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A new high-resolution indecomposable quasi-characteristics scheme with monotone properties based on
pyramidal stencil is considered. This scheme is based on consideration of two high-resolution numerical
schemes approximated governing equations on the pyramidal stencil with different kinds of dispersion terms
approximation. Two numerical solutions obtained by these schemes are analyzed, and the final solution is
chosen according to the special criterion to provide the monotone properties in regions where discontinuities
of solutions could arise. This technique allows to construct the high-order monotone solutions and keeps
both the monotone properties and the high-order approximation in regions with discontinuities of solutions.
The selection criterion has a local character suitable for parallel computation. Application of the proposed
technique to the solution of the time-dependent 2D two-phase flows through the porous media with the
essentially heterogeneous properties is considered, and some numerical results are presented. c© 2002 John
Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 44–55, 2002
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I. INTRODUCTION

Numerical schemes of the method of characteristics have an essentially higher precision com-
pared with other approaches because they properly take into account characteristic properties
of governing equations of hyperbolic type. However, in modern practice these schemes are not
widely used because of their complexity, especially in 3D case. To overcome the computational
difficulties of the method of characteristics in [1-5] new quasi-characteristics schemes of vari-
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ous types were proposed. These schemes in turn are a generalization of well-known backward
characteristics schemes [6]. In our article we develop a new high-resolution indecomposable
quasi-characteristics scheme with monotone properties on the pyramidal stencil. It is based on the
approximation of the governing transport equations written in expanded characteristic form along
quasi-characteristics (special grid lines forming a region containing characteristics of governing
equations and lying at a short distance with respect to characteristics). We take ribs of pyramidal
stencil as quasi-characteristics. To provide monotone properties of solutions two high-resolution
schemes with different dispersion properties are taken into account. For the selection of the final
solution a special heuristic criterion is proposed. This scheme is applied to the solution of transport
equation in the coupled system of equations [7-9] describing the time-dependent, 2D two-phase
flows through the porous media with the essentially heterogeneous properties. Some numerical
results shown the efficiency of considering approach are presented.

II. INDECOMPOSABLE QUASI-CHARACTERISTICS SCHEMES
ON THE PYRAMIDAL STENCIL

Let us construct the indecomposable quasi-characteristics schemes on the pyramidal stencil for
the 3D transport equation

∂u

∂t
+ b1

∂u

∂x
+ b2

∂u

∂y
= b3, −∞ < (x, y) < +∞, 0 < t ≤ T ; (2.1)

satisfying the following initial conditions:

u(0, x, y) = u0(x, y) . (2.2)

Here u(t, x, y) is a searching function, and bi = bi(t, x, y, u, ∂u
∂x , ∂u

∂y ), (i = 1, 2, 3), and u0(x, y)
are data known functions.

The first step of the quasi-characteristics technique consists in transformation of the governing
Eq. (2.1) into the expanded characteristics form along any spatial line l in (t, x, y) space as follows:

du

dt
+ [b1 − (

dx

dt
)l]

∂u

∂x
+ [b2 − (

dy

dt
)l]

∂u

∂y
= b3 . (2.3)

Here du
dt is a total derivative of the searching function u with respect to t along any line l.

Approximating the expanded characteristic form of the governing equation along different
lines l we shall construct a numerical scheme similar to the well-known backward characteristic
scheme [6].

Let us consider a finite difference grid, for simplicity, uniform in each direction in space
(t, x, y) with steps τ , hx and hy , and a pyramidal stencil P1P2P3P4R in the grid space (Fig.
1). The basement of this stencil P1P2P3P4 belongs to some data layer t = t0 and the vertex R
belongs to the new layer t = t0 + τ . Coordinates of the above mentioned vertices are as follows:
P1(t0, x0+hx, y0−hy),P2(t0, x0+hx, y0+hy),P3(t0, x0−hx, y0+hy),P4(t0, x0−hx, y0−hy),
R(t0 + τ, x0, y0). Also we take into consideration m0(t0, x0, y0) a center point of the basement
of the pyramid stencil and denote the nodal points corresponding to the central points of the
pyramid basement ribs as follows: m+(t0, x0+hx, y0), m−(t0, x0−hx, y0), n+(t0, x0, y0+hy),
n−(t0, x0, y0 − hy).
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FIG. 1. The pyramidal stencil.

Approximating Eq. (2.3) along ribs PiR, we obtain

uR − uPi

τ
+ [(b1)PiR − xR − xPi

τ
](

∂u

∂x
)PiR

(2.4)

+[(b2)PiR − yR − yPi

τ
](

∂u

∂y
)PiR = (b3)PiR,

where i = 1, 2, 3, 4.
According to [4] we take the approximation of the outward derivatives at the middle layer

t = t0 + τ
2 :

(
∂u

∂x
)t=t0+ τ

2
= (

∂u

∂x
)C + (x − x0)W + d(y − y0) , (2.5)

(
∂u

∂y
)t=t0+ τ

2
= (

∂u

∂y
)C + (y − y0)V + d(x − x0) . (2.6)

A. Scheme I

In this case we take a center point of the middle section of the pyramidal stencil (t0 + τ
2 , x0, y0)

as the point C (or CI ) and choose values W and V (or WI and VI ) at the middle layer t0 + τ
2 by

the following formulas:

WI = W (m0) ≡ 1
3 [

uP1−2un−+uP4

hx
2

+
um+−2um0+um−

hx
2 +

uP2−2un++uP3

hx
2 ] ,

(2.7)

VI = V (m0) ≡ 1
3 [

uP2−2um++uP1

hy
2

+
un+−2um0+un−

hy
2 +

uP3−2um−+uP4

hy
2 ] .

(2.8)

Here W (m0) and V (m0) are finite difference operators approximating the second-order deriva-
tives of the searching function with the second-order approximation error on the appropriate
stencil with middle point m0.
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Substitution of (2.5-2.8) into (2.4) yields a system of four equations for evaluation of uR,
(∂u

∂y )C , (∂u
∂y )C , and d. Solving it, we obtain uI

R. In the nonlinear case in the above-mentioned
algorithm, it is necessary to do three iterations as in the usual method of characteristics.

B. Scheme II

To construct a second-order scheme with different dispersive properties, we choose the point CII

and values WII , VII according to the following algorithm:

if b1(x0, y0, t0) ≥ 0 and b2(x0, y0, t0) ≥ 0 ,
then WII = W (P4), VII = V (P4) , CII = (P4x, P4y, t0 + τ

2 ) ,

if b1(x0, y0, t0) ≥ 0 and b2(x0, y0, t0) < 0 ,
then WII = W (P3), VII = V (P3) , CII = (P3x, P3y, t0 + τ

2 ) ,

if b1(x0, y0, t0) < 0 and b2(x0, y0, t0) < 0 ,
then WII = W (P2), VII = V (P2) CII = (P2x, P2y, t0 + τ

2 ) ,

if b1(x0, y0, t0) < 0 and b2(x0, y0, t0) ≥ 0 ,
then WII = W (P1), VII = V (P1) , CII = (P1x, P1y, t0 + τ

2 ) .




(2.9)

Substitution of (2.5), (2.6), and (2.9) into (2.4) yields a system of four equations for evaluation
of uR, (∂u

∂x )C , (∂u
∂y )C , and d. Solving it, we obtain uII

R . As it was mentioned in previous subsection

that in nonlinear case, it is necessary to do three iterations in evaluation of uII
R .

C. Selection Criterion

As it was shown in [1,2], it is possible to construct the final solution with monotone properties
by choosing of one of two admissible solutions of the second-order approximation with different
dispersive properties. The appropriate criterion proposed in cited articles is based on the analysis
of the average value of the governing transport equation operator evaluated on each elementary
mesh cell by the high-order quadrature formulas. This criterion takes into consideration the history
of computations in previous grid points and therefore is not suitable for the parallel computations
and multidimensional case. In [5] a simpler heuristic criterion based on the minimization of the
rough approximation of the average value of governing operator was proposed. This criterion does
not take into account the history of computations, has a local character, and is suitable for the
parallel realization. In this article, we construct a simple heuristic criterion as a minimal principle
for the increment of searching function over the stencil in following form:

uR
final = mini=I,II |ui

R − C0um0+C1uP1+C2uP2+C3uP3+C4uP4
C0+C1+C2+C3+C4

|. (2.10)

Here Ci, i = 0, 1, 2, 3, 4 are some constants to be chosen. As our numerical tests show, the
best result corresponds to the following set: C0 = 1, Ci = 0, i = 1, 2, 3, 4.

Thus, the final solution in each grid point is chosen among two admissible solutions uI
R and

uII
R according to the following simple minimal principle:

uR
final = mini=I,II |ui

R − um0 |. (2.11)
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It is easy to see that this principle has a local character, and it is very suitable for parallel
computations, because it allows in principle to provide computations of searching function in each
grid node independently in separate processors in computers with massive parallel processors,
and in computers with pipeline processors it allows to provide the maximal loading of pipeline.

III. TWO-PHASE POROUS MEDIA FLOWS (OIL AND WATER)

A. Governing Equations

Let us apply the algorithm described above to the numerical simulation of two-phase flows
through essentially heterogeneous porous medium. The governing equations according [6-8] can
be presented in the following form with respect to the water saturation s and the pressure p as
unknown functions:

m(
∂s

∂t
) − ∂

∂x
(
kkw

µw

∂p

∂x
) − ∂

∂y
(
kkw

µw

∂p

∂y
) = 0 , (3.1)

∂

∂x
[k(

kw

µw
+

ko

µo
)
∂p

∂x
] +

∂

∂y
[k(

kw

µw
+

ko

µo
)
∂p

∂y
] = 0 . (3.2)

Here m is a porosity, k = k(x, y) is an absolute penetration of porous medium, kw = kw(s) and
ko = ko(s) are a relative penetration of water and oil, and µw and µo are a viscosity of water and
oil. Let us notice that the oil saturation so can be evaluated by the water saturation according to
the following simple formula: so = 1 − s.

Because kw and ko are functions only of water saturation s, then Eq. (3.1) could be presented
in the form (2.1) as follows

∂s

∂t
− (

k

mµw

∂p

∂x

dkw

ds
)
∂s

∂x
− (

k

mµw

∂p

∂y

dkw

ds
)
∂s

∂y
=

kw

m
[

∂

∂x
(

k

µw

∂p

∂x
) +

∂

∂y
(

k

µw

∂p

∂y
)]. (3.3)

We can see that the system of governing equations (3.2-3.3) has a mixed type. Equation (3.3)
is a nonlinear transport equation of hyperbolic type, and Eq. (3.2) has the elliptic type. Further,
we could consider the transport Eq. (3.3) as a governing equation and the elliptic Eq. (3.2) as a
nonlinear restriction for coefficient of the governing equation. Then we could apply the quasi-
characteristics technique described in the previous section to solve the initial boundary-value
problem for the transport equation, and also on each time level we need to solve the boundary
value problem for elliptic equation to define the coefficients of the governing equation. In our
approach for the solution of the boundary value problem for the elliptic equation we used the well-
known five-points finite difference conservative scheme and bi-conjugate gradient algorithm as
in [7-9].

B. Initial and Boundary Conditions

Let us consider rectangle flow regions D = 0 ≤ x ≤ L, 0 ≤ y ≤ H consisting of two subregions
D1 = 0.2L ≤ x ≤ 0.8L, 0 ≤ y ≤ H

2 and D2 = D − D1 shown in Fig. 2.
Let us suppose that the absolute penetration k in the flow region is defined as piecewise constant

function as follows:
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FIG. 2. Flow region.

k =




kD1 , if (x, y) ∈ D1 ,

kD2 , if (x, y) ∈ D2 .
(3.4)

For the transport Eq. (3.3) we set the following initial conditions:

s(x, y, 0) =




0.2 , if 0 ≤ x < L, 0 ≤ y ≤ H ,

1.0 , if x = L, 0 ≤ y ≤ H
(3.5)

and also boundary conditions as follows:
∂s
∂y = 0 , if t > 0, y = 0, H, 0 ≤ x ≤ L ;

s(L, y, t) = 1.0 , if 0 ≤ y ≤ H , t > 0 .

For the pressure Eq. (3.2) we set the following boundary conditions:
∂p
∂y = 0 , if 0 < x < L , y = 0, H;

p = P0 , if x = 0 , 0 ≤ y ≤ H ;

∂p
∂x = Q0µw

Hkkw
, if x = L, 0 ≤ y ≤ H .

Here P0 and Q0 are known parameters.
The relative penetrations of the water kw and oil ko are chosen as follows:

kw(s) =




0 , if s ≤ 0.1 ;

( s−0.1
0.7 )3 , if 0.1 < s ≤ 0.8 ;

1 , if s > 0.8 ;

(3.6)

ko(s) =




1 , if s ≤ 0.1 ;

( 0.8−s
0.7 )3 , if 0.1 < s ≤ 0.8 ;

0 , if s > 0.8 .

(3.7)
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FIG. 3. The water saturation at t = 100 hours.

Let us mention that the considering initial boundary value problem describes two-phase porous
media flows between two horizontal wells where the left boundary x = 0 corresponds to the
production well and the right boundary x = L corresponds to the injection well.



QUASI-CHARACTERISTICS SCHEME ON PYRAMIDAL STENCIL 51

FIG. 4. The water saturation at t = 400 hours.

C. Numerical Results

Now we consider some numerical results obtained for the following values of parameters m = 0.2,
kD1 = 0.1·10−12 m2, kD2 = 1.0·10−12 m2, µw = 1·106 N ·sec·m−2, µo = 3·106 N ·sec·m−2,
L = H = 100 m, P0 = 0, and Q0 = 0.69444 · 10−12 m2 · sec−1. Thus, the absolute penetration



52 KWAK, LEVIN, AND LEE

FIG. 5. The water saturation at t = 800 hours.

in the subregion D1 is 10 times less than those in subregion D2. Computations were carried out
on the uniform grid with 61*61 nodal points in (x,y)-space.

In Fig. 3 isolines of water saturation s and appropriate 3D chart are presented for time t = 100
hours. In Figs. 4, 5, and 6 the same results are shown for moments t = 400 hours, t = 800 hours,
and t = 1200 hours, respectively. Line 1 on these figures corresponds to s = 0.15, line 2 to
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FIG. 6. The water saturation at t = 1200 hours.

s = 0.25, line 3 to s = 0.35, line 4 to s = 0.45, line 5 to s = 0.55, line 6 to s = 0.65, line 7 to
s = 0.75, line 8 to s = 0.85, and line 9 to s = 0.95.

In Fig. 7 two functions characterizing the efficiency of the oil recovery process by the water
drive are shown. Line 1 corresponds to the ratio of the recovery oil to the total oil volume in initial
moment t = 0 with respect to time
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FIG. 7. Characteristics of efficiency of oil recovery. Line 1 - θ(t), line 2 - γ(t).

θ(t) =

∫
D

[1 − s(x, y, t)]dxdy

∫
D

[1 − s(x, y, 0)]dxdy
(3.8)

and line 2 corresponds to the function

γ(t) =

L∫
0

[k kw

µw

∂p
∂x ]x=0dy

L∫
0

[k( kw

µw
+ ko

µo
) ∂p

∂x ]x=0dy

(3.9)

describing the water content in the development mixture at the production well corresponding to
the boundary x = 0.

According to the presented results, we can see that the solution of the considering problem has
a wave type and the front of water wave solution is mainly spreading in the upper part of the flow
region D2 with high penetration. Subregion D1 with low penetration plays the role of obstacle
and prevents the spreading of water wave. The water wave is stopped at the right boundary of this
subregion x = 0.8L and because of the partial penetration of this subregion, the oil barrier-layer
(the region restricted by line 1 in Figs. 3-6) is generated on the left side of the right boundary
of the low penetration subregion. After the moment t = 250 hours, when the water wave in the
upper part of the flow region is close to the production well (boundary x = 0), the efficiency of
the oil recovery process falls down, and oil from the low penetration subregion and even from the
high-penetration subregion (0 ≤ x ≤ 0.2L, 0 ≤ y ≤ 0.5H), shaded by the first, almost can not
be developed by the water drive.
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According to our results, we see that in the case considered in this article, it is possible to
develop only about 35 percent of oil by the usual water drive technology although 70 percent of
oil is contained in the high-penetration subregion. These results are in good correspondence with
well-known practice.

IV. CONCLUSIONS

Presented results show that numerical solution computed by the proposed algorithm has wave type
and is free of the spurious oscillations near the wave fronts typical for pure high-order schemes
and could deliver fine solutions on rough meshes. Therefore, this method could be efficiently
applied for fast and exact modeling of practical porous media problems.
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