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Abstract. We consider a covolume method for a system of first order PDEs resulting from
the mixed formulation of the variable-coefficient-matrix Poisson equation with the Neumann bound-
ary condition. The system may be used to represent the Darcy law and the mass conservation
law in anisotropic porous media flow. The velocity and pressure are approximated by the lowest
order Raviart–Thomas space on rectangles. The method was introduced by Russell [Rigorous Block-
centered Discretizations on Irregular Grids: Improved Simulation of Complex Reservoir Systems,
Reservoir Simulation Research Corporation, Denver, CO, 1995] as a control-volume mixed method
and has been extensively tested by Jones [A Mixed Finite Volume Elementary Method for Accurate
Computation of Fluid Velocities in Porous Media, University of Colorado at Denver, 1995] and Cai
et al. [Computational Geosciences, 1 (1997), pp. 289–345]. We reformulate it as a covolume method
and prove its first order optimal rate of convergence for the approximate velocities as well as for the
approximate pressures.
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1. Introduction. Consider the Poisson equation in an axiparallel domain Ω ⊂
R2 { −∇ · K∇p = f in Ω,

K∇p · n = 0 on ∂Ω,
(1.1)

where K = K(x) = diag(τ−1
1 (x), τ−1

2 (x)) is a positive definite diagonal matrix function
and its entries are bounded from below and above by positive constants. Furthermore,
we shall assume that τ1, τ2 are locally Lipschitz.

Let us introduce a new variable u = −K∇p and write the above equation as the
system of first order partial differential equations{ K−1u = −∇p in Ω,

divu = f in Ω,
(1.2)

with the boundary condition u · n = 0 on ∂Ω. This system can be interpreted as
modeling an incompressible single phase flow in a reservoir, ignoring gravitational
effects. The matrix K is the mobility κ/µ, the ratio of permeability tensor to viscosity
of the fluid, u is the Darcy velocity, and p is the pressure. The first equation is the
Darcy law and the second represents conservation of mass with f standing for a source
or sink term. Since κ is in general discontinuous due to different rock formations,
separating the Darcy law from the second order equation and discretizing it directly
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Fig. 1.1. Primal and dual domains

together with the mass conservation may lead to a better numerical treatment on the
velocity than just computing it from the pressure via the Darcy law [1, 12].

The associated weak formulation of our first order system is the following: Find
(u, p) ∈ H0 × L2

0 such that

(K−1u,v) = (p, div v) ∀ v ∈ H0,
(divu, q) = (f, q) ∀ q ∈ L2

0,
(1.3)

where H0 := H(div; Ω) ∩ {u · n = 0} and L2
0 := {q ∈ L2(Ω) :

∫
Ω
qdx = 0}. The space

H(div; Ω) is the set of all vector-valued functions w ∈ L2(Ω)2 such that div w ∈ L2(Ω).

We will adapt a covolume methodology for the generalized Stokes problem [3]
to approximate this system. The basic idea of creating a covolume method is to
find a good combination of the finite volume method and the MAC (marker and
cell) [11] placements of flow variables. (A balanced survey of the covolume method
literature up to 1995 is in Nicolaides, Porsching, and Hall [13].) In the MAC scheme,
the pressure variable is assigned to the centers of the rectangular volumes, and the
normal components of the velocity or fluxes are assigned to the edges of the rectangular
volumes.

More specifically, let Qh = {Qi,j} be a partition of the domain Ω into a union of
rectangles Qi,j with centers ci,j (see Figure 1.1). The subindices {i+ 1, j}, {i− 1, j},
{i, j + 1}, and {i, j − 1} are assigned to the eastern, western, northern, and southern
adjacent rectangles, respectively, if they exist. Given Qi,j , the two midpoints of its
vertical edges are denoted as ci±1/2,j and the two midpoints of its horizontal edges as
ci,j±1/2. Let ci,j = (xi, yj) and ci+1/2,j = (xi+1/2, yj) etc., define

Qi+1/2,j :=
(

[xi, xi+1]× [yj−1/2, yj+1/2]
) ∩ Ω,

Qi,j+1/2 :=
(

[xi−1/2, xi+1/2]× [yj , yj+1]
) ∩ Ω,

and

Qi,j := [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2].
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Since the approximate pressure is assigned at the center of Qi,j , it is natural to assume
that as a function on Ω it is piecewise constant with respect to the primal partition
{Qi,j}. The unknown approximate pressure ph at the center of Qij can then be
determined by integrating the mass conservation equation over Qi,j .

The normal approximate velocity is assumed to be constant along any edge. There
are several ways [1, 4, 6, 10] to exactly or nearly accomplish this; here we will use
the one proposed in [1, 12], i.e., use the lowest order Raviart–Thomas spaces for the
approximate velocity field. Within each Qi,j the horizontal component of the velocity
is linear in x and constant in y, whereas the vertical component is linear in y and
constant in x. Thus we have four degrees of freedom assigned at midpoints of edges.
For example, with the eastern vertical edge of Qi,j , we associate one unknown, the
horizontal velocity component (normal flux); the accompanying equation is taken by
integrating the first component of the vector equation (1.2)1 over Qi+1/2,j . Similarly,
to determine the unknown at a nonborder northern edge, we integrate (1.2)2 over
Qi,j+1/2. In other words, if we write the velocity field uh = (uh, vh), then Qi,j+1/2 is
for the determination of vh and Qi+1/2,j is for uh. We will sometimes call Qi+1/2,j

(Qi,j+1/2) a u-volume (v-volume). These volumes are also called the covolumes of
Qi,j in the literature [13].

Throughout this paper the primal partition Qh = {Qij} is quasi-regular, i.e.,
there exist positive constants C1 and C2 independent of h such that

C1h
2 ≤ area{Qi,j} ≤ C2h

2 ∀ Qij ∈ Qh,(1.4)

where h := maxi,j{hxi,j , hyi,j}, hxi,j , hyi,j are, respectively, the width and height of Qi,j .
Now define the following two spaces:

Yh := {(uh, vh) : uh ∈ L2(Ω) is piecewise constant on u-volumes,

vh ∈ L2(Ω) is piecewise constant on v-volumes}⋂
{(uh, vh) : uh = 0 on border u-volumes, vh = 0 on border v-volumes},

and

Hh := {(uh, vh) ∈ H0 : uh(x, y) = a+ bx,

vh(x, y) = c+ dy on Qi,j ∈ Qh}.
The trial space Hh is the lowest order Raviart–Thomas space, and Yh is the test space
used to pick out the control volumes in engineering applications. For the pressure
space, define

Lh := {qh ∈ L2
0 : qh is constant over Qij ∈ Qh}.

We now describe the above processes more abstractly, since our purpose is to prove
convergence. For computational results and more applications see [1, 12]. The stan-
dard mixed finite element method for (1.1) deals with the primal grid only: Find
(ũh, p̃h) ∈ Hh × Lh such that

(K−1ũh,vh)− (div vh, p̃h) = 0 ∀ vh ∈ Hh,
(div ũh, qh) = (f, qh) ∀ qh ∈ Lh.(1.5)

In contrast, the present method deals with three grids. First, we define an analogue
of −(divvh, p̃h) in (1.5). Note that for smooth v = (v1, v2) and p
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−(divv, p) = −(∂v1/∂x, p)− (∂v2/∂y, p)

= −
∑
i,j

∫
Qi+1/2,j

∂v1

∂x
p dxdy −

∑
i,j

∫
Qi,j+1/2

∂v2

∂y
p dxdy

= −
∑
i,j

∫
∂Qi+1/2,j

(v1, 0)t · np ds−
∑
i,j

∫
∂Qi,j+1/2

(0, v2)t · npds.(1.6)

With this in mind we define the bilinear form b : Yh × Lh → R:

b(vh, ph) := −
∑
i,j

∫
∂Qi+1/2,j

(v1
h(ci+1/2,j), 0)t · nphds(1.7)

−
∑
i,j

∫
∂Qi,j+1/2

(0, v2
h(ci,j+1/2))t · nphds

and the bilinear forms a : Hh ×Yh → R, c : Hh × Lh → R:

a(uh,vh) :=

∫
Ω

K−1uh · vhdx dy,(1.8)

c(uh, qh) := −
∑

qh(ci,j)

∫
Qi,j

divuhdx dy(1.9)

= −
∫

Ω

qhdivuhdx dy.

Note that the form a(·, ·) can be extended to L2(Ω)× L2(Ω) and will be also used as
such later. In addition, define the transfer operator γh : Hh → Yh:

γhwh := (γhuh, γhvh), wh = (uh, vh)

:=

∑
i,j

uh(ci+1/2,j)χi+1/2,j ,
∑
i,j

vh(ci,j+1/2)χi,j+1/2

 ,(1.10)

where χi+1/2,j and χi,j+1/2 are the characteristic functions of Qi+1/2,j and Qi,j+1/2,
respectively. Note that we used the same notation γh in the componentwise definition
and that γh is onto. Now let χj(y) and χ̄i(x) be the characteristic functions of the
intervals [yj−1/2, yj+1/2] and [xi−1/2, xi+1/2], respectively. Recall that the space Hh

is spanned by the functions {(φi+1/2,j(x)χj(y), 0)} and {(0, ψi,j+1/2(y)χ̄i(x)} where
φi+1/2,j and ψi,j+1/2 are the usual hat functions associated with midpoints of the
interior vertical and horizontal edges, respectively. In Figure 1.2, we show a typical
action of the transfer operator on the basis functions. The top figure is the basis
function wh = (φi+1/2,j(x)χj(y), 0) based at the common edge with center point
ci+1/2,j . The bottom figure is the image of wh under γh, whose x-component is the
characteristic function of the dotted covolume and whose y-component is zero. The
action on (0, ψi,j+1/2(y)χ̄i(x)) can be shown similarly.

Remark 1.1. A remark is in order here concerning the bilinear form b. Although
we motivated its definition using (1.6) with smooth functions, notice that b has in its
first argument a nonsmooth test function in Yh. We shall show in Lemma 2.1 that
b(γhwh, ph) = −c(wh, ph). In other words, it is b(γh·, ·), not b(·, ·), that is related to
the divergence term in (1.5).
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Fig. 1.2. The action of the transfer operator γh : Hh → Yh on a basis function. The top
figure is the basis vector function with the support in the two primal volumes. It is constant in the
y–direction and has value one along the common edge, zero along the boundary edges, and linear in
between. The bottom figure is its image in Yh, which has constant value (1, 0) throughout the dotted
covolume and zero elsewhere.

Thus, the covolume method we consider is this: Find {uh, ph} ∈ Hh × Lh such
that

a(uh, γhwh)− b(γhwh, ph) = 0 ∀ wh ∈ Hh,
−c(uh, qh) = (f, qh) ∀ qh ∈ Lh.(1.11)

Here the substitution of γhwh for a test function vh ∈ Yh is due to the surjectiveness
of the operator γh. This simple observation turns the original Petrov–Galerkin state-
ment into a standard Galerkin one. It can be easily checked that this formulation
reduces to that of Cai et al. [1] once the characteristic functions of u- and v-volumes
are chosen as basis functions in representing it as a linear system. We can reformulate
(1.11) into a standard saddle point problem by further introducing

A(u,v) := a(u, γhv) = (K−1u, γhv) u,v ∈ Hh

and

B(wh, qh) := b(γhwh, qh)

so that problem (1.11) becomes

A(uh,wh)−B(wh, ph) = 0 ∀ wh ∈ Hh,
−c(uh, qh) = (f, qh) ∀ qh ∈ Lh.(1.12)

In Lemma 2.1, we show that B = −c and hence

A(uh,wh)−B(wh, ph) = 0 ∀ wh ∈ Hh,(1.13)

B(uh, qh) = (f, qh) ∀ qh ∈ Lh.(1.14)

Note that the above system is in standard form. Nevertheless, the standard mixed
method analysis cannot be used here. This is so because the original PDE cannot be
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put into the same form—the transfer operator γh in the definition of the bilinear form
A cannot be extended to the space H(div; Ω). However, on closer examination we see
that the standard mixed method (1.5) for the Poisson equation (1.2) differs from the
mixed covolume method (1.13)–(1.14) only in the bilinear form A. Thus we can treat
the covolume method as one resulting from a “variational crime” of the standard mixed
method. A careful analysis of the transfer operator γh in connection to this deviation
then leads to our error estimate in Theorem 3.1 which demonstrates the first order er-
ror estimates in both the velocity and the pressure. The starting point of the proof is a
good error equation (cf. (3.9) below) that plays the role of Cea’s lemma in the standard
finite element analysis. This methodology was initiated in Chou [3] for the generalized
Stokes problem on triangular grids, in Chou and Kwak [6] for the same problem on
rectangular grids, and in Chou and Li [5] for the “point-centered” or vertex-centered
schemes for the variable-coefficient Poisson equation. A general framework for con-
structing and analyzing mixed covolume methods for convection-diffusion equations is
Chou and Vassilevski [7]. The present paper also introduces some new techniques to
overcome difficulties in dealing with the space H(div; Ω) and the variable-coefficient
(mobility) matrix in the covolume setting. Other methodology of proving convergence
for the finite volume element method can be found in Cai and McCormick [2].

2. Saddle point formulation. In this section we prove some preliminary lem-
mas. Let || · ||j , j = 0, 1 denote the usual L2 and H1 norms, respectively, and let

||u||2
H(div)

:= ||u||20 + ||divu||20.

We also use || · || for the L2 norm when there is no confusion. The symbol C will be
used as a generic positive constant independent of h and may have different values at
different places.

Lemma 2.1. The following holds:

B(wh, qh) = b(γhwh, qh) = −c(wh, qh) ∀ wh ∈ Hh, qh ∈ Lh.

Proof. Since B is bilinear it suffices to show the relation holds when wh is a basis
function of the Raviart–Thomas space. We shall only demonstrate the relation for
the vertical-edge based basis functions. The basis function wh associated with the
vertical edge whose midpoint is ci+1/2,j is supported over Qi,j and Qi+1,j . It is zero
in the second component and its first component is the familiar hat function with zero
value on the left and right vertical edges of its support and value one on the common
edge of the two rectangles above. Thus

−B(wh, qh) = (1, 0)t
∫
∂Qi+1/2,j

qhnds

= −qh(ci,j)h2 + qh(ci+1,j)h2,

where h2 is the height of the two rectangles involved. On the other hand,

c(wh, q) = −q(ci,j)
∫
Qi,j

(1 + 0)

hxij
dxdy − q(ci+1,j)

∫
Qi+1,j

(−1 + 0)

hxi+1,j

dxdy

= −q(ci,j)h2 + q(ci+1,j)h2.

The other cases can be handled the same way.
We next show the coerciveness of A on the divergence free subspace of Hh.
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Lemma 2.2. There exists a positive constant C independent of h and wh such
that for all wh ∈ Hh with div wh = 0,

A(wh,wh) ≥ C‖wh‖2H(div)

holds.
Proof. Write wh = (uh, vh) ∈ Hh. Then

a(wh, γhwh) =
∑
i,j

uh(ci+1/2,j)

∫
Qi+1/2,j

τ1(x, y)uh(x, y)dxdy

+
∑
i,j

vh(ci,j+1/2)

∫
Qi,j+1/2

τ2(x, y)vh(x, y)dxdy

= I + II.

It suffices to show that I ≥ C‖uh‖20, as II can be handled similarly. Let Q−ij :=

Qi−1/2,j ∩Qij and Q+
ij := Qi+1/2,j ∩Qij . Then

I =
∑

uh(ci−1/2,j)

∫
Q−
ij

τ1(x, y)uh(x, y)dxdy

+
∑

uh(ci+1/2,j)

∫
Q+
ij

τ1(x, y)uh(x, y)dxdy

= III + IV,

where

III =
∑

uh(ci−1/2,j)

∫
Q−
ij

(τ1(x, y)− τ1(cij))uh(x, y)dxdy

+
∑

uh(ci−1/2,j)τ1(cij)

∫
Q−
ij

uh(x, y)dxdy

= V + VI,

IV =
∑

uh(ci+1/2,j)

∫
Q+
ij

(τ1(x, y)− τ1(cij))uh(x, y)dxdy

+
∑

uh(ci+1/2,j)τ1(cij)

∫
Q+
ij

uh(x, y)dxdy

= VII + VIII.

Using the linearity of uh in x and constant in y, we can easily derive by direct com-
putation that

VI + VIII ≥ C‖uh‖20.
On the other hand, by Lipschitz continuity of τ1 and the Simpson’s rule (or (2.5)
below),

|V + VII| ≤Mh
∑∫

Q−
ij

|uh(ci−1/2,j)uh(x, y)|dxdy

+

∫
Q+
ij

|uh(ci+1/2,j)uh(x, y)|dxdy
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≤Mh
∑
‖uh(ci−1/2,j)‖Q−

ij
‖uh‖Q−

ij
+ ‖uh(ci+1/2,j)‖Q+

ij
‖uh‖Q+

ij

≤ 6Mh
∑
‖uh‖2Qij

= 6Mh‖uh‖20.
Thus we have

I ≥ C‖uh‖20 − 6Mh‖uh‖20
and so

I ≥ C||uh||20
for h sufficiently small.

Now by Lemma 2.1, problem (1.11) becomes

A(uh,wh)−B(wh, ph) = 0 ∀ wh ∈ Hh,
B(uh, qh) = (f, qh) ∀ qh ∈ Lh.(2.1)

The bilinear form B is well known, and the following inf-sup condition associated with
the lowest order Raviart–Thomas space can be found in [14].

Lemma 2.3. There exists a positive constant β independent of h such that

sup
06=wh∈Hh,

B(wh, qh)

‖wh‖H(div)

≥ β‖qh‖0 ∀ qh ∈ Lh.(2.2)

Thus Lemmas 2.1–2.3 imply the uniqueness and existence of the solution of the
system (1.13)–(1.14). Next we show that γh is a self-adjoint operator with respect to
the L2 inner product on Hh, and it is bounded also.

Lemma 2.4. The following relations hold:

(γhuh,wh) = (uh, γhwh) ∀ uh,wh ∈ Hh,(2.3)

and there exists a positive constant C independent of h such that

||γhuh||0 ≤ C||uh||0 ∀ uh ∈ Hh.(2.4)

Proof. Let uh = (uh, vh) and wh = (wh, xh). We first show that γh is self-adjoint.
Writing out (γhuh,wh) as the sum of two integrals, we see that it suffices to examine
the action of γh on the first components (or second components). Let uh = a + bx,
wh = c + dx on the standard reference rectangle Q = [0, h1] × [0, h2] and let (·, ·)Q
denote the restriction of (·, ·) on Q and || · ||Q its induced norm. Then

(uh, γhwh)Q = h2

∫ h1/2

0

(a+ bx)cdx+ h2

∫ h1

h1/2

(a+ bx)(c+ dh1)dx,

(γhuh, wh)Q = h2

∫ h1/2

0

a(c+ dx)dx+ h2

∫ h1

h1/2

(a+ bh1)(c+ dx)dx.

Now their difference divided by h2 is∫ h1/2

0

(bc− ad)xdx+

∫ h1

h1/2

(ad− bc)h1dx+

∫ h1

h1/2

(bc− ad)xdx

= (bc− ad)
h2

1

8
+ (ad− bc)h

2
1

2
+ (bc− ad)

3h2
1

8
= 0.
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Thus, (uh, γhwh) = (γhuh,wh).
The boundedness of γh can be proved by direct computation, but let us prove

it indirectly to show a principle that will be used later. We want to show that for
E = 0, h1 ∫ h2

0

∫ h1

0

|uh(E, y)|2dxdy ≤ C||uh||20,Q,(2.5) ∫ h2

0

∫ h1

0

|vh(E, y)|2dxdy ≤ C||vh||20,Q.(2.6)

In fact by Simpson’s rule for any linear f∫ h

0

f2(x)dx =
h

6

(
f2(0) + 4f2

(
h

2

)
+ f2(h)

)
and hence

6

∫ h

0

f2(x)dx ≥ hf2(E), E = 0 or h.(2.7)

Thus for uh = a+ bx,∫ h2

0

∫ h1

0

|uh(0, y)|2dxdy ≤
∫ h2

0

(∫ h1

0

h1|uh(0, y)|2dx
)
h−1

1 dy

≤ 6

∫ h2

0

∫ h1

0

|uh(x, y)|2dxdy

= 6||uh||20,Q.
Similar results hold for vh. With these it is easy to see the boundedness of γh.

Next we show a crucial approximation property of γh. Let us first define a discrete
seminorm for wh = (wh, xh) ∈ Hh,

|wh|21,h :=
∑
Q∈Qh

||∇wh||20,Q + ||∇xh||20,Q(2.8)

and the full norm

||wh||21,h = ||wh||20 + |wh|21,h.
We also use ||wh||1,h;Q for the corresponding restriction.

Lemma 2.5. There exists a constant C independent of h such that

‖(I − γh)wh‖0 ≤ Ch||wh||1,h,(2.9)

|a(uh, (I − γh)wh)| ≤ Ch||uh||1,h||wh||0 ∀ uh,wh ∈ Hh,(2.10)

|a(u, (I − γh)wh)| ≤ Ch||u||1||wh||0 ∀ wh ∈ Hh,u ∈ H1(Ω).(2.11)

Proof. Using the notation in the proof of Lemma 2.4 and letting wh = (uh, vh),
we have

‖uh − γhuh‖2Q = h2

∫ h1/2

0

(a+ bx− a)2dx+ h2

∫ h1

h1/2

(a+ bx− a− bh1)2dx

= h2

∫ h1/2

0

b2x2dx+ h2

∫ h1

h1/2

b2(x− h1)2dx =
h3

1h2

12
b2.
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Likewise, for vh = c+ dx,

‖vh − γhvh‖2Q =
h1h

3
2

12
d2.

So summing over Qi,j yields

‖(I − γh)wh‖0 ≤ Ch||wh||1,h.
To prove (2.10), observe

a(uh, (I − γh)wh) = a((I − γh)uh,wh) + [a(γhuh,wh)− a(uh, γhwh)]

= S1 + S2.

We shall show that S1 and S2 are bounded by the right-hand side of (2.10). First,

|S1| = |a((I − γh)uh,wh)|
= |(K−1(I − γh)uh,wh)|
= |((I − γh)uh,K−1wh)|
≤ C||K−1||∞h||uh||1,h‖wh‖0.

We next show how to bound S2. Write K−1 = diag(τ1(x), τ2(x)) with 0 < tmin ≤
τ1, τ2 ≤ tmax. With uh = (u1, u2) and vh = (v1, v2), we need to estimate

(K−1uh, γhvh)Q − (K−1γhuh,vh)Q = I1 + I2,

where

I1 = (τ1(x)u1, γhv
1)Q − (τ1(x)γhu

1, v1)Q,

I2 = (τ2(x)u2, γhv
2)Q − (τ2(x)γhu

2, v2)Q.

Let c ∈ Q. Now we have

I1 = (τ1(x)u1, γhv
1)Q − (τ1(x)γhu

1, v1)Q

= ((τ1(x)− τ1(c))u1, γhv
1)Q − ((τ1(x)− τ1(c))γhu

1, v1)Q

+ τ1(c)[(u1, γhv
1)Q − (γhu

1, v1)Q]

= ((τ1(x)− τ1(c))u1, γhv
1)Q − ((τ1(x)− τ1(c))γhu

1, v1)Q,

where we have used Lemma 2.4 (or the scalar version which was proved in that lemma)
in deriving the last equality. Hence by the Lipschitz continuity of τ1 and (2.4), we
have

|I1| ≤Mh‖u1‖Q‖v1‖Q.
A similar estimate holds for I2. Summing over Q and using the Cauchy–Schwarz
inequality, we obtain

|S2| ≤ Ch‖uh‖0‖vh‖0.
We are now ready to show the last assertion of our lemma. Let Eh be the familiar

interpolation operator from H1(Ω) to Hh with
∫
e
q · nds, flux across edge, as its

degrees of freedom [14, pp. 550–554]. Then

||q− Ehq||0 ≤ Ch|q|1 ∀ q ∈ H1(Ω).(2.12)



768 SO-HSIANG CHOU AND DO Y. KWAK

Now

|a(u, (I − γh)wh)| = |a(u− Ehu, (I − γh)wh) + a(Ehu, (I − γh)wh)|
≤ C||u− Ehu||0||(I − γh)wh||0 + |a(Ehu, (I − γh)wh)|
≤ Ch||u||1||wh||0 + |a(Ehu, (I − γh)wh)|.

It remains to estimate a(Ehu, (I − γh)wh). By (2.10),

|a(Ehu, (I − γh)wh)| ≤ Ch||Ehu||1,h||wh||0.

Hence we will be done if we can show that

||Ehu||1,h ≤ C||u||1.

Note that on any vertical edge e of Q,∫
e

u · n(x, y)dy =

∫
e

(Ehu)(x, y) · ndy = h2(Ehu) · n(x).

Using this and the divergence theorem, we have the partial derivative of the first
component of Ehu,

(Ehu)1
x =

(Ehu)1(h1)− (Ehu)1(0)

h1

=
1

h1h2

∫ ∫
Q

∂u1

∂x
dxdy.

Thus

|(Ehu)1
x| ≤ Ch−1‖u1

x‖

and likewise

|(Ehu)2
y| ≤ Ch−1‖u2

y‖.

Since Ehu has the form (a+ bx, c+ dy) over Qij , we have

|Ehu|1,h,Qij ≤ Ch
[|∇(Ehu)1|2 + |∇(Ehu)2|2]1/2

= Ch
(
[(Ehu)1

x]2 + [(Ehu)2
y]2
)1/2 ≤ C‖u‖1,Qij ,

where we have used the quasi-regularity condition (1.4) and the fact that the partial
derivatives involved are constant. Summing over Qij now completes the proof.

3. Error estimates. We now prove the main theorem of this paper.
Theorem 3.1. Let the rectangular partition family {Qij} of the domain Ω be

quasi-regular satisfying (1.4), and let {uh, ph} be the solution of problem (1.12) and
{u, p} the solution of problem (1.3). Then there exists a positive constant C indepen-
dent of h but dependent on ||K−1||∞, ‖u‖1, ‖divu‖1, and ‖p‖1 such that

‖u− uh‖H(div) + ‖p− ph‖0 ≤ Ch(3.1)

provided that u ∈ H1,div u ∈ H1, p ∈ H1.
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Proof. Introduce the auxiliary mixed formulation to (1.3): Find (ũh, p̃h) ∈ Hh ×
Lh such that

a(ũh,wh)−B(wh, p̃h) = 0 ∀ wh ∈ Hh,(3.2)

B(ũh, qh) = (f, qh) ∀ qh ∈ Lh.(3.3)

This system has the following well-known convergence result [14]:

‖u− ũh‖H(div) + ‖p− p̃h‖0 ≤ Ch(‖u‖1 + ‖divu‖1 + ‖p‖1)(3.4)

provided that u ∈ H1,div u ∈ H1, p ∈ H1. On the other hand, we have

a(uh, γhwh)−B(wh, ph) = 0 ∀ wh ∈ Hh,(3.5)

B(uh, qh) = (f, qh) ∀ qh ∈ Lh.(3.6)

Define eh := (u − ũh) + (ũh − uh). Thus it suffices to estimate the second term on
the right. Subtracting (3.6) from (3.3), we have

B(ũh − uh, qh) = 0 ∀ qh ∈ Lh.(3.7)

Subtracting (3.5) from (3.2) yields

a(ũh − uh, γhwh) + a(ũh, (I − γh)wh)−B(wh, ph − p̃h) = 0.(3.8)

Replace the wh above by ẽh := ũh − uh and use (3.7) to obtain

a(ẽh, γhẽh) = −a(ũh, (I − γh)ẽh).

Now observe by (3.7) and (3.2) that a(ũh, ẽh) = 0 and by (1.3) that a(u, ẽh) =
B(ẽh, p) to obtain

a(ũh, (I − γh)ẽh) = a(ũh,−γhẽh)

= a(ũh,−γhẽh) + a(u, ẽh)−B(ẽh, p)

= a(ũh,−γhẽh) + a(u, ẽh)−B(ẽh, p− p̃h)

= a(u, γhẽh) + a(ũh,−γhẽh) + a(u, (I − γh)ẽh)

−B(ẽh, p− p̃h)

= a(u− ũh, γhẽh) + a(u, (I − γh)ẽh)

−B(ẽh, p− p̃h).

Hence, we have the error equation

a(ẽh, γhẽh) = −a(u− ũh, γhẽh)− a(u, (I − γh)ẽh) +B(ẽh, p− p̃h).(3.9)

By Lemma 2.2, (2.11), the boundedness of B, and (3.4),

α‖ẽh‖2H(div)
≤ C‖u− ũh‖0‖ẽh‖0 + Ch‖ẽh‖0||u||1 + Ch‖ẽh‖H(div)

= C‖u− ũh‖0‖ẽh‖H(div) + Ch‖ẽh‖H(div)||u||1
+Ch‖ẽh‖H(div),

where C is independent of h but dependent on ||K−1||∞, ‖u‖1, ‖divu‖1, and ‖p‖1.
Note that we have used (3.4) to estimate the last term. The first term can be further
estimated by (3.4) to extract a power of h and hence

‖ẽh‖H(div) ≤ Ch.
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An application of the triangle inequality completes the proof for the velocity. The
error in the pressure is estimated by invoking the inf-sup condition.

It should be clear that Theorem 3.1 still holds in three dimensions. The reader is
referred to Duncan and Jones [9] for computational results of the Dirichlet problem
in three dimensions with identity mobility matrix. In actual computation, one needs
quadratures to evaluate the bilinear forms in the above theorem. Hence the actual
forms are perturbations of the exact forms. This type of analysis has been done in
the finite element literature by Shen [16], and we will not repeat it here. We have
also obtained the convergence results for the lowest order Raviart–Thomas space on
triangular grids in Chou, Kwak, and Vassilevski [8].

Remark 3.1. Our results in this paper do not cover the cases of nonrectangular
quadrilateral grids (logically rectangular grids) and nondiagonal tensor permeability
coefficients, which are of importance in some applications, particularly subsurface
reservoir flow. (The analysis in [8] carries over to the nondiagonal tensor case, but
it is only for triangular elements.) We are currently pursuing these topics.

Acknowledgment. The authors are grateful to Prof. T. F. Russell for helpful
comments on the original manuscript.
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