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A NEW FINITE ELEMENT FOR INTERFACE PROBLEMS

HAVING ROBIN TYPE JUMP

DO Y. KWAK, SEUNGWOO LEE, AND YUNKYONG HYON

Abstract. We propose a new finite element method for solving second order elliptic interface
problems whose solution has a Robin type jump along the interface. We cast the problem into a
new variational form and introduce a finite element method to solve it using a uniform grid. We
modify the P1-Crouzeix-Raviart element so that the shape functions satisfy the jump conditions
along the interface. We note that there are cases that the Lagrange type basis can not be used
because of the jump in the value. Numerical experiments are provided.
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1. Introduction

In recent years, there has been an extensive research towards problems involv-
ing interface, (see [1, 15, 22, 37, 35, 39, 41] and references therein) and numerical
methods for such problems. A widely studied example is an elliptic problem hav-
ing discontinuous coefficients, where the solution satisfies natural jump conditions
[u] = 0, [β ∂u

∂n ] = 0 across the interface immersed in domain. See [14, 21, 23, 40, 41],
for example. This kind of problem typically arises from diffusion phenomena in
a material consisting of heterogeneous media. Other important class of prob-
lem includes the time-dependent problems which may have a moving interface
[24, 33, 38, 42], for instance, the incompressible Navier-Stokes equations for two
fluids [19, 36] and an solid/solid or solid/fluid interaction problems [8, 9, 22]. In
most of those examples, the primary variables, such as heat, potential, displacement
and velocity, etc., or their derivatives (or flux) have certain jumps. To solve such
problems numerically, for instance by finite element method, one usually need to
use body fitted grids to get the optimal numerical results. But the grid generation
is complicated and it is a time consuming job to solve the linear equation derived
from the body fitted grids since the matrix is unstructured.

On the other hand, a new class of finite element methods have been suggested and
are shown to perform quite well for interface problems, see [14, 30, 41] and references
therein. These methods are called immersed finite element methods (IFEMs) which
use non fitted (say, uniform) grid for interface problems (so the interface cuts the
interior of some elements). The idea of this new method is to modify the basis
functions so that they satisfy the interface conditions along the interface within
each element. Although the first one of these schemes was proposed for the finite
element methods using Lagrange type P1 element having degree of freedom at
vertices, the idea works well especially with Crouzeix-Raviart(CR) nonconforming
basis functions [17], since the consistency error term can be shown to be optimal
when CR bases are used [30].

Let us briefly review some works related to general interface conditions. An-
got [46] proposed a fictitious domain method to embed a smooth domain into a
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rectangular domain and showed that the two formulations are equivalent. In the
meantime, the boundary condition was transformed into an interface condition.
The numerical scheme using uniform grids was proposed in [4]. They used stan-
dard piecewise linear basis function together with the local refinement to resolve the
smooth interface. Similar approach using finite volume methods was earlier sug-
gested in [3]. For the problem with natural interface conditions, Ji et al. [25] have
studied similar problems using the standard basis function on each sub element,
hence they need extra basis functions. Their scheme also has the problem of severe
deterioration of condition number. Hence they proposed adding a ghost-penalty
suggested in [12] to stabilize the condition number of the resulting matrix. There
are other types of unfitted grid method, see [21], [22] and references therein, where
one uses cut basis functions as extra degree of freedoms. The case of elasticity
problems with homogeneous condition using rectangular grids was considered in
[44] and the analysis for triangular grids is carried out in [31]. One dimensional
poroelasticity problem using IIM was considered by Bean et al. [7]. Furthermore,
coupled Darcy flow and Stokes flow are studied in [34] and the numerical method
based on DG scheme has appeared in [47].

In this paper, we propose a new IFEM scheme using CR nonconforming basis
functions which can handle jump discontinuity of different kinds. All of the schemes
discussed above have certain similarity with our scheme in the sense that they all
use unfitted grids. However, they are different from ours at least one of the following
aspect; either (i) they treat homogenous jump condition only (the solution is thus
continuous), or (ii) they use Lagrange type P1 nodal basis functions, or (iii) they
do not consider consistency terms to compensate the errors, or (iv) they use extra
degrees of freedom to capture the discontinuity along the interface, or (v) their
scheme have the problem of ill-conditioning for certain interface. Our scheme to be
presented here does not have any disadvantages/restrictions above.

Now we describe the model equation with interface, where the jump of primary
variable is related to the normal flux. These problems arise in the study of medical
imaging of cancer cells such as MREIT [1, 2], problems with spring-type jumps in
structural mechanics [29, 45], or electrochemotherapy [33], where the conductivity
of cell membrane changes abruptly across the membrane. In the development of
MREIT, for example, we encounter a partial differential equation (PDE) which
models the electric behavior of biological tissue under the influence of an electric
field which involves many cells. Conducting cytoplasm is surrounded by a thin in-
sulating membrane (see Figure 1). Inside each cell Ωi, i = 1, . . . , N , the medium is
homogeneous and isotropic. We assume that the conductivity of the cell Ωi is β for
all i. The outside of cells, which is denoted by Ω0, is also composed of an isotropic
homogeneous medium whose conductivity is β. Let Ω := ∪N

i=0Ω
i be a whole do-

main. The membrane of the cell is very thin and resistive. The thickness d of the
membrane is very small compared to the size of the cells, i.e., d ≪ |Ωi|. Since the
membrane is very resistive, the conductivity of the membrane βmem is close to zero.
The derived model equation depends on the value of conductivity. Similar descrip-
tion may apply to electrochemotherapy. In such problems, the electric potential or
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Figure 1. A sketch of the electric behavior of biological tissue.
The regions of Ωi,= 1, 2, 3 are the inside cells. The region of Ω0 is
the outside of cells.

displacement variable, etc., denoted by u is described by

−∇ · β∇u = f in Ωi, i = 0, 1, . . . , N,(1)

[u]Γi
= α

∂u

∂n

0

on Γi, i = 1, . . . , N,(2)
[
∂u

∂n

]

Γi

= 0 on Γi, i = 1, . . . , N,(3)

u = 0 on ∂Ω,(4)

where the parameters α and β are bounded below and above by two positive con-
stants and [·]Γi

denotes the jump across a C1 simple curve Γi (the interface between
two regions).

This kind of interface conditions is different from the case when the jumps of the
solutions are given a priori (i.e., [u] = g1 and [β ∂u

∂n ] = g2 are given) for which some
of numerical methods are proposed in [10, 13, 18, 20, 23, 35]. However, when the
jump of the solution is unknown as in (2), no simple numerical methods for solving
such problems are known (even with fitted grids). Moreover, the usual variational
formulations using Sobolev theory cannot be applied directly. However, thanks
to the intrinsic jump conditions (2) and (3), we can introduce a new variational
formulation for these problems. For a numerical method, we design a new finite
element by modifying the CR basis functions according to the jump conditions (2)
and (3). Exploiting the idea from the immersed finite element [30], we can construct
a new finite element. Using this element, we provide a numerical scheme based on
the recent works [32, 43] where the variational forms with additional consistency
and stability terms are studied. We remark that the Lagrange type shape function
which takes vertex values as degree of freedom can not be used to handle this kind
of jump discontinuity; when the interface passes one of the vertices, the function
value at the vertex can not be specified (see Figure 3 (b)). A series of numerical
experiments indicate that our method yields optimal convergence of the solution u
for the model problem (1). Also, our method does not suffer from deterioration in
condition number, mentioned in [26]. This seems due to the basis function having
average degrees of freedom along edges, not at vertex.

The rest of the paper is organized as follows. In the next section, we describe
a model equation arising from the medical imaging problems using MREIT. Then
we introduce an equivalent variational formulation. In Section 3, we construct
basis functions by modifying the P1-CR nonconforming functions to satisfy the
jump conditions. In Section 4, we propose a numerical scheme using the variational
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formulation with the modified basis functions. Finally, in Section 5, some numerical
results are presented.

2. Preliminaries

In order to derive the jump conditions (2) and (3), let us consider a biological
tissue under the influence of an electric field. For simplicity, we consider the case
of one cell, i.e, N = 1. See Figure 2, where the zoom-in part is to explain how the
model equation is obtained by describing the voltage drops across the membrane.
After setting up the model interface condition, the membrane is replaced by an
interface of thickness zero. The electric potential of a biological tissue can be
described by the following equation [1, 2, 28]

{
−∇ · β∇u = f in Ω := Ω0 ∪ Ωmem ∪ Ω1,

u = 0 on ∂Ω,
(5)

where three sub-domains Ω0, Ωmem, and Ω1 denote outside, membrane, and inside
of the cell, respectively. The boundary of the membrane Ωmem consists of two
closed curves C0 and C1. Let d ≪ |Ω1| be the uniform thickness of the membrane
region Ωmem. We assume that the cytoplasm of the inside and outside cell have
the same conductivity β [27, 48]. The strong resistance of the membrane implies
that the conductivity of the membrane is very small compared to the conductivity
of the cell, i.e. βmem ≪ β. We assume that d/βmem is bounded below and above.

The natural jump conditions along the interfaces are

[u] = 0,

[
β
∂u

∂n

]
= 0 across Γ = C0 ∪C1,(6)

where n is the unit outer normal vector. Hence along the two interfaces we have

β
∂u1

∂n
= βmem ∂umem

∂n
on C1 and βmem ∂umem

∂n
= β

∂u0

∂n
on C0,(7)

respectively. Since the membrane is very thin, we may assume that the potential u
inside Ωmem varies linearly along the normal direction. Hence, from (7), we obtain

u(b)− u(a) =

∫ b

a

∂umem

∂n
ds ≈

∫ b

a

β

βmem

∂u0

∂n
ds ≈ d

β

βmem

∂u0

∂n
.(8)

For small enough 0 < d ≪ 1, we assume that the curves C0 and C1 collapse into
one interface Γ and set

[u] = u(b)− u(a),

[
∂u

∂n

]
=

∂u1

∂n

∣∣∣∣
C1

−
∂u0

∂n

∣∣∣∣
C0

.

Thus, we obtain the jump conditions (2) and (3) with the parameter

(9) α = d
β

βmem
,

which is related to the thickness of membrane and the ratio between the conductiv-
ities on Ω0 and Ωmem. An analysis using asymptotic expansions for such problems
are given in [28].
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Figure 2. A sketch of the domain Ω and local zoom-in near membrane.

2.1. Variational form. In this subsection, we derive a variational formulation for
the problem (1) - (4). For this purpose, we introduce some notations of function
spaces. Let O be any domain and let Hm(O), m = 0, 1, 2 (H0(O) = L2(O)) be

a usual Sobolev space with norm ‖u‖m,O =
(∑m

j=0

∫
O
|∂ju|2dx

)1/2

and we define

the following spaces

H̃m(O) := Hm(Ω0 ∩O) ∩Hm(Ω1 ∩O),(10)

H̃m
Γ (O) :=

{
u : u ∈ H̃m(O), [u] = α

∂u0

∂n
,

[
∂u

∂n

]
= 0 on Γ ∩O

}
,(11)

H̃m
Γ,0(O) :=

{
u : u ∈ H̃m

Γ (O), u|∂O = 0
}

(12)

equipped with the (semi) norms:

|u|m̃,O = |u|H̃m(O) :=

1∑

i=0

|u|Hm(Ωi∩O), ‖u‖m̃,O = ‖u‖H̃m(O) :=

1∑

i=0

‖u‖Hm(Ωi∩O).

Clearly, H̃m
Γ (Ω) and H̃m

Γ,0(Ω) are complete subspaces of H̃m(Ω). We also use H̃1
0 (Ω)

to denote the space of all functions v ∈ H̃1(Ω) vanishing on ∂Ω. When the domain is

Ω, we write H̃m for H̃m(Ω) and denote its norm by ‖u‖H̃m . We derive a variational

form of the problem (1)–(4). Multiply (1) by any v ∈ H̃1
0 (Ω) and use integration

by parts on each domain to get
∫

Ωi

β∇u · ∇v dx =

∫

Ωi

fv dx+

∫

∂Ωi

β
∂u

∂ni
v ds, i = 0, 1,

where ni is the unit outer normal to Ωi. Consider the line integral
∫
∂Ωi β

∂u
∂ni v ds, i =

0, 1. Since we have

1∑

i=0

∫

∂Ωi

β
∂u

∂ni
v ds =

∫

∂Ω0

β
∂u

∂n0
v ds−

∫

∂Ω1

β
∂u

∂n1
v ds(13)

= −

∫

Γ

β
∂u

∂n
[v] ds(14)

= −

∫

Γ

β

α
[u][v] ds,(15)
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the solution u ∈ H̃2
Γ,0(Ω) of the problem (1) satisfies

a(u, v) :=

1∑

i=0

∫

Ωi

β∇u · ∇v dx+

∫

Γ

β

α
[u][v] ds = (f, v), v ∈ H̃1

0 (Ω).(16)

Conversely, assume u ∈ H̃2
Γ,0 satisfy (16). Integrating by parts, we see the left hand

side of (16) becomes

−

1∑

i=0

∫

Ωi

∇ · (β∇u)vdx +

1∑

i=0

∫

∂Ωi

β
∂u

∂ni
v ds+

∫

Γ

β

α
[u][v] ds.(17)

Let v vanish on Γ. Then we have the following equation.

−

1∑

i=0

∫

Ωi

∇ · (β∇u)vdx =

∫

Ω

fv dx, ∀v ∈ H̃1
0 (Ω) ∩ {v|Γ = 0}.

Hence it holds that
−∇ · (β∇u) = f in Ω0 ∪ Ω1.

From (16), (17), we have

0 = −

∫

∂Ω0

β
∂u

∂n0
v ds+

∫

∂Ω1

β
∂u

∂n1
v ds+

∫

Γ

β

α
[u][v] ds,(18)

for all v ∈ H̃1
0 (Ω). Choosing v with [v] = 0 on Γ, we see

[
∂u

∂n

]
= 0 on Γ

and hence, from (18), we obtain the condition (2) by setting v|Ω1 = 0.

3. A new finite element based on P1-Crouzeix-Raviart element

In this section, we propose a finite element for solving the variational form (16).

For this purpose, we need to construct an approximate subspace of H̃1
Γ,0(Ω). At

first glance, a natural approach is to triangularize the domain aligning the grids
with the interface and then discretize the space by piecewise linear functions in-
corporating the jump conditions along the interface. However, basis functions have
to be designed to satisfy the jump conditions (2) and (3) along the edge (which is
aligned with the interface) of an element. Such process may be a nontrivial matter
unless a discontinuous Galerkin method is used. Instead, we propose a new ap-
proach with a non-fitted grid, similar to the IFEM, which allows the interface cut
through the element. In this way, the basis functions are completely determined by
the degrees of freedom and the jump conditions on each element.

Although our method can be applied to any reasonable domains, we take a
rectangle domain for simplicity. We assume a quasi-uniform triangulation {Th} of
Ω by triangles of maximum size h is given [16]. In general, the mesh does not
align the smooth interface. We call an element T ∈ Th an interface element if the
interface Γ passes through the interior of T , otherwise we call T a non-interface
element.

For a non-interface element T ∈ Th, we simply use the standard P1-Crouzeix-
Raviart nonconforming functions [17] on T having the averages along each edge as
degrees of freedom, and use Nh(T ) to denote the linear spaces spanned by the three
basis functions on T : Let ei, i = 1, 2, 3 be the edges of T . Then

Nh(T ) = span

{
φi : φi is linear on T and φi

∣∣
ej

:=
1

|ej|

∫

ej

φids = δij , i, j = 1, 2, 3

}
.
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We now construct local basis functions on an interface element, using the jump
conditions given above. Consider a typical reference interface element T having
vertices at A1(0, 0), A2(1, 0) and A3(0, 1) (see Figure 3 (a)). We assume that the
interface meets with the edges at D(x0, 0) and E(0, y0) (0 < x0, y0 ≤ 1) and we
replace the curved interface by the line segment DE. The unit normal vector to
the line segment is n

DE
= (y0, x0)/

√
x2
0 + y20 .

A3

A1 A2e3

e1e2

E

D

T 0

T 1

Γ

(a)

A3

A1 A2e3

e1e2

E

D

T 0 T 1

Γ

(b)

Figure 3. A typical reference interface triangle.

For any given values vi, (i = 1, 2, 3), we can construct a piecewise linear function
φ (see [30]) of the form

(19) φ(x, y) =

{
φ0(x, y) = a0 + b0x+ c0y, (x, y) ∈ T 0,
φ1(x, y) = a1 + b1x+ c1y, (x, y) ∈ T 1

satisfying

1

|ei|

∫

ei

φds = vi, i = 1, 2, 3,(20)

φ0 − φ1 = α
∂φ0

∂n
DE

at D and E,(21)

∂φ0

∂n
DE

=
∂φ1

∂n
DE

along DE.(22)

If we choose (v1, v2.v3) = (1, 0, 0),= (0, 1, 0) or (0, 0, 1) we obtain three local basis
functions.

Proposition 3.1. There exists a unique piecewise linear function of the form (19)
satisfying (20)-(22).

Proof. The condition (20) gives the following three equations:

φ̄|e1 = a0 +
1

2
b0 +

1

2
c0 = v1(23)

and

φ̄|e2 =

∫

e2

φds =

∫

A1E

φ1 ds+

∫

EA3

φ0 ds

= (a1 +
y0
2
c1)y0 + (a0 +

y0 + 1

2
c0)(1 − y0) = v2,(24)

where we used mid-point quadrature on A1E and EA3. Similarly, we have

φ̄|e3 = (a1 +
x0

2
b1)x0 + (a0 +

x0 + 1

2
b0)(1− x0) = v3.(25)
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From the jump condition (21), we have

a0 + b0x0 = a1 + b1x0 + α(b0n1 + c0n2),(26)

a0 + c0y0 = a1 + c1y0 + α(b0n1 + c0n2),(27)

where n1 and n2 are the components of n
DE

. The last condition (22) is

(b0n1 + c0n2) = (b1n1 + c1n2).(28)

Then the coefficient matrix of the above linear system for the unknowns a0, b0, c0
and a1, b1, c1 in this order is

(29) A =




1 1
2

1
2 0 0 0

1− y0 0 1
2 (1− y20) y0 0 1

2y
2
0

1− x0
1
2 (1 − x2

0) 0 x0
1
2x

2
0 0

1 x0 − αn1 −αn2 −1 −x0 0
1 −αn1 y0 − αn2 −1 0 −y0
0 n1 n2 0 −n1 −n2




.

Adding last three columns to the first three, and obvious row operations gives
(30)


1 1
2

1
2 0 0 0

1 0 1
2 y0 0 1

2y
2
0

1 1
2 0 x0

1
2x

2
0 0

0 −αn1 −αn2 −1 −x0 0
0 −αn1 −αn2 −1 0 −y0
0 0 0 0 −n1 −n2




∼




1 1
2

1
2 0 0 0

0 − 1
2 0 y0 0 1

2y
2
0

0 0 − 1
2 x0

1
2x

2
0 0

0 −αn1 −αn2 −1 −x0 0
0 0 0 0 x0 −y0
0 0 0 0 −n1 −n2




.

We can easily see that

det(A) = (−x0n2 − y0n1) det



∣∣∣∣∣∣

− 1
2 0 y0
0 − 1

2 x0

−αn1 −αn2 −1

∣∣∣∣∣∣


(31)

= (−x0n2 − y0n1)(−
1

2
(
1

2
+ αn2x0)− αn1(

1

2
y0))(32)

=

√
x2
0 + y20
2

(
1

2
+ α

√
x2
0 + y20) > 0(33)

for any (x0, y0) 6= (0, 0). Hence, the basis function exists uniquely on the interface
element. �

For a general element T , let N̂h(T ) be the linear space consisting of the shape
functions constructed by their counterparts on the reference element through the
standard affine mapping. Figure 4 shows graphs of typical local (discontinuous)

shape functions constructed this way. We define the finite element space N̂h(Ω) as

the collection of functions φ̂ such that




φ̂|T ∈ Nh(T ), if T is a noninterface element;

φ̂|T ∈ N̂h(T ), if T is an interface element;
if T1 and T2 share an edge e, then∫

e

φ̂|∂T1
ds =

∫

e

φ̂|∂T2
ds; and

∫

∂T∩∂Ω

φ̂ ds = 0.

Lastly, we let Hh(Ω) := H̃1
Γ,0(Ω) + N̂h(Ω).
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Figure 4. Some shape of functions in N̂h(Ω) - left figure shows a

function φ̂ on two interface elements and the right shows a function

φ̂ on six interface elements.

Next, we define the interpolation operator. For any u ∈ H̃1
Γ(T ), we let Îhu be

the the finite element function in N̂h(T ) satisfying
∫

ei

Îhuds =

∫

ei

u ds; i = 1, 2, 3,

where ei, i = 1, 2, 3 are the edges of T . We call Îhu the local interpolant of u in

N̂h(T ) and we naturally extend it to H̃1
Γ(Ω) by (Îhu)|T = Îh(u|T ) for each T .

4. Numerical scheme

In this section, we propose a numerical scheme using the finite element space in
Section 3. First, we consider a natural discrete variational formulation of (16): find

the discrete solution uh ∈ N̂h(Ω) such that

(34) ah(uh, vh) = (f, vh), ∀vh ∈ N̂h(Ω),

where

(35) ah(uh, vh) :=
∑

T∈Th

1∑

i=0

∫

T∩Ωi

β∇uh · ∇vh dx +

∫

Γ

β

α
[uh][vh] ds,

for uh, vh ∈ Hh(Ω). Since we use the modified CR element, the error in the consis-
tency term of (34) is not optimal. From the numerical results in Section 5, we can
see that this scheme does not provide optimal convergence.

To remedy the inconsistency occurred along the boundary of interface elements,
we insert consistency and stability terms to the discrete variational formulation.
Such ideas are used in many numerical methods, for example, discontinuous Galerkin
methods [6, 5, 11] and IFEMs [32, 43]. For this purpose, we proceed as follows. The
collection of all interior edges of triangulation Th is denoted by Eh. To determine
the signed jump, we associate a normal ne for each edge e once and for all. Let
e ∈ Eh be an interior edge shared by elements T1 and T2. We define the jump [φ]
and average {φ} of function φ ∈ Hh(T1 ∪ T2) on the edge e by

[φ] = φ1 − φ2, {φ} =
1

2
(φ1 + φ2),
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where φi = φ|Ti
, i = 1, 2. Multiplying v ∈ N̂h(Ω) to equation (1) and applying

Green’s theorem, we have

∑

T∈Th

1∑

i=0

∫

T∩Ωi

β∇u · ∇v dx−

∫

∂Ωi∩T

β
∂u

∂ni
v ds

−
∑

e∈Eh

∫

e

{
β
∂u

∂n

}
[v] ds =

∑

T∈Th

∫

T

fv dx.(36)

By (13) - (15) and the fact that [u] = 0 for every edge e ∈ Eh, the equation (36) is
equivalent to the following equation,

∑

T∈Th

1∑

i=0

∫

T∩Ωi

β∇u · ∇v dx+

∫

Γ∩T

β

α
[u][v] ds(37)

−
∑

e∈Eh

∫

e

{
β
∂u

∂n

}
[v] +

{
β
∂v

∂n

}
[u] ds+

∑

e∈Eh

∫

e

σ

h
[u][v] ds =

∑

T∈Th

∫

T

fv dx,(38)

where σ > 0 is some parameter. Now we define the following bilinear form : for

any uh, vh ∈ N̂h(Ω),

(39) ãh(uh, vh) := ah(uh, vh) + J1(uh, vh) + J2(uh, vh),

where

J1(uh, vh) =−
∑

e∈Eh

∫

e

{
β
∂uh

∂n

}
[vh] +

{
β
∂vh
∂n

}
[uh] ds,(40)

J2(uh, vh) =
∑

e∈Eh

∫

e

σ

h
[uh][vh] ds.(41)

We are now ready to define our finite element method: find uh ∈ N̂h(Ω) such that

ãh(uh, φh) = (f, φh), ∀φh ∈ N̂h(Ω).(42)

Note that this is a consistent scheme in the sense that for the exact solution u, we
have

ãh(u, φh) = (f, φh), ∀φh ∈ N̂h(Ω).(43)

4.1. Error estimate. Instead of proving a complete error estimate, we only sketch
the framework using the Lax - Milgram theorem, since most of the techniques are
well known, but the interpolation error estimate seems different from the standard
case. First introduce the mesh dependent norm ||| · ||| on the space Hh(Ω),

|||v|||2 :=
∑

T∈Th

∥∥∥
√
β∇v

∥∥∥
2

0,T
+

∑

e∈Eh

h−1
∥∥∥[
√
βv]

∥∥∥
2

0,e
.

Clearly, ãh(·, ·) is bounded on N̂h(Ω) with respect to ||| · |||:

|ãh(u, v)| ≤ Cb|||u||||||v|||, ∀u, v ∈ N̂h(Ω).(44)

Next, we can prove the coerciveness of the form ãh(·, ·) in a similar fashion to
[32], [43].

Lemma 4.1. There exists a positive constant Cc independent of vh such that for

all vh ∈ N̂h(Ω) the following holds:

ãh(vh, vh) ≥ Cc|||vh|||
2.(45)

Then the error estimate reduces to the estimate of interpolation error:
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Table 1. Numerical results for the cases of elliptical interface with
the consistent scheme in Example 5.1.

1/h ‖u− uh‖0,Ω Order ‖u− uh‖1,h Order
8 3.359148E-2 8.778087E-1
16 7.480368E-3 2.167 4.307915E-1 1.027
32 1.820215E-3 2.039 2.142997E-1 1.007
64 4.666885E-4 1.964 1.071044E-1 1.001
128 1.161599E-4 2.006 5.343991E-2 1.003
256 2.888874E-5 2.008 2.669799E-2 1.001
512 7.207460E-6 2.003 1.334396E-2 1.001

Theorem 4.1. Let u (resp. uh) be the solution of (16) (resp. (43). Then there
exists a positive constant C independent of u and h such that

|||u− uh||| ≤ C|||u − Îhu|||.

Proof. By Lemma 4.1, (43), (44) and (45) we get the result. �

Remark 4.1. The difficulty of estimating the interpolation error lies in the inap-
plicability of the Bramble - Hilbert type Lemma. It is due to the fact that functions
are discontinuous, unlike as earlier case [30]. Since the numerical experiments in
Section 5 suggest optimal order of convergence, we leave this topic as a future work.

5. Numerical experiments

We solve the model problem (1)-(3) on the domain Ω = [−1, 1]× [−1, 1] which
is partitioned into uniform right triangles having the base size h = 2−k. For all the
numerical tests, we take β = 1 except Example 5.4 where discontinuous coefficients
β− = 1, and β+ = 5 are used. We consider various interfaces described by the zero
level set of some analytic functions. The discrete system is solved by conjugate
gradient method preconditioned by diagonals. The CPU time (the worst case) is
reported for Example 5.5.

Example 5.1. We consider an elliptical interface

Γ =

{
(x, y) :

x2

a2
+

y2

b2
= r20

}
,

where a = 0.7, b = 0.3, and r0 = 1. In this example, we set

α = α0r0/

√
x2

a4
+

y2

b4
,

where α0 = 50.
The exact solution is

(46) u =





u− =
1

2

(
x2

a2
+

y2

b2

)
− α0r0, for x2

a2 + y2

b2 < r20 ,

u+ =
1

2

(
x2

a2
+

y2

b2

)
, for x2

a2 + y2

b2 > r20 .

The numerical results by the consistent method are presented in Table 1 and the
numerical solution is plotted in Figure 5. We observe optimal L2- and H1-errors.

For comparison, we also test the inconsistent scheme (34). Table 2 shows the
numerical results of the inconsistent scheme. Although the convergence rate in H1-
error maintains the optimal convergence, we see the deterioration of convergence
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Figure 5. Plots of numerical solution in Example 1 computed by
the consistent scheme.

rate in L2-error when the mesh becomes finer. Figure 6 shows the plot of the
solution. We observe that the error of the inconsistent method is much larger than
that of the consistent method. We see that the consistency terms (41) in the bilinear
form play an important role in obtaining stable solutions.

Table 2. Numerical results for the cases of elliptical interface with
the inconsistent scheme in Example 5.1

1/h ‖u− uh‖0,Ω Order ‖u− uh‖1,h Order
8 2.743981E-1 1.084094E-0
16 1.365865E-1 1.006 5.177826E-1 1.066
32 3.467153E-2 1.978 2.487899E-1 1.057
64 7.393499E-3 2.229 1.171032E-1 1.087
128 2.806019E-3 1.398 5.808841E-2 1.011
256 9.928719E-4 1.499 2.838702E-2 1.033
512 3.063885E-4 1.696 1.398787E-2 1.021

Figure 6. Plots of numerical solution in Example 1 by inconsis-
tent scheme.
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Example 5.2. In this example, there are four circular interfaces:

Γ1 = {(x, y) : (x− 0.5)2 + (y − 0.5)2 − r21 = 0},

Γ2 = {(x, y) : (x+ 0.5)2 + (y − 0.5)2 − r22 = 0},

Γ3 = {(x, y) : (x+ 0.5)2 + (y + 0.5)2 − r23 = 0},

Γ4 = {(x, y) : (x− 0.5)2 + (y + 0.5)2 − r24 = 0},

where (r1, r2, r3, r4) = (0.2, 0.4, 0.2, 0.3). We denote the level-set of Li(x, y) to be
interface Γi. The parameter α is chosen as

(47) α =





α1 =
10

L2(x, y)L3(x, y)L4(x, y)
on Γ1,

α2 =
10

L1(x, y)L3(x, y)L4(x, y)
on Γ2,

α3 =
10

L1(x, y)L2(x, y)L4(x, y)
on Γ3,

α4 =
10

L1(x, y)L2(x, y)L3(x, y)
on Γ4.

The exact solution u is

(48) u =





u−
1 = L(x, y)− 20r1 if L1(x, y) < 0,

u−
2 = L(x, y)− 20r2 if L2(x, y) < 0,

u−
3 = L(x, y)− 20r3 if L3(x, y) < 0,

u−
4 = L(x, y)− 20r4 if L4(x, y) < 0,

u+ = L(x, y) otherwise,

where L(x, y) = L1(x, y)L2(x, y)L3(x, y)L4(x, y). We observe optimal L2- and H1-
errors from Table 3. Figure 7 shows the plot of the numerical solution.

Table 3. Multiple circular interfaces in Example 5.2.

1/h ‖u− uh‖0,Ω Order ‖u− uh‖1,h Order
8 2.175371E-1 4.320518E-0
16 3.760577E-2 2.532 1.999565E-0 1.112
32 8.702026E-3 2.112 9.857387E-1 1.020
64 1.936434E-3 2.168 4.892841E-1 1.011
128 4.604108E-4 2.072 2.434814E-1 1.007
256 1.081562E-4 2.090 1.214450E-1 1.004
512 2.733338E-5 1.984 6.065095E-2 1.002

Example 5.3. Here, we carry out a numerical experiment for some problem arising
from spectroscopic imaging [1]. We consider the case of nine circular cells in the
medium and assume that the properties of each cell are identical. Let the ratio
between the membrane thickness and the size of the cell be d = 0.7 × 10−3. The
conductivity of the medium and the cell is β = 0.5Sm−1 and the conductivity of the
membrane is βmem = 10−8Sm−1. Then by definition of the parameter α in (9), we
have α = 35000. We set the boundary value given by the function sin(xy). Note that
there is no known analytical solution for this example. The numerical solution is
depicted in Figure 8. We observe that our numerical scheme can capture the jump
of the solution clearly for the problem with realistic parameters.
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Figure 7. Numerical solution in Example 5.2.
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Figure 8. Numerical solution in Example 5.3.

Example 5.4 (Discontinuous coefficients). We run Example 1 with β− = 1 and
β−+ = 5. We again see optimal result. See Table 3 and left of Figure 9.

Table 4. Distinct β case, β− = 1, β+ = 5.

1/h ‖u− uh‖0,Ω Order ‖u− uh‖1,h Order
8 5.289152E-3 6.437354E-2
16 1.107621E-3 2.256 3.068055E-2 1.069
32 2.802846E-4 1.983 1.546753E-2 0.988
64 6.844158E-5 2.034 7.558473E-3 1.033
128 1.685942E-5 2.021 3.734281E-3 1.017
256 3.532443E-6 2.255 1.841684E-3 1.020
512 8.766970E-7 2.011 9.173182E-4 1.006

Example 5.5 (Non convex interface). Finally, we consider a non convex interface
(with variable coefficients):

Γ =

{
(x, y) :

x4

2
−

x2

4
+ y2 = r20

}
.
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Table 5. Peanut-shaped(Non convex) interface in Example 5.5.

1/h ‖u− uh‖0,Ω Order ‖u− uh‖1,h Order
8 1.821174E-2 2.362401E-1
16 3.745501E-3 2.282 1.113194E-1 1.086
32 7.594901E-4 2.302 5.391461E-2 1.046
64 1.751442E-4 2.116 2.674545E-2 1.011
128 4.111807E-5 2.091 1.329229E-2 1.009
256 9.989118E-6 2.041 6.631906E-3 1.003
512 2.452835E-7 2.026 3.311642E-3 1.002

Figure 9. Figures for Examples 5.4 and 5.5.

The exact solution u and α are given by, with r0 = 0.037,

α =0.2

((
x3 −

x

4

)2

+ y2
)−1/2

,(49)

u =





u− =
1

2

(
x4

2
−

x2

4
+ y2

)
− 1, when x4

2 − x2

4 + y2 < r20 ,

u+ =
1

2

(
x4

2
−

x2

4
+ y2

)
, when x4

2 − x2

4 + y2 > r20 .
(50)

Table 5 and the right of Figure 9 presents the corresponding numerical solution.
As a reference, we report the CPU time for the case of 512 × 512 grids was about
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26 min. on a window based PC with Intel processor i5-4670, 3.4 Giga Hz. For all
other problems, the CPU time was similar.

6. Conclusion and discussion

In this work, we proposed a new numerical method to solve interface problems
where the jump of primary variable is related to the normal flux. We use CR type
immersed finite element [30] to construct a new finite element which satisfies the
interface conditions (2) and (3). Our numerical scheme contains consistency and
stability terms to compensate the inconsistency along the boundary of the interface
elements. We observe that our scheme yields optimal convergence of the solution
for a variety of numerical results. The (interpolation) error analysis of this scheme
is left for a future work.
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