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Abstract. We consider covolume methods for the mixed formulations of quasi-linear second-
order elliptic problems. Covolume methods for the mixed formulations of linear elliptic problem was
first considered by Russell [Rigorous Block-Centered Discretizations on Irregular Grids: Improved
Simulation of Complex Reservoir Systems, Tech. report 3, Project Report, Reservoir Simulation
Research Corporation, Tulsa, OK, 1995] and tested extensively in [Cai et al., Comput. Geosci., 1
(1997), pp. 289–315], [Jones, A Mixed Finite Volume Element Method for Accurate Computation of
Fluid Velocities in Porous Media, Ph.D. thesis, University of Colorado, Denver, 1995]. The analysis
was carried out by Chou and Kwak [SIAM J. Numer. Anal., 37 (2000), pp. 758–771] for linear
symmetric problems, where they showed optimal error estimates in L2 norm for the pressure and
in H(div) norm for the velocity. In this paper we extend their results to quasi-linear problems by
following Milner’s argument [Math. Comp., 44 (1985), pp. 303–320] through an adaptation of the
duality argument of Douglas and Roberts [Math. Comp., 44 (1985), pp. 39–52] for mixed covolume
methods.
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1. Introduction. Finite volume methods have been widely used as discretiza-
tion techniques for conservation laws [18], [22], [30], [31], [32], [37]. For diffusion
equations on rectangular grids, see Süli [43] or Weiser and Wheeler [45], and for tri-
angular grids, see Cai [8], Cai et al. [9], or Heinrich [26]. See also [20], [23], [27].
Cell-centered finite differences can also be viewed as a finite volume method whose
analysis for regular or general triangulation is shown in [2], [3], [19]. For cell-vertex
finite volume methods, see [33], [36]. Meanwhile, mixed formulations of elliptic prob-
lems have been advocated for their accurate velocity computations [25], [38] and have
been the subjects of extensive research [4], [5], [6], [17], [21], [24], [28], [34], [39].

Mixed covolume method is a natural attempt to combine two such approaches.
It was first proposed by Russell [40], who applied the control-volume finite element
methods [7] to the mixed formulation of linear elliptic problems. The numerical
experiment on a variety of test problems was very promising [10], [29]. The optimal
convergence of the mixed covolume method was given by Chou and Kwak [13] and
Chou, Kwak, and Vassilevski [14], who adapted a covolume methodology used in [12]
and formulated the mixed covolume method in the Galerkin framework. A variant
of the mixed finite volume method has been also suggested for convection-diffusion
equations with an application to semiconductor simulation in [41], [42]. Another type
of the mixed finite volume method based on primal-dual formulation has been given
in [44].

The goal of this paper is to study the mixed covolume method for quasi-linear
elliptic problems. Although general convex polygonal domains can be treated (cf.
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[14]), we restrict ourselves to rectangular domains for simplicity.
We consider the quasi-linear second-order elliptic problem

−∇ · (a(p)∇p+ b(p)) + c(p) = f in Ω,(1.1a)

p = 0 on ∂Ω,(1.1b)

where Ω is a bounded, axiparallel rectangular domain in R
2, and ∂Ω is the boundary

of Ω. We assume ∂b/∂p is not too large in comparison to a, i.e., we are dealing with
diffusion-dominated problems. Further, we assume that the coefficients a : Ω̄×R → R,
b : Ω̄×R → R

2, and c : Ω̄×R → R are twice continuously differentiable with bounded
derivatives through second order. Moreover, we assume a(p) ≥ a1 > 0 and cp ≥ 0.
Dependence of the coefficients a,b, and c on the space variable x will be omitted
throughout the paper. We also assume that for some ε, 0 < ε < 1, there exists a
unique solution p ∈ H2+ε(Ω) to (1.1) for each given f ∈ Hε(Ω).

For integer s ≥ 0 and 1 ≤ q ≤ ∞ we denote by W s,q(Ω) the usual Sobolev space
equipped with a norm ‖ · ‖s,q given by

‖v‖s,q =


 ∑

|α|≤s

‖Dαv‖Lq(Ω)




1/q

,

with the obvious modification for q = ∞. When q = 2 we shall write Hs(Ω) and ‖ · ‖s
instead of W s,2(Ω) and ‖ ·‖s,2. Also, we define H−s(Ω) to be the dual space of Hs(Ω)
with a norm ‖ · ‖−s defined by

‖φ‖−s = sup
v∈Hs(Ω)

(φ, v)

‖v‖s .

By introducing the velocity variable

u = −(a(p)∇p+ b(p)),

we can rewrite the problem (1.1) as a system of first-order equations

α(p)u+∇p+ β(p) = 0, divu+ c(p) = f,(1.2)

where α = a−1, β(p) = α(p)b(p), and the boundary condition p = 0 on ∂Ω is imposed.
Let

V = H(div; Ω) = {v ∈ (L2(Ω))2 : divv ∈ L2(Ω)},(1.3)

H1(div; Ω) = {v ∈ (L2(Ω))2 : divv ∈ H1(Ω)},(1.4)

W = L2(Ω).(1.5)

Then the associated weak formulation is to find (u, p) ∈ V ×W such that

(α(p)u,v)− (divv, p) + (β(p),v) = 0 ∀v ∈ V,(1.6a)

(divu, w) + (c(p), w) = (f, w) ∀w ∈ W,(1.6b)

where (·, ·) denotes the standard inner product in L2(Ω) or (L2(Ω))2.
Many finite element spaces based on this formulation have been developed and

analyzed for linear problems (cf. [4], [5], [6], [17], [24], [38]). Meanwhile, the analyses
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for quasi-linear problems are relatively scarce [11], [16], [35]. Milner [35] analyzed
mixed finite element spaces for the quasi-linear problem (1.1) and showed that there
exists a unique solution near (u, p) and the optimal error estimates established in [17]
for linear problems hold as well for quasi-linear problems. His argument was based
on an adaptation of the method used by Douglas [16].

We will formulate the mixed covolume method in the Galerkin framework, apply
to it an adaptation of the duality argument of Douglas and Roberts [17], and show
that there exists a unique solution near (u, p) with an optimal order error.

The rest of the paper is organized as follows. In the next section we introduce
some definitions and formulate the mixed covolume method as a conservative scheme.
Then we show that the method can be cast into a Galerkin form by introducing
a one-to one transfer operator between the Raviart–Thomas space and the space of
piecewise constant functions on covolumes. In section 3 the error equations are derived
and compared with the standard mixed finite element method. In section 4 we deal
with the existence of a solution, and in section 5 optimal error estimates in L2 norm
are established for both velocity and pressure variables. Finally, a superconvergence
result for the pressure variable is shown in section 6.

2. Preliminaries. Let Qh = {Qi,j} be a partition of the domain Ω into rectan-
gular elements

Qi,j := [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2],

with centers ci,j = (xi, yj). Let ci±1/2,j = (xi±1/2, yj) and ci,j±1/2 = (xi, yj±1/2), i.e.,
the midpoints of four edges of Qi,j . We assume the partition Qh is quasi-regular in
the sense that there exist two positive constants C1, C2 independent of h such that

C1h
2 ≤ |Qi,j | ≤ C2h

2 ∀Qi,j ∈ Qh,(2.1)

where h = diam Qi,j and |Qi,j | denotes the area of Qi,j .
Now we define the lowest order Raviart–Thomas space on Qh to be

Vh =

{
v ∈ V : v(x, y) =

(
a+ bx
c+ dy

)
on Qi,j ∈ Qh

}
,

Wh = {w ∈ W : w is constant over Qi,j ∈ Qh}
(cf. [6], [17], [38]). Observe that the requirement v ∈ V imposes the continuity of
normal components across the edges of the elements; i.e., if e is the common edge of
two elements Q1 and Q2, and ni denotes the outer unit normal vector of Qi, then we
must have v · n1|Q1 + v · n2|Q2

= 0 on e.
The Raviart–Thomas projection Πh : V → Vh is defined in [24], [38] so that it

satisfies the orthogonality relation

(div(u−Πhu), w) = 0 ∀w ∈ Wh.(2.2)

Let Ph : W → Wh denote the L2 orthogonal projection defined by

(Phχ− χ,w) = 0 ∀χ ∈ W, w ∈ Wh.(2.3)

Then the following properties of Πh and Ph are well known from [6], [17], [28], [38]:

‖Πhu‖0 ≤ C ‖u‖1,1 ∀u ∈ (W 1,1(Ω))2,(2.4)

‖u−Πhu‖0 ≤ Ch ‖u‖1 ∀u ∈ (H1(Ω))2,(2.5)

‖div(u−Πhu)‖0 ≤ Ch ‖divu‖1 ∀u ∈ H1(div; Ω),(2.6)

‖χ− Phχ‖−1 + h ‖χ− Phχ‖0 ≤ Ch2 ‖χ‖1 ∀χ ∈ L2(Ω).(2.7)
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Fig. 2.1. Primal and dual domains.

Here and throughout the paper, C will denote a generic positive constant which is
independent of h and may take on different values.

Now we are in a position to describe the main idea of the mixed covolume method
on the rectangular grid Qh (cf. [10], [13], [29]). First, we assign the unknowns of the
approximate velocity uh to the edges, and the unknowns of the approximate pressure
ph to the centers of the primal partition {Qi,j}. We will denote by pi,j the nodal
value of ph at the center ci,j . Next, in order to provide a finite volume around each
unknown, we introduce a dual grid obtained by shifting the primal grid along x and
y-axis: let

Qi+1/2,j := [xi, xi+1]× [yj−1/2, yj+1/2],

Qi,j+1/2 := [xi−1/2, xi+1/2]× [yj , yj+1],

where we cut off the part outside the domain Ω. The rectangles Qi+1/2,j , Qi,j+1/2,
and Qi,j are referred to as u-volumes, v-volumes, and p-volumes, respectively (cf.
Figure 2.1). Finally, we integrate (1.2) over these volumes to obtain∫

Qi+1/2,j

[
α(p)ux +

∂p

∂x
+ βx(p)

]
= 0,(2.8)

∫
Qi,j+1/2

[
α(p)uy +

∂p

∂y
+ βy(p)

]
= 0,(2.9)

∫
Qi,j

[ divu+ c(p) ] =

∫
Qi,j

f,(2.10)

where we set u = (ux, uy) and β = (βx,βy).
To formulate the mixed covolume method in the Galerkin framework we need the

test function space (as defined in [13])

Yh := {(uh, vh) : uh ∈ L2(Ω) is piecewise constant on u-volumes,

vh ∈ L2(Ω) is piecewise constant on v-volumes}.
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This test space is in one-to-one correspondence with the Raviart–Thomas space Vh

(which will be chosen as the trial function space) via the transfer map γh : Vh → Yh

defined by

γhwh := (γhuh, γhvh),

:=


∑

i,j

uh(ci+1/2,j)χi+1/2,j ,
∑
i,j

vh(ci,j+1/2)χi,j+1/2


 ,

where wh = (uh, vh) and χi+1/2,j , χi,j+1/2 are the characteristic functions of Qi+1/2,j

and Qi,j+1/2, respectively. Note that we used the same notation γh in the component-
wise fashion.

With the help of the transfer map γh, we can rewrite (2.8)–(2.9) in the vector
form

(α(p)u+∇p+ β(p), γhv) = 0 ∀v ∈ Vh.(2.11)

By applying Green’s theorem we obtain

(∇p, γhv) =
∑
i,j

∫
Qi+1/2,j

∂p

∂x
γhvx +

∑
i,j

∫
Qi,j+1/2

∂p

∂y
γhvy

=
∑
i,j

∫
∂Qi+1/2,j

p nx(γhvx) ds+
∑
i,j

∫
∂Qi,j+1/2

p ny(γhvy) ds

≡ b(γhv, p),

for every v = (vx, vy) in Vh. This leads to the following equivalent form of (2.11):

(α(p)u, γhv) + b(γhv, p) + (β(p), γhv) = 0 ∀v ∈ Vh.(2.12)

Now we define the mixed covolume method for the problem (1.1) by choosing the
space Vh as the trial function space: find (uh, ph) in Vh ×Wh satisfying

(α(ph)uh, γhv) + b(γhv, ph) + (β(ph), γhv) = 0 ∀v ∈ Vh,(2.13a)

(divuh, w) + (c(ph), w) = (f, w) ∀w ∈ Wh.(2.13b)

This is an extension of the covolume scheme of [10], [13] to quasi-linear problems.
By simple calculations it is easy to verify the equality

b(γhv, ph) = −(divv, ph) ∀v ∈ Vh, ph ∈ Wh,

(see Lemma 2.1 of [13] for details). This implies that the mixed covolume method
(2.13) can be rewritten as

(α(ph)uh, γhv)− (divv, ph) + (β(ph), γhv) = 0 ∀v ∈ Vh,(2.14a)

(divuh, w) + (c(ph), w) = (f, w) ∀w ∈ Wh.(2.14b)

We observe that this differs from the standard mixed finite element method only in the
fact that now the test function is γhv instead of v. The advantage of this formulation
is that we have the local conservativity (2.8)–(2.10) .

Finally, we give some properties of the operator γh which will be of crucial im-
portance in establishing error estimates for (2.14).
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Lemma 2.1. The symmetry relation

(uh, γhvh) = (γhuh,vh) ∀uh,vh ∈ Vh,(2.15)

holds, and there exist positive constants C and c0 independent of h such that for every
uh ∈ Vh, we have

‖γhuh‖0 ≤ C ‖uh‖0,(2.16)

(αuh, γhuh) ≥ c0‖uh‖2
0.(2.17)

Proof. We give only the proof for the first result. The other proofs can be found
in Lemmas 2.2 and 2.4 of [13].

Writing out the integrals as the sum over the rectangles Qi,j ∈ Qh and the two
components, we see that it suffices to consider the integral

∫ xi+1/2

xi−1/2
uh(γhvh) dx for

linear polynomials uh, vh in x. Let ui±1/2 = uh(xi±1/2), vi±1/2 = vh(xi±1/2), and
hi = xi+1/2 − xi−1/2. Then it follows that

∫ xi+1/2

xi−1/2

uh(γhvh) dx = vi−1/2

∫ xi

xi−1/2

uh dx+ vi+1/2

∫ xi+1/2

xi

uh dx

= vi−1/2

(
hi
2

)
ui−1/2 + ui

2
+ vi+1/2

(
hi
2

)
ui + ui+1/2

2

=
hi
4
{ui−1/2vi−1/2 + ui(vi−1/2 + vi+1/2) + ui+1/2vi+1/2}

=
hi
4
(ui−1/2vi−1/2 + 2uivi + ui+1/2vi+1/2),

which is clearly symmetric in uh, vh. We remark that this is the composite trapezoidal
rule for the integral

∫ xi+1/2

xi−1/2
uhvh dx.

Lemma 2.2. There exists a positive constant C such that

(αu,vh − γhvh) ≤ Ch ‖u‖1‖vh‖0 ∀u ∈ (H1(Ω))2, vh ∈ Vh,(2.18)

‖u− γhΠhu‖0,q ≤ Ch ‖u‖1,q ∀u ∈ (W 1,q(Ω))2, 1 < q < ∞.(2.19)

Proof. The first inequality is shown in Lemma 2.5 of [13]. We give a simpler proof
here. We start with an observation that if wh is a piecewise constant vector-valued
function, then we have

(wh,vh − γhvh) = 0 ∀vh ∈ Vh.

Let ᾱh and ūh denote piecewise constant approximations to α and u, respectively,
satisfying

‖α− ᾱh‖0,∞ ≤ Ch‖α‖1,∞, ‖u− ūh‖0 ≤ Ch‖u‖1.

Then it follows that

(αu,vh − γhvh) = ((α− ᾱh)u,vh − γhvh) + (ᾱhu,vh − γhvh)

= ((α− ᾱh)u,vh − γhvh) + (ᾱh(u− ūh),vh − γhvh)

≤ ‖α− ᾱh‖0,∞‖u‖0‖vh − γhvh‖0

+ ‖ᾱh‖0,∞‖u− ūh‖0‖vh − γhvh‖0

≤ Ch‖α‖1,∞‖u‖1‖vh‖0
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by (2.16). This proves the first result.
To prove the second inequality we note that I − γhΠh vanishes for constant poly-

nomials on each rectangle, and then apply the Bramble–Hilbert lemma.

3. Error equations. By subtracting (2.14) from (1.6) we obtain the error equa-
tions

(α(p)(u− uh), γhv)− (divv, p− ph) + (β(p)− β(ph), γhv)

= ([α(ph)− α(p)]uh, γhv)− (α(p)u+ β(p),v − γhv) ∀v ∈ Vh,
(3.1a)

(div(u− uh), w) + (c(p)− c(ph), w) = 0 ∀w ∈ Wh.(3.1b)

By the Taylor expansions

α(ph)− α(p) = α̃p(ph)(ph − p) = αp(p)(ph − p) + α̃pp(ph)(ph − p)2,

where

α̃p(ρ) =

∫ 1

0

αp(ρ+ t(p− ρ)) dt,

α̃pp(ρ) =

∫ 1

0

(1− t)αpp(ρ+ t(p− ρ)) dt

are bounded functions in Ω̄, we can write

(α(ph)− α(p))uh = (α(ph)− α(p))(uh − u) + (α(ph)− α(p))u

= α̃p(ph)(p− ph)(u− uh)− αp(p)u(p− ph)

+ α̃pp(ph)u(p− ph)
2,

and substituting this into (3.1), together with the second-order Taylor expansions for
β(p)− β(ph) and c(p)− c(ph), it follows that

(α(p)(u− uh), γhv)− (divv, p− ph) + ([αp(p)u+ βp(p)](p− ph), γhv)

= (α̃p(ph)(p− ph)(u− uh) + [α̃pp(ph)u+ β̃pp(ph)](p− ph)
2, γhv)

− (α(p)u+ β(p),v − γhv) ∀v ∈ Vh,

(3.2a)

(div(u− uh), w) + (cp(p)(p− ph), w) = (c̃pp(ph)(p− ph)
2, w) ∀w ∈ Wh.(3.2b)

Note that this system differs from the standard mixed finite element method only
in two respects: the test function is γhv, and we have an additional term (α(p)u +
β(p),v − γhv). This will allow us to analyze the mixed covolume method in an
analogous manner to the standard mixed finite element method.

Setting Γ = αp(p)u+βp(p), we observe that formally the system (3.2) corresponds
to the error equations of the mixed covolume method for the linear operator M given
by

Mχ = −∇ · (a(p)∇χ+ a(p)Γχ) + cp(p)χ.

Its formal adjoint M∗ is

M∗χ = −∇ · (a(p)∇χ) + a(p)Γ · ∇χ+ cp(p)χ.

By the assumptions on a,b, and c, it follows that M and M∗ are isomorphisms
from H2(Ω) ∩ H1

0 (Ω) to L2(Ω); i.e., for any ψ ∈ L2(Ω) there exists a unique φ ∈
H2(Ω) ∩H1

0 (Ω) such that Mφ = ψ (respectively, M∗φ = ψ) and ‖φ‖2 ≤ C‖ψ‖0.
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4. Existence of solutions. We define a map Φ : Vh ×Wh → Vh ×Wh, letting
Φ(µ, ρ) = (y, z) be the (unique) solution of

(α(p)(Πhu− y), γhv)− (divv, Php− z) + (Γ(Php− z), γhv)

= (α(p)(Πhu− u) + Γ(Php− p) + α̃p(ρ)(p− ρ)(u− µ)

+ [α̃pp(ρ)u+ β̃pp(ρ)](p− ρ)2, γhv)− (α(p)u+ β(p),v − γhv)

∀v ∈ Vh,

(4.1a)

(div(Πhu− y),w) + (cp(p)(Php− z), w)

= (cp(p)(Php− p) + c̃pp(ρ)(p− ρ)2, w) ∀w ∈ Wh.
(4.1b)

We recall that the left-hand side corresponds to the mixed covolume method for the
linear operatorM . It will be shown later in this section that this method has a unique
solution for sufficiently small h. Hence Φ is well defined, at least for sufficiently small
h.

It is easy to see that every solution of (2.14) is a fixed point of Φ. Thus, the
existence of a solution of (2.14) follows from the Brouwer fixed point theorem if we
can prove that Φ maps a ball of Vh ×Wh into itself.

For this sake we need the following lemma, which is the covolume version of
Lemma 2.1 of [35].

Lemma 4.1. Let 2 ≤ θ < ∞. Let ω ∈ V, and let q and r be linear functionals
defined on Vh and Wh, respectively. If τ ∈ Wh satisfies

(αω, γhv)− (divv, τ) + (Γτ, γhv) = q(v) ∀v ∈ Vh,

(divω, w) + (cp τ, w) = r(w) ∀w ∈ Wh,

then there exists a positive constant C such that for h sufficiently small, we have

‖τ‖0,θ ≤ C(h2/θ‖ω‖0 + h‖divω‖0 + ‖q‖0 + ‖r‖0),(4.2)

where ‖q‖0 and ‖r‖0 are the operator norms given by

‖q‖0 = sup
v∈Vh

(q,v)

‖v‖0
, ‖r‖0 = sup

w∈Wh

(r, w)

‖w‖0
.

Proof. We use the duality argument of Douglas and Roberts [17]. Let θ′ =
θ/(θ − 1) be the conjugate exponent of θ (1 < θ′ ≤ 2). For a given ψ ∈ Lθ′

(Ω), let
φ ∈ W 2,θ′

(Ω) be the solution of the adjoint problem M∗φ = ψ in Ω, φ = 0 on ∂Ω
satisfying the elliptic regularity estimate [1], [28]

‖φ‖2,θ′ ≤ C ‖ψ‖0,θ′ .(4.3)

Let ζ = a∇φ. Then we have

(τ, ψ) = (τ,−div ζ + Γ · ζ + cp φ) = (τ,−div(Πhζ) + Γ · ζ + cpφ)

= q(Πhζ)− (αω, γhΠhζ) + (Γτ, ζ − γhΠhζ) + (cpτ, φ)

= q(Πhζ) + (αω + Γτ, ζ − γhΠhζ)− (αω, ζ) + (cpτ, φ)

= q(Πhζ) + (αω + Γτ, ζ − γhΠhζ) + (divω, φ) + (cpτ, φ)

= q(Πhζ) + (αω + Γτ, ζ − γhΠhζ) + (divω + cpτ, φ− Phφ) + r(Phφ).
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By (2.4) it follows that

q(Πhζ) ≤ ‖q‖0‖Πhζ‖0 ≤ C‖q‖0‖ζ‖1,1 ≤ C‖q‖0‖φ‖2,1 ≤ C‖q‖0‖φ‖2,θ′ .

To estimate the second term we invoke the Sobolev imbedding theorem:

W 1−(2/θ),θ′
(Ω) ↪→ L2(Ω).

Since I − γhΠh vanishes for constant polynomials, we can apply the Bramble–Hilbert
lemma (cf. Theorem 2.3 of [46]) to obtain

‖ζ − γhΠhζ‖0 ≤ Ch2/θ ‖ζ‖2/θ.

Thus, it follows that

(αω, ζ − γhΠhζ) ≤ C‖ω‖0‖ζ − γhΠhζ‖0 ≤ Ch2/θ ‖ω‖0‖∇φ‖2/θ

≤ Ch2/θ ‖ω‖0‖∇φ‖1,θ′ ≤ Ch2/θ ‖ω‖0‖φ‖2,θ′ .

By (2.19) we also have

(Γτ, ζ − γhΠhζ) ≤ C‖τ‖0,θ‖ζ − γhΠhζ‖0,θ′ ≤ Ch ‖τ‖0,θ‖∇φ‖1,θ′

≤ Ch ‖τ‖0,θ‖φ‖2,θ′ ,

and

(divω, φ− Phφ) ≤ Ch ‖divω‖0‖φ‖1 ≤ Ch ‖divω‖0‖φ‖2−2/θ,θ′

≤ Ch ‖divω‖0‖φ‖2,θ′ ,

(cpτ, φ− Phφ) ≤ C‖τ‖0,θ‖φ− Phφ‖0,θ′ ≤ Ch ‖τ‖0,θ‖φ‖2,θ′ .

Finally, using the Sobolev imbedding W 2,1(Ω) ↪→ L2(Ω), we obtain

r(Phφ) ≤ ‖r‖0‖Phφ‖0 ≤ ‖r‖0‖φ‖0 ≤ C‖r‖0‖φ‖2,1 ≤ C‖r‖0‖φ‖2,θ′ .

Combining these results and applying (4.3), we obtain

(τ, ψ) ≤ C(h‖τ‖0 + h2/θ‖ω‖0 + h‖divω‖0 + ‖q‖0 + ‖r‖0) ‖ψ‖0,θ′ .

Now we divide both sides by ‖ψ‖0,θ′ and take the supremum with respect to ψ.
The proof will be completed if the term Ch‖τ‖0 is absorbed into ‖τ‖0 for sufficiently
small h.

As a corollary we obtain the following.
Corollary 4.2. The mixed covolume method for the linear operator M has a

unique solution, provided h is sufficiently small.
Proof. The proof is almost the same as in [17]. For completeness we repeat it

here. Since the system is linear, it suffices to prove uniqueness. Suppose that (ûh, p̂h)
satisfies

(αûh, γhv)− (divv, p̂h) + (Γp̂h, γhv) = 0 ∀v ∈ Vh,

(div ûh, w) + (cp p̂h, w) = 0 ∀w ∈ Wh.

By taking w = div ûh we obtain

‖div ûh‖0 ≤ C‖p̂h‖0.
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Lemma 4.1 implies that

‖p̂h‖0 ≤ Ch(‖ûh‖0 + ‖div ûh‖0),

so that for sufficiently small h we have

‖p̂h‖0 ≤ Ch‖ûh‖0.

Finally, if we take v = ûh, then it follows from (2.17) that

‖ûh‖0 ≤ C‖p̂h‖0 ≤ Ch‖ûh‖0,

which yields ûh = p̂h = 0 for sufficiently small h. This completes the proof.

Now we are ready to prove the following theorem.

Theorem 4.3. For δ > 0 sufficiently small (dependent on h), Φ maps a ball of
radius δ of Vh ×Wh into itself.

Proof. By Lemma 4.1 it is easy to see that the proof of this theorem is exactly
the same as the proof of Theorem 2.1 in [35], except that the linear functional q is
now given as

q(v) = (α(p)(Πhu− u) + Γ(Php− p) + α̃p(ρ)(p− ρ)(u− µ)

+ [α̃pp(ρ)u+ β̃pp(ρ)](p− ρ)2, γhv)− (α(p)u+ β(p),v − γhv),
(4.4)

where the test function in the first term is γhv, and we have an additional term
(α(p)u+ β(p),v − γhv).

By (2.16) it suffices to estimate this additional term. This can be done by (2.18),
which implies that

(α(p)u,v − γhv) ≤ Ch‖u‖1‖v‖0 ∀v ∈ Vh,(4.5)

and by a similar technique we also have

(β(p),v − γhv) = (β(p)− β̄h,v − γhv) ≤ Ch‖v‖0 ∀v ∈ Vh,(4.6)

where β̄h is a piecewise constant approximation to β(p) satisfying ‖β(p)−β̄h‖0 ≤ Ch.
Thus the proof is completed by absorbing (4.5) and (4.6) into the term h‖u‖1 in the
proof of Theorem 2.1 in [35].

Corollary 4.4. Let 0 < ε < 1 and θ = (4+2ε)/ε. Then there exists a sequence
{(uh, ph)}h>0 satisfying

‖u− uh‖0,2+ε + ‖p− ph‖0,θ ≤ Ch2/(2+ε).(4.7)

Moreover, the following L∞ bound holds:

‖uh‖0,∞ ≤ C(‖p‖2
2+ε + 1).(4.8)

Proof. See equations (3.1) and (3.12) in [35].

5. L2-error estimates. Throughout the remainder of the paper we set

ξ = u− uh, σ = Πhu− uh, τ = Php− ph.
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By means of the first-order Taylor expansions, we rewrite the error equations (3.1) in
the form

(α(p)ξ, γhv)− (divv, τ) + (Γhτ, γhv) = q(v) ∀v ∈ Vh,(5.1a)

(div ξ, w) + (c̃p(ph)τ, w) = r(w) ∀w ∈ Wh,(5.1b)

where we set Γh = α̃p(ph)uh+ β̃p(ph) and the linear functionals q and r are given by

q(v) = (Γh(Php− p), γhv)− (α(p)u+ β(p),v − γhv) ∀v ∈ Vh,

r(w) = (c̃p(ph)(Php− p), w) ∀w ∈ Wh.

We remark that ‖Γh‖0,∞ ≤ C(‖p‖2
2+ε + 1) by (4.8).

Observe again that the system (5.1) corresponds to the error equations of the
mixed covolume method for the linear operator Nh : H2(Ω) ∩H1

0 (Ω) → L2(Ω) given
by

Nhχ = −∇ · (a(p)∇χ+ a(p)Γhχ) + c̃p(ph)χ.

Its formal adjoint N∗
h : H2(Ω) ∩H1

0 (Ω) → L2(Ω) is

N∗
hχ = −∇ · (a(p)∇χ) + a(p)Γh · ∇χ+ c̃p(ph)χ.

To apply the duality argument to the mixed system (5.1) we need the following
technical result.

Lemma 5.1. There exists an h0 > 0 such that, if h < h0, N
∗
h has a bounded

inverse mapping from L2(Ω) onto H2(Ω) ∩H1
0 (Ω).

Proof. This is Lemma 3.1 in [35]. The basic idea of its proof is to compare N∗
h

withM∗, which is independent of h. Following the proof, we easily see that the central
part of the proof lies in the estimate (4.7).

Now we can apply the duality argument to (5.1). Let φ ∈ H2(Ω) be the solution
of the adjoint problem N∗

hφ = ψ in Ω, φ = 0 on ∂Ω. Then, by Lemma 5.1, the elliptic
regularity estimate ‖φ‖2 ≤ C‖ψ‖0 holds. Proceeding in the same way as in the proof
of Lemma 4.1, with Γ and cp replaced by Γh and c̃p(ph) and with θ = 2, we arrive at
the same result:

‖τ‖0 ≤ C(h‖ξ‖0 + h‖div ξ‖0 + ‖q‖0 + ‖r‖0),(5.2)

since Γh and c̃p(ph) are bounded functions in Ω.
Estimation of ‖q‖0 and ‖r‖0 can be done in a straightforward way by using (2.16),

(4.5), (4.6):

q(v) ≤ ‖Γh‖0,∞‖p− Php‖0‖γhv‖0 + Ch(‖u‖1 + 1)‖v‖0

≤ C(‖p‖2
2+ε + 1)h(‖p‖1 + ‖u‖1)‖v‖0,

which yields

‖q‖0 ≤ C(‖p‖2
2+ε + 1)h‖p‖2,(5.3)

and

r(w) ≤ C‖p− Php‖0‖w‖0 ≤ Ch‖p‖1‖w‖0,
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which yields

‖r‖0 ≤ Ch‖p‖1.(5.4)

Substituting (5.3), (5.4) into (5.2) we obtain

‖τ‖0 ≤ C(h‖ξ‖0 + h‖div ξ‖0 + h‖p‖2),(5.5)

where C depends quadratically on ‖p‖2+ε.
To estimate ‖ξ‖0 and ‖div ξ‖0 we write the system (5.1) as

(α(p)σ, γhv)− (divv, τ) + (Γhτ, γhv) = (α(p)(Πhu− u), γhv) + q(v)

∀v ∈ Vh,
(5.6a)

(divσ, w) + (c̃p(ph)τ, w) = r(w) ∀w ∈ Wh.(5.6b)

Taking w = divσ, we obtain by (5.4)

‖divσ‖0 ≤ C(‖τ‖0 + ‖r‖0) ≤ C(‖τ‖0 + h‖p‖1),(5.7)

and then, taking v = σ, we obtain

(α(p)σ, γhσ) ≤ C(‖divσ‖0‖τ‖0 + ‖τ‖0‖σ‖0 + h‖u‖1‖σ‖0 + ‖q‖0‖σ‖0)

≤ C(‖τ‖2
0 + h‖p‖1‖τ‖0 + ‖τ‖0‖σ‖0 + h‖u‖1‖σ‖0 + ‖q‖0‖σ‖0).

By applying the arithmetic-geometric inequality, (2.17), and (5.3) it follows that

‖σ‖0 ≤ C(‖τ‖0 + h‖p‖1 + h‖u‖1).(5.8)

From (5.7), (5.8) it is immediate that

‖ξ‖0 ≤ ‖u−Πhu‖0 + ‖σ‖0 ≤ C(‖τ‖0 + h‖p‖2),(5.9)

and for s = 0, 1

‖div ξ‖0 ≤ ‖divu− div (Πhu) ‖0 + ‖divσ‖0

≤ C(hs‖divu‖s + ‖τ‖0 + h‖p‖1),
(5.10)

which, when substituted into (5.5) with s = 0, gives

‖τ‖0 ≤ C(h‖τ‖0 + h‖p‖2).

Thus we obtain for sufficiently small h

‖τ‖0 ≤ Ch‖p‖2(5.11)

or

‖p− ph‖0 ≤ ‖p− Php‖0 + ‖τ‖0 ≤ Ch‖p‖2.(5.12)

Substituting (5.11) back into (5.9), (5.10) yields

‖ξ‖0 ≤ Ch‖p‖2,(5.13)

‖div ξ‖0 ≤ Ch(‖p‖2 + ‖divu‖1).(5.14)

Our results can be summarized as follows.
Theorem 5.2. For sufficiently small h there is a positive constant C, depending

on ‖p‖2+ε quadratically such that

‖p− ph‖0 ≤ Ch‖p‖2,(5.15)

‖u− uh‖0 ≤ Ch‖p‖2,(5.16)

‖div(u− uh)‖0 ≤ Ch(‖p‖2 + ‖divu‖1).(5.17)
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6. Superconvergence for the pressure. With the help of Theorem 5.2 we
can obtain the following superconvergence result for τ .

Theorem 6.1. For sufficiently small h there is a positive constant C, depending
on ‖p‖4

2+ε such that

‖τ‖0 ≤ Ch2(‖p‖2 + ‖divu‖1 + 1).(6.1)

Proof. The result is obtained by examining closely the duality argument applied
to the system (5.1). We start with the formula

(τ, ψ) = (αξ + Γhτ, ζ − γhΠhζ) + (div ξ + c̃p(ph)τ, φ− Phφ) + q(Πhζ) + r(Phφ),
(6.2)

which was given in the proof of Lemma 4.1. Recall that

q(Πhζ) = (Γh(Php− p), γhΠhζ)− (α(p)u+ β(p),Πhζ − γhΠhζ),

r(Phφ) = (c̃p(ph)(Php− p), Phφ),

where

Γh = α̃p(ph)uh + β̃p(ph), α̃p(ph) =

∫ 1

0

αp(ph + t(p− ph)) dt,

and there are similar expressions for β̃p(ph) and c̃p(ph).
The first two terms are estimated in the same way:

(αξ + Γhτ, ζ − γhΠhζ) ≤ Ch(‖ξ‖0 + ‖τ‖0)‖ψ‖0,(6.3)

(div ξ + c̃p(ph)τ, φ− Phφ) ≤ Ch(‖div ξ‖0 + ‖τ‖0)‖ψ‖0.(6.4)

Thus we need to examine the terms q(Πhζ) and r(Phφ).
Observe first that

αp(p)− α̃p(ph) =

∫ 1

0

[αp(p)− αp(ph + t(p− ph))] dt

= (p− ph)

∫ 1

0

(1− t)αpp(p
∗(t)) dt

= ᾱpp(p− ph),

and similarly

βp(p)− β̃p(ph) = β̄pp(p− ph), cp(p)− c̃p(ph) = c̄pp(p− ph),

which implies that

Γ− Γh = αp(p)u− α̃p(ph)uh + βp(p)− β̃p(ph)

= (αp(p)− α̃p(ph))u+ α̃p(ph)(u− uh) + βp(p)− β̃p(ph)

= (ᾱppu+ β̄pp)(p− ph) + α̃p(ph)(u− uh).

Then we obtain by Theorem 5.2

(Γh(Php− p), γhΠhζ) = ((Γh − Γ)(Php− p), γhΠhζ) + (Γ(Php− p), γhΠhζ)

= ({[ᾱppu+ β̄pp](ph − p) + α̃p(ph)(uh − u)}(Php− p), γhΠhζ)

+ (Γ(Php− p), γhΠhζ − ζ) + (Γ(Php− p), ζ)

≤ C(‖p− ph‖0 + ‖u− uh‖0)‖p− Php‖0,∞‖γhΠhζ‖0

+ C‖p− Php‖0‖ζ − γhΠhζ‖0 + C‖p− Php‖−1‖ζ‖1

≤ Ch2(‖p‖1 + ‖u‖1)‖ζ‖1 ≤ Ch2‖p‖2‖ψ‖0,



1070 DO Y. KWAK AND KWANG Y. KIM

and for any w ∈ Wh,

(c̃p(ph)(Php− p), Phφ) = ([c̃p(ph)− cp(p)](Php− p), Phφ) + (cp(p)(Php− p), Phφ)

= (c̄pp(ph − p)(Php− p), Phφ) + ([cp(p)− w](Php− p), Phφ)

≤ C‖p− ph‖0‖p− Php‖0,∞‖Phφ‖0

+ ‖cp(p)− w‖0,∞‖p− Php‖0‖Phφ‖0

≤ Ch2‖p‖2‖φ‖0,

where we take the infimum over w ∈ Wh. Here the constant C depends on the product
‖u‖0,∞‖p‖0,∞‖p‖2

2+ε, or ‖p‖4
2+ε by the Sobolev imbedding theorem.

Finally, we need to estimate the remaining term (α(p)u + β(p),Πhζ − γhΠhζ).
Letting w = α(p)u+β(p) and w̄h be a piecewise constant approximation to w which
satisfies ‖w − w̄h‖0 ≤ C‖w‖1, we obtain

(α(p)u+ β(p),Πhζ − γhΠhζ) = (w,Πhζ − γhΠhζ) = (w − w̄h,Πhζ − γhΠhζ)

= (w − w̄h,Πhζ − ζ) + (w − w̄h, ζ − γhΠhζ)

≤ Ch2 ‖w‖1‖ζ‖1 ≤ Ch2 (‖u‖1 + 1)‖φ‖2.

Consequently, we arrive at

q(Πhζ) ≤ Ch2(‖p‖2 + 1)‖ψ‖0,(6.5)

r(Phφ) ≤ Ch2‖p‖2‖ψ‖0.(6.6)

Now combining (6.3)–(6.6) and taking the supremum with respect to ψ give

‖τ‖0 ≤ C(h‖ξ‖0 + h‖div ξ‖0 + h2(‖p‖2 + 1)),

and when substituting (5.9) and (5.10) with s = 1 into this, we obtain for sufficiently
small h

‖τ‖0 ≤ Ch2(‖p‖2 + ‖divu‖1 + 1).(6.7)

This completes the proof.
Corollary 6.2. For 2 < q ≤ ∞ the following optimal Lq-error estimate for the

pressure variable holds:

‖p− ph‖0,q ≤ Ch(‖p‖1,q + ‖p‖2 + ‖divu‖1 + 1).(6.8)

Proof. The result can be derived in a straightforward manner by using the inverse
inequality. For 2 < q < ∞, we obtain

‖p− ph‖0,q ≤ ‖p− Php‖0,q + ‖τ‖0,q ≤ Ch‖p‖1,q + Ch−(q−2)/q‖τ‖0

≤ Ch‖p‖1,q + Ch−(q−2)/qh2(‖p‖2 + ‖divu‖1 + 1)

≤ Ch(‖p‖1,q + ‖p‖2 + ‖divu‖1 + 1),

and for q = ∞,

‖p− ph‖0,∞ ≤ ‖p− Php‖0,∞ + ‖τ‖0,∞ ≤ Ch‖p‖1,∞ + Ch−1‖τ‖0

≤ Ch‖p‖1,∞ + Ch−1h2(‖p‖2 + ‖divu‖1 + 1)

≤ Ch(‖p‖1,∞ + ‖p‖2 + ‖divu‖1 + 1),
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which implies the result.

Remark 6.1. Negative-norm error estimates and uniqueness of a solution near
(u, p) can be established by a similar technique in [35].

Remark 6.2. When ∂b/∂p is large, we have a convection-dominated problem
and one should employ special discretizations such as upwinding schemes in [15] or
[41]. This will be the subject of our future research.
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[22] M. Feistauer, J. Felcman, and M. Lukácová, Combined finite element-finite volume solu-
tion of compresible flow, J. Comput. Appl. Math., 63 (1995), pp. 179–199.

[23] P. A. Forsyth, A control volume finite element approach to NAPL groundwater contamina-
tion, SIAM J. Sci. Statist. Comput., 12 (1991) pp. 1029–1057.



1072 DO Y. KWAK AND KWANG Y. KIM

[24] M. Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Anal.
Numér., 11 (1977), pp. 341–354.

[25] B. Fraeijis de Veubeke, Displacement and equilibrium models in the finite element method,
in Stress Analysis, O. C. Zienkiewicz and G. Holister, eds., John Wiley and Sons, New
York, 1965, pp. 145–197.

[26] B. Heinrich, Finite Difference Methods on Irregular Networks, Birkhäuser, Basel, 1987.
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