4 8.25e-5 4.11e-5 1

# unknowns 800 3 136 12 416 49 408
# iterations 15 17 24 55

% 0.24 0.29 0.40 0.67

Table 4.5
Error behavior for α = π

4
, ε = 0.01.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 2.88e-3 1.51e-3 7.78e-4 3.95e-4 1
δu1 5.01e-4 2.49e-4 1.21e-4 5.91e-5 1
δu2 5.01e-4 2.49e-4 1.21e-4 5.91e-5 1

# unknowns 800 3 136 12 416 49 408
# iterations 15 17 25 49

% 0.24 0.28 0.42 0.65

Table 4.6
Error behavior for α = −π

4
, ε = 0.01.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 3.10e-3 1.68e-3 8.90e-4 4.64e-4 1
δu1 5.77e-4 2.95e-4 1.49e-4 7.50e-5 1
δu2 1.70e-3 8.43e-4 4.15e-4 2.04e-4 1

# unknowns 800 3 136 12 416 49 408
# iterations 15 17 24 46

% 0.24 0.27 0.41 0.63
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Table 4.7
Error behavior for α = 0, ε = 10−4.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 2.29e-3 1.14e-3 5.74e-4 2.87e-4 1
δu1 2.40e-5 1.10e-5 5.22e-6 2.89e-6 1
δu2 5.36e-6 2.50e-6 1.20e-6 5.95e-7 1

# unknowns 800 3 136 12 416 49 408
# iterations 10 13 15 15

% 0.10 0.18 0.22 0.25

Table 4.8
Error behavior for α = π

4
, ε = 10−4.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 3.57e-3 1.84e-3 9.33e-4 4.68e-4 1
δu1 4.20e-5 2.91e-5 1.66e-5 8.26e-6 1
δu2 4.20e-5 2.91e-5 1.66e-5 8.26e-6 1

# unknowns 800 3 136 12 416 49 408
# iterations 6 8 10 13

% 0.03 0.07 0.11 0.19

Table 4.9
Error behavior for α = π

2
, ε = 10−4.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 2.29e-3 1.14e-3 5.74e-4 2.87e-4 1
δu1 5.36e-6 2.50e-6 1.20e-6 5.95e-7 1
δu2 2.40e-5 1.10e-5 5.22e-6 2.89e-6 1

# unknowns 800 3 136 12 416 49 408
# iterations 10 13 15 21

% 0.10 0.19 0.23 0.36

Table 4.10
Error behavior for α = −π

4
, ε = 10−4.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 3.93e-3 2.04e-3 1.03e-3 5.22e-4 1
δu1 3.99e-5 2.88e-5 1.67e-5 8.33e-6 1
δu2 7.13e-5 5.06e-5 3.36e-5 2.08e-5 < 1

# unknowns 800 3 136 12 416 49 408
# iterations 6 9 11 15

% 0.03 0.07 0.13 0.23

Table 4.11
Error behavior for α = 0, ε = 10−6.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 2.36e-3 1.18e-3 5.95e-4 2.97e-4 1
δu1 3.57e-7 2.54e-7 1.71e-7 1.00e-7 < 1
δu2 5.61e-8 2.63e-8 1.27e-8 6.23e-9 < 1

# unknowns 800 3 136 12 416 49 408
# iterations 4 5 6 9

% 0.001 0.006 0.02 0.07
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Table 4.12
Error behavior for α = π

4
, ε = 10−6.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 3.64e-3 1.91e-3 9.86e-4 4.99e-4 1
δu1 5.06e-7 4.31e-7 3.33e-7 2.44e-7 1

2
δu2 5.06e-7 4.31e-7 3.33e-7 2.44e-7 1

2

# unknowns 800 3 136 12 416 49 408
# iterations 3 3 4 4

% 2.8e-4 7.3e-4 0.001 0.003

Table 4.13
Error behavior for α = π

2
, ε = 10−6.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 2.36e-3 1.18e-3 5.95e-4 2.97e-4 1
δu1 5.61e-8 2.63e-8 1.27e-8 6.23e-9 1
δu2 3.57e-7 2.54e-7 1.71e-7 1.00e-7 < 1

# unknowns 800 3 136 12 416 49 408
# iterations 4 5 6 8

% 0.001 0.006 0.02 0.07

Table 4.14
Error behavior for α = −π

4
, ε = 10−6.

h = 1/16 h = 1/32 h = 1/64 h = 1/128 ≈ order

δp 3.97e-3 2.07e-3 1.06e-3 5.39e-4 < 1
δu1 4.75e-7 4.22e-7 3.33e-7 2.45e-7 1

2
δu2 7.49e-7 5.58e-7 4.06e-7 2.90e-7 1

2
# unknowns 800 3 136 12 416 49 408
# iterations 3 3 4 4

% 3.67e-4 9.02e-4 0.001 0.003

(i) δp = ‖Ihp− ph‖h ≡
[
nx∑
i=1

ny∑
j=1

hxhy(p(xi − 1
2hx, yj − 1

2hy)

−ph(xi − 1
2hx, yj − 1

2hy))2

] 1
2

, i.e., a discrete L2-

norm of the error p− ph;

(ii) δu1 = ‖Ihu1−uh, 1‖h ≡
[
nx∑
i=0

ny∑
j=1

hxhy(u1(xi, yj − 1
2hy)− uh, 1(xi, yj − 1

2hy))2

] 1
2

,

i.e., a discrete L2-norm of the error u1 − uh,1;

(iii) δu2
= ‖Ihu2−uh, 2‖h ≡

[
nx∑
i=1

ny∑
j=0

hxhy(u2(xi − 1
2hx, yj)− uh, 2(xi − 1

2hx, yj))
2

] 1
2

,

i.e., a discrete L2–norm of the error u2 − uh, 2;
(iv) the number of iterations of the preconditioned GCG–LS method;
(v) the average reduction factors %, (4.6);
(vi) the total number of unknowns (for both U and P).

It is noticeable that the order h
1
2 of the error estimate proven in the present paper

is attained for small ε = 10−6; see, for example, Tables 4.12 and 4.14. It turns out
that our experiments suggest first order approximation of the concentration variable
for all values of ε we have tested. The fast convergence of the preconditioned GCG-
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LS method for small ε is explained due to the fact that, in that case, the reduced
matrix S ' C is almost triangular and because our block-ILU factorization matrix
turned out to be very accurate in that case. This also agrees with the experience
of the performance of block-ILU methods in the case of streamline diffusion finite
element discretization of convection-diffusion problems reported in Axelsson, Polman,
Eijkhout, and Vassilevski [2]. See also, Lazarov, Mishev, and Vassilevski [19] and Iliev,
Makarov, and Vassilevski [18] for finite difference or finite volume discretizations, as
well as in the least-squares mixed finite element discretization of convection–diffusion
problems; cf., Carey, Pehlivanov, and Vassilevski [5]. We finally remark that the
preconditioners used in the present paper are not the main issue; rather, they are
tools to solve the resulting systems.

Acknowledgment. The authors are grateful to one of the referees for her/his
constructive comments on the original manuscript.
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