International Journal of Pure and Applied Mathematics Volume 114 No. 3 2017, 457-471 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v114i3.4

COLUMN MEAN VANISHING MATRICES

Myungsup Kim¹, Do Y. Kwak^{2 §} ¹Tunitel Co, Kwan Pyong Dong Yusung-Ku, Daejeon, 34017, KOREA ²Department of Mathematical Sciences Korea Advanced Institute of Science and Technology Daejeon, 34141, KOREA

Abstract: In this paper, we study some properties of a special class of matrices having orthonormal columns. These matrices appear in some applications, especially in wireless communications. We study the column property and spectral decomposition. Using these properties, we suggest a new method of generating such matrices. For N even, the new method gives rise to a matrix which is more efficient. Numerical examples to compare two methods are included.

AMS Subject Classification: 65N15, 65N30, 35J60 **Key Words:** orthogonal columns, column mean vanishing property, SVD

1. Introduction

In this paper, we study some properties of a special class of rectangular matrices having orthonormal columns. These matrices appear in some applications, especially, in OFDM-wireless communications [2],[3],[7],[5]. In OFDM, the signals must not have large jumps near the boundary of frequencies. Otherwise, the spectrum spread would interfere with neighboring channels. This kind of matrices can be used to design a technology to carry multiple signals without interference between channels [6]. We will study some properties and

Received:	November 15, 2016
Revised:	April 25, 2017
Published:	May 23, 2017

© 2017 Academic Publications, Ltd. url: www.acadpubl.eu

[§]Correspondence author

and a spectral decomposition of them. Using these properties, we suggest a new method of generating such matrices. We use techniques of singular value decomposition (SVD) and nearest orthogonal matrix generation [1],[8],[9]. Numerical examples to compare two methods are included. For N even, the new method gives rise to a matrix which is more efficient.

2. Generation of a Matrix Having Orthonormal, Column Mean Vanishing Property

We start a notion about the matrices.

Definition 2.1. We say a matrix A has a column mean vanishing (CMV) property if the sum of each column is zero.

Let F and F^{-1} be the matrix representation of Fast Fourier Transform(FFT) and inverse Fast Fourier Transform (IFFT): Given any $n \times 1$ vector \mathbf{x} , its FFT and IFFT are given by

$$\hat{\mathbf{x}} = F\mathbf{x} \text{ and } \check{\mathbf{x}} = F^{-1}\mathbf{x},$$
(2.1)

where $F = (f_{jk})$ and $F^{-1} = (f'_{ik})$ are

$$f_{jk} = e^{-\theta_j k}, \ f'_{jk} = \frac{1}{n} e^{\theta_j k}, \ \text{with} \ \theta_j = \frac{2\pi i j}{n}, \ i = \sqrt{-1}.$$
 (2.2)

Let $L = n \gg m$ and $N \ll LM = N - 1$. Using an initial $N \times (N - 1)$ matrix, IFFT, zero padding, removing jumps, and truncation, FFT, we will generate a new matrix having the desired properties. The following scheme is suggested in [6].

Algorithm Orth-CMV

- 1. Given a $N \times (N-1)$ initial matrix K with orthonormal columns.
- 2. Multiply by $n \times N$ matrix **P** obtaining $A = \mathbf{P}K$.
- 3. Perform IFFT to obtain $\mathbf{F}^{-1}(\mathbf{P}K)$.
- 4. Subtract the first row from all the rows, the result is $\mathbf{\Phi} \circ \mathbf{F}^{-1}(\mathbf{P}K)$.
- 5. Perform FFT to get $\mathbf{F} \circ \mathbf{\Phi} \circ \mathbf{F}^{-1}(\mathbf{P}K)$.
- 6. Multiply \mathbf{P}^T to obtain $\hat{K} \coloneqq \mathbf{P}^T \circ \mathbf{F} \circ \mathbf{\Phi} \circ \mathbf{F}^{-1}(\mathbf{P}K)$.
- 7. Normalize each column of \hat{K} , call it by \hat{K}_0 .

Figure 1: Signal flow diagram for matrix generation. Θ is a jump removing operator in frequency domain, $CN(\cdot)$ and $\mathcal{O}(\cdot)$ are normalization and orthogonalization operator, resp.

8. Let $G = UV^H$ where $U\Sigma V^H$ is the SVD of \hat{K}_0 .

In the next, we list some matrix notations:

	77				
Matrices	K	Initial matrix to generate the matrix G			
	A	Permuted and zero padded matrices of K			
	Ă	IFFT performed matrix of A			
	A^0	Internal jump removed matrix			
	Â	FFT performed matrix of A			
	\hat{K}	Jump removed matrix from K			
	\hat{K}_0	Normalized matrix after jump removing			
	G	matrix with orthonormal columns			
Operators	Р	Permutation and zero padding matrix			
	\mathbf{F}^{-1}	IFFT matrix			
	Φ	Jump removing matrix			
	\mathbf{F}	FFT matrix			
	\mathbf{P}^{T}	Permuting and truncating matrix			
	Θ	Jump removing matrix in frequency domain			

Now we will explain more details of the algorithm: We first assume N = 2m + 1. Let the initial matrix K of size $N \times (N - 1)$ be given by

	0	0	0	0	0	1	1	
1	:					0	0	
	0	0	1	1		0	0	
	1	1	0	0		0	0	
$K = \frac{1}{\sqrt{2}}$	0	0	0	0		0	0	(2.3)
$\sqrt{2}$	1	-1	0	0		0	0	
	0	0	1	-1		0	0	
	:				·.	0	0	
	0	0	0	0	0	1	-1	

Step (2). Permute and Pad Zeros

Starting from K, we construct an $L \times M$ matrix as follows: Move the last m+1 rows of K to the first m+1 rows of K. Next fill it with pad with L - M zero rows (called zero padding). This process can be expressed as $\mathbf{P}K$ where

$$\mathbf{P} = \begin{bmatrix} \underline{0}_{(m+1)\times m} & \mathbf{I}_{m+1} \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ \hline \mathbf{I}_m & \underline{0}_{m\times(m+1)} \end{bmatrix}.$$
(2.4)

Here $\mathbf{I}_m, \mathbf{I}_{m+1}$ are identity matrices of size m and m+1.

Steps (3) and (4) : IFFT Followed by Subtraction of the First Row

Let us use the notation $K = (k_{ij})$ and $K_1 = (k_{ij}^1) := \mathbf{P}K$. Let $\check{K}_1 = \mathbf{F}^{-1}(\mathbf{P}K)$ be the inverse FFT of $\mathbf{P}K$. By definition of IFFT (2.1), the first row of \check{K}_1 is

$$\check{\mathbf{k}}_{1} = \left[\check{k}_{11}, \check{k}_{12}, \cdots, \check{k}_{1M}\right] = \frac{1}{n} \left[\sum_{i=0}^{n-1} k_{i1}^{1}, \sum_{i=0}^{n-1} k_{i2}^{1}, \cdots, \sum_{i=0}^{n-1} k_{iM}^{1}\right].$$
(2.5)

The process of IFFT of permuting the rows and eliminating first row is described by

$$\check{K_{1}}' = \begin{bmatrix} \check{k_{11}} & \check{k_{12}} & \cdots & \check{k_{1M}} \\ \check{k_{21}} & \check{k_{22}} & \cdots & \check{k_{2M}} \\ \vdots & \vdots & \cdots & \vdots \\ \check{k_{n,1}} & \check{k_{n,2}} & \cdots & \check{k_{n,M}} \end{bmatrix} - \begin{bmatrix} \check{k_{11}} & \check{k_{12}} & \cdots & \check{k_{1M}} \\ \check{k_{11}} & \check{k_{12}} & \cdots & \check{k_{1M}} \\ \vdots & \vdots & \cdots & \vdots \\ \check{k_{11}} & \check{k_{12}} & \cdots & \check{k_{1M}} \end{bmatrix} \equiv \check{K_{1}} - \check{K_{1}}^{*}.$$
(2.6)

Here \check{K}_1^* is the matrix all of whose rows are the vector $\check{\mathbf{k}}_1$. Let $\boldsymbol{\Phi}$ be the operator involved in the elimination of first row in step (4) of the algorithm. Then

$$\boldsymbol{\Phi} \equiv \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ -1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 \\ -1 & 0 & 0 & \cdots & 0 \\ -1 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$
 (2.7)

Step (5) and (6). FFT, Truncation and Band Limit

The step (5) is FFT and the process in step (6) corresponds to the permutation and truncation.

Lemma 2.1. The result of step (5) is

$$\mathbf{F} \circ \mathbf{\Phi} \circ \mathbf{F}^{-1}(\mathbf{P}K) = \mathbf{P}K - \mathbf{F}(K_1^*).$$

Hence after step (6) we obtain the matrix

$$\hat{K} \coloneqq K - \mathbf{P}^T \circ \mathbf{F}(\check{K}_1^*). \tag{2.8}$$

Proof. From (2.6) we see

$$\mathbf{F} \circ \mathbf{\Phi} \circ \mathbf{F}^{-1}(\mathbf{P}K) = \mathbf{F} \circ F^{-1}(\mathbf{P}K) - \mathbf{F}(\check{K}_1^*)$$
$$= \mathbf{P}K - \mathbf{F}(\check{K}_1^*),$$

and hence

$$\mathbf{P}^{T} \circ \mathbf{F} \circ \mathbf{\Phi} \circ F^{-1}(\mathbf{P}K) = \mathbf{P}^{T} \mathbf{P}K - \mathbf{P}^{T} \circ \mathbf{F}(\check{K}_{1}^{*})$$
$$= K - \mathbf{P}^{T} \circ \mathbf{F}(\check{K}_{1}^{*}) \coloneqq \hat{K}.$$

Now we compute the matrix $\mathbf{P}^T \circ F(\check{K}_1^*)$. Since the FFT of the vector $[1, \cdots, 1]^T$ is $[n, 0, \cdots, 0]^T$, we see the FFT of \check{K}_1^*

$$\mathbf{F}(K_1^*) = n \begin{bmatrix} \check{k}_{11} & \check{k}_{12} & \cdots & \check{k}_{1M} \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$
 (2.9)

Here the first row is

$$n\left[\check{k}_{11},\dots,\check{k}_{1M}\right] = \left[\sum_{i=1}^{n} k_{i1},\dots,\sum_{i=1}^{n} k_{iM}\right] \equiv [x_{11},x_{12},\dots,x_{1M}] \equiv \mathbf{x}.$$
 (2.10)

By multiplying by \mathbf{P}^T , we obtain $N \times M$ matrix

$$\mathbf{P}^{T} \circ \mathbf{F}(\check{K}_{1}^{*}) = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ -x_{11} & -x_{12} & \cdots & -x_{1M} \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$
(2.11)

Now as the result of step (6), we obtain

$$\hat{K} = \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1M} \\ \vdots & \vdots & \cdots & \vdots \\ k_{m+1,1} - x_{11} & k_{m+1,2} - x_{12} & \cdots & k_{m+1,M} - x_{1M} \\ \vdots & \vdots & \cdots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NM} \end{bmatrix} = K - \mathbf{P}^T \circ F(\check{K}_1^*). \quad (2.12)$$

Lemma 2.2. The sum of all entries of each column of the matrix \hat{K} or \hat{K}_0 is zero.

Proof. Clear from (2.10) and (2.12).

Nearest Orthogonal Matrix

The step (8) can be described by another way: Let

$$\hat{K}_0 = U\Sigma V^H \tag{2.13}$$

be the singular value decomposition (SVD) of \hat{K}_0 . Then the matrix $G = UV^H$ is the same as the polar decomposition [4]:

Lemma 2.3.

$$UV^{H} = \hat{K}_{0} \left(\hat{K}_{0}^{H} \hat{K}_{0} \right)^{-1/2}.$$
 (2.14)

It is also well-known that G is the nearest matrix to \hat{K}_0 having orthonormal columns. (Corollary 2.3 of [4] and the remark following it.)

Theorem 2.1. The matrix G obtained in step (8) satisfies CMV property:

Proof. Let $\vec{1} = [1, \dots, 1]$. Then by Lemma 2.2, we have

$$\vec{1} \cdot \vec{K}_0 = [0, 0, \dots, 0]$$

Hence by (2.14) we see

$$\vec{1} \cdot G = \vec{1} \cdot \hat{K}_0 \left(\hat{K}_0^H \hat{K}_0 \right)^{-1/2} = [0, 0, \cdots, 0].$$

2.1. The Case N Even

Now we investigate the even case.

Steps (1), (2)

The initial matrix is different from the odd case. Let N = 2m and let the initial matrix K of size $N \times (N - 1)$ be given by

$$K_{e}^{(0)} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ \vdots & & \ddots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -1 & \cdots & 0 & 0 \\ \vdots & & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$
(2.15)

This is obtained by removing the central row and first column from the odd case (2.3). Using this matrix we will generate a matrix having the desired properties. Starting from $K_e^{(0)}$, we proceed similarly to the odd case. The matrix **P** (resp. \mathbf{P}^T) involved in zero padding (resp. truncation) is the following

$$\mathbf{P} = \begin{bmatrix} \underline{\underline{0}_{m \times m}} & \mathbf{I}_m \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ \hline \mathbf{I}_m & \underline{0}_{m \times m} \end{bmatrix}, \quad \mathbf{P}^T = \begin{bmatrix} \underline{\underline{0}_{m \times m}} & 0 & \cdots & 0 & \mathbf{I}_m \\ \hline \mathbf{I}_m & 0 & \cdots & 0 & \underline{0}_{m \times m} \end{bmatrix}.$$
(2.16)

Steps (3) through (8) are the Same

3. Some Spectral Analysis - Property of Even (Odd) Columns

Let \mathbf{k}_i and \mathbf{g}_i and denote the *i*-th column of the matrix K and G respectively. Lemma 3.1. Then we have the following.

- 1. For odd N, the even columns of the matrix K are the same as those of K
- 2. For even N, the odd columns of the matrix K are the same as those of K.

For example, if N = 5, then

$$\mathbf{k}_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\0\\-1\\0 \end{bmatrix} = \mathbf{g}_{2}, \quad \mathbf{k}_{4} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\0\\-1 \end{bmatrix} = \mathbf{g}_{4}.$$

Proof. We explain the case when N = 5, the general case is exactly the same. We see from (2.12) that \hat{K} in step (6) has changed only in the third row. In fact, $\begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & 0 & 2 & 0 \end{bmatrix}$. Hence we have

$$\hat{K} = \begin{bmatrix}
k_{11} & k_{12} & k_{13} & k_{14} \\
k_{21} & k_{22} & k_{23} & k_{24} \\
k_{31} - x_{11} & k_{32} & k_{33} - x_{13} & k_{34} \\
k_{41} & k_{42} & k_{43} & k_{44} \\
k_{51} & k_{52} & k_{53} & k_{54}
\end{bmatrix}$$
(3.1)

Hence the even columns of \hat{K} or the normalized matrix \hat{K}_0 are equal to the corresponding even columns of K.

Lemma 3.2. Then we have the following.

- 1. Let N be odd. The even columns of \hat{K}_0 are orthogonal to all other columns of \hat{K}_0 . As a consequence, for all even j, \mathbf{e}_j is an eigenvector of $\hat{K}_0^H \hat{K}_0$ corresponding to eigenvalue 1.
- 2. Let N be even. The odd columns of \hat{K}_0 are orthogonal to all other columns of \hat{K}_0 . As a consequence, for all odd j, \mathbf{e}_j is an eigenvector of $\hat{K}_0^H \hat{K}_0$ corresponding to eigenvalue 1.

Proof. Assume N is odd. The proof of even case is exactly the same. Let $\hat{\mathbf{k}}_{0,i}$ be the *i*-th column of \hat{K}_0 . Then $\hat{\mathbf{k}}_{0,i} = \mathbf{k}_i$ for *i* even and $\hat{\mathbf{k}}_{0,i} = \mathbf{k}_i - \mathbf{x}$ for *i* odd. Since the m + 1-st entry of even columns is zero, the subtraction of \mathbf{x} from the third row in (3.1) does not affect the orthogonality. Hence when *j* is even

$$\hat{\mathbf{k}}_{0,i}^T \cdot \hat{\mathbf{k}}_{0,j} = \begin{cases} (\mathbf{k}_i - \mathbf{x})^T \cdot \mathbf{k}_j = \delta_{ij} & \text{if } i \text{ is odd} \\ \mathbf{k}_i^T \cdot \mathbf{k}_j = \delta_{ij} & \text{if } i \text{ is even} \end{cases}$$

Hence the j -th column of $\hat{K}_0^H \hat{K}_0$ satisfies

$$\hat{K}_{0}^{H}\hat{K}_{0}\mathbf{e}_{j} = \hat{K}_{0}^{H}\hat{\mathbf{k}}_{0,j} = \begin{bmatrix} \hat{\mathbf{k}}_{0,1}^{T} \cdot \hat{\mathbf{k}}_{0,j} \\ \hat{\mathbf{k}}_{0,2}^{T} \cdot \hat{\mathbf{k}}_{0,j} \\ \vdots \\ \hat{\mathbf{k}}_{0,N}^{T} \cdot \hat{\mathbf{k}}_{0,j} \end{bmatrix} = \mathbf{e}_{j}.$$
(3.2)

This means that when j is even, the j-th columns of \hat{K}_0 are orthogonal to all other columns of \hat{K}_0 . Clearly (3.2) implies the second assertion of the lemma.

Example 3.1. For N = 5 we see

$$\hat{K}_{0}^{H}\hat{K}_{0} = \frac{1}{2} \begin{bmatrix} 0 & 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 1 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3 & |0| & 1 & |0| \\ 0 & |2| & 0 & |0| \\ 1 & |0| & 3 & |0| \\ 0 & |0| & 0 & |2| \end{bmatrix}$$
(3.3)

The zeros in the box keep the even columns of \hat{K}_0 orthogonal to other columns. In view of (3.2), $\hat{K}_0^H \hat{K}_0$ has two eigenvectors $\mathbf{e}_j, j = 2, 4$ corresponding to the eigenvalue 1.

Theorem 3.2. We have the following result.

- 1. For N odd, G has eigenvector \mathbf{e}_j for all j even with the corresponding eigenvalue 1. The even columns of $G = \hat{K}_0 (\hat{K}_0^H \hat{K}_0)^{-1/2}$ are the same as those of K.
- 2. For N even, G has eigenvector \mathbf{e}_j for all j odd with the corresponding eigenvalue 1. The odd columns of $G = \hat{K}_0 (\hat{K}_0^H \hat{K}_0)^{-1/2}$ are the same as those of K.

Proof. Since $\hat{K}_0 = U\Sigma V^H$ from (2.13), we have the spectral decomposition of $\hat{K}_0^H \hat{K}_0$:

$$\hat{K}_0^H \hat{K}_0 = V \Sigma^H \Sigma V^H \coloneqq V \Lambda V^H (V^H = V^{-1}), \qquad (3.4)$$

where by (3.2) Λ and V have the following form:

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & & 0 \\ \vdots & & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}, (N \text{ odd}) \Lambda = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} (N \text{ even}). \quad (3.5)$$

The eigenvector corresponding to the eigenvalue 1 is \mathbf{e}_j . Hence when N is odd, $V\mathbf{e}_j = \mathbf{e}_j$ for j even and so $V^{-1}\mathbf{e}_j = V^{-1}V\mathbf{e}_j = \mathbf{e}_j$. Hence for each even j,

$$\hat{K}_{0}(\hat{K}_{0}^{H}\hat{K}_{0})^{-1/2}\mathbf{e}_{j} = \hat{K}_{0}V\Lambda^{-1/2}V^{-1}\mathbf{e}_{j}$$
$$= \hat{K}_{0}V\Lambda^{-1/2}\mathbf{e}_{j}$$

$$= \hat{K}_0 V \mathbf{e}_j$$
$$= \hat{K}_0 \mathbf{e}_j.$$

In view of (3.1), this is the same as *j*-th column of K (normalization does not change even columns). While when N is even, the same conclusion holds for j odd.

4. Numerical Example

In all of the computations, we used the Matlab.

Example 4.1. When N = 5 and M = 4, the initial matrix is

$$K = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 0 & 1 & 1\\ 1 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 1 & -1 & 0 & 0\\ 0 & 0 & 1 & -1 \end{bmatrix}$$

With this we get

$$G = \begin{bmatrix} -0.1954 & -0.0000 & 0.5117 & 0.7071 \\ 0.5117 & 0.7071 & -0.1954 & -0.0000 \\ -0.6325 & -0.0000 & -0.6325 & 0.0000 \\ 0.5117 & -0.7071 & -0.1954 & -0.0000 \\ -0.1954 & 0.0000 & 0.5117 & -0.7071 \end{bmatrix}$$

Example 4.2. When N = 7, M = 6, we get

$$G = \begin{bmatrix} -0.1466 & -0.0000 & -0.1466 & -0.0000 & 0.5605 & 0.7071 \\ -0.1466 & -0.0000 & 0.5605 & 0.7071 & -0.1466 & 0.0000 \\ 0.5605 & 0.7071 & -0.1466 & 0.0000 & -0.1466 & 0.0000 \\ -0.5345 & 0.0000 & -0.5345 & -0.0000 & -0.5345 & 0.0000 \\ 0.5605 & -0.7071 & -0.1466 & 0.0000 & -0.1466 & 0.0000 \\ -0.1466 & 0.0000 & 0.5605 & -0.7071 & -0.1466 & 0.0000 \\ -0.1466 & 0.0000 & -0.1466 & -0.0000 & 0.5605 & 0.7071 \end{bmatrix}$$

where the following initial matrix was used.

466

Example 4.3 (N even). When N = 6, M = 5, we get

	-0.1327	-0.1723	-0.0000	0.5348	0.7071
	-0.1327	0.5348	0.7071	-0.1723	0.0000
C -	0.8934	-0.1327	0.0000	-0.1327	-0.0000
G =	-0.3626	-0.5924	0.0000	-0.5924	-0.0000
	-0.1327	0.5348	-0.7071	-0.1723	0.0000
	-0.1327	-0.1723	-0.0000	$\begin{array}{c} 0.5348 \\ -0.1723 \\ -0.1327 \\ -0.5924 \\ -0.1723 \\ 0.5348 \end{array}$	-0.7071

5. A Direct Generation of G

In this section we introduce a method of generating G without using FFT and SVD. To do that, we first observe the following fact:

• If a matrix has a CMV property, then the Step (4) of the algorithm is not necessary.

Hence the operator Φ in the Figure ?? becomes identity and we have

$$\mathbf{P}^T \mathbf{F} \mathbf{\Phi} \mathbf{F}^{-1} \mathbf{P} = \mathbf{P}^T \mathbf{F} \mathbf{I}_L \mathbf{F}^{-1} \mathbf{P} = \mathbf{P}^T \mathbf{P} = \mathbf{I}_N.$$

Here \mathbf{I}_L and \mathbf{I}_N are identity operators in $\mathbb{R}^{L \times L}$ and $\mathbb{R}^{N \times N}$ respectively. Hence the whole process reduces to finding the nearest orthogonal matrix only. (step (8)) Using this fact, we suggest a simple method to generate such a matrix. The minimal requirements are

- 1. Every column of the matrix G is a unit vector.
- 2. All the columns of the matrix G are orthogonal to each other
- 3. The sum of each columns of the matrix G is zero.

So we need at least three variables to design a matrix. In fact, three variables are enough for N odd. For even N, it seems four variables are needed. We use an example to explain. Let N = 5, M = 4. From Theorem 3.2, we know the even columns of G are the same as those of K. We set

~

-

$$G = \begin{bmatrix} c & 0 & b & \frac{1}{\sqrt{2}} \\ b & \frac{1}{\sqrt{2}} & c & 0 \\ a & 0 & a & 0 \\ b & -\frac{1}{\sqrt{2}} & c & 0 \\ c & 0 & b & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

and impose the orthonormality and CMV condition:

$$a^2 + 2(b^2 + c^2) = 1 \tag{5.1}$$

$$a^2 + 4bc = 0 \tag{5.2}$$

$$a + 2b + 2c = 0. \tag{5.3}$$

Solving (5.1)-(5.2) we get $2c^2 + 2b^2 - 4cb = 2(b-c)^2 = 1$ and together with (5.3) we get

$$a = -0.6325, b = 0.5117, c = -0.1954.$$

These values gives the same G as Example 4.1. The solution is not unique and we see another solution

$$a = -0.5345, b = 0.5345, c = -0.2673.$$

Example 5.1. For N = 7 we assume the matrix of the following form:

$$G = \begin{bmatrix} c & 0.0 & c & 0.0 & b & \frac{1}{\sqrt{2}} \\ c & 0.0 & b & \frac{1}{\sqrt{2}} & c & 0.0 \\ b & \frac{1}{\sqrt{2}} & c & 0.0 & c & 0.0 \\ a & 0.0 & a & 0.0 & a & 0.0 \\ b & -\frac{1}{\sqrt{2}} & c & 0.0 & c & 0.0 \\ c & 0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & 0.0 & c & 0.0 & b & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

We impose orthonormality conditions and CMV condition as before, to have

$$a^2 + 2(b^2 + 2c^2) = 1 \tag{5.4}$$

$$a^2 + 4bc + 2c^2 = 0 \tag{5.5}$$

$$a + 2b + 4c = 0. \tag{5.6}$$

Solving this algebraic system we get the following values

$$a = -0.5345, \ b = 0.5605, \ c = -0.1466.$$

The corresponding matrix is

$$G = \begin{bmatrix} -0.1466 & -0.0000 & -0.1466 & -0.0000 & 0.5605 \\ -0.1466 & -0.0000 & 0.5605 & 0.7071 & -0.1466 \\ 0.5605 & 0.7071 & -0.1466 & 0.0000 & -0.1466 \\ -0.5345 & 0.0000 & -0.5345 & -0.0000 & -0.5345 \\ 0.5605 & -0.7071 & -0.1466 & 0.0000 & -0.1466 \\ -0.1466 & 0.0000 & 0.5605 & -0.7071 & -0.1466 \\ -0.1466 & 0.0000 & -0.1466 & -0.0000 & 0.5605 \end{bmatrix}$$

which is the same as Example 4.2. Another solution is

$$a = 0.5345, b = 0.3823, c = -0.3248.$$

More generally, we can construct any size of K by assuming the even columns are

$$\begin{bmatrix} 0, 0, \dots, 0, \sqrt{2}/2, 0, -\sqrt{2}/2, 0, 0, \dots, 0 \end{bmatrix}^T, \\ \begin{bmatrix} 0, \dots, 0, \sqrt{2}/2, 0, 0, 0, -\sqrt{2}/2, 0, \dots, 0 \end{bmatrix}^T, \\ \dots \dots \\ \begin{bmatrix} \sqrt{2}/2, 0, 0, \dots, 0, 0, 0, 0, \dots, 0, -\sqrt{2}/2 \end{bmatrix}^T$$

while the odd columns are of the form

$$\begin{bmatrix} c, c, \cdots, c, c, b, a, b, c, c, \cdots, c, c \end{bmatrix}^T, \\ \begin{bmatrix} c, c, c, \cdots, b, c, a, c, b, c, \cdots, c, c \end{bmatrix}^T, \\ \begin{bmatrix} c, c, \cdots, b, c, c, a, c, c, b, \cdots, c, c \end{bmatrix}^T, \\ \hline \\ \hline \\ \begin{bmatrix} b, c, c, c, \cdots, c, c, a, c, c, \cdots, c, b \end{bmatrix}^T$$

Now impose the following conditions: for $j = 2, 3, \cdots$,

$$a^{2} + 2(b^{2} + (j-1)c^{2}) = 1$$
(5.7)

$$a^{2} + 4bc + 2(j-2)c^{2} = 0$$
(5.8)

$$a + 2b + 2(j - 1)c = 0. (5.9)$$

By solving this simple algebraic system by Newton's method with certain initial values, we can find a desired matrix G of any size.

Example 5.2. $[9 \times 9]$ Assume

$$G = \begin{bmatrix} c & 0 & c & 0 & c & 0 & b & \frac{1}{\sqrt{2}} \\ c & 0 & c & 0 & b & \frac{1}{\sqrt{2}} & c & 0 \\ c & 0 & b & \frac{1}{\sqrt{2}} & c & 0 & c & 0 \\ b & \frac{1}{\sqrt{2}} & c & 0 & c & 0 & c & 0 \\ a & 0 & a & 0 & a & 0 & a & 0 \\ a & 0 & a & 0 & a & 0 & a & 0 \\ b & -\frac{1}{\sqrt{2}} & c & 0 & c & 0 & c & 0 \\ c & 0 & b & -\frac{1}{\sqrt{2}} & c & 0 & c & 0 \\ c & 0 & c & 0 & b & -\frac{1}{\sqrt{2}} & c & 0 \\ c & 0 & c & 0 & c & 0 & b & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

We need to solve

$$a^2 + 2(b^2 + 3c^2) = 1 \tag{5.10}$$

$$4c^2 + 4bc + a^2 = 0 \tag{5.11}$$

$$a + 2b + 6c = 0. \tag{5.12}$$

For example, with initial guess [a, b, c] = [-0.6, -0.7, 0.3], we obtain

 $a = -0.4714, \ b = -0.4714, \ c = 0.2357.$

But with different initial [-0.6, 40.7, 0.3], we obtain

$$a = -0.4714, b = 0.5893, c = -0.1179.$$

Example 5.3. $[11 \times 11]$ Let

$$G = \begin{bmatrix} c & -0.0 & c & -0.0 & c & -0.0 & b & \frac{1}{\sqrt{2}} \\ c & -0.0 & c & -0.0 & c & -0.0 & b & \frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & b & \frac{1}{\sqrt{2}} & c & -0.0 & c & 0.0 \\ c & -0.0 & b & \frac{1}{\sqrt{2}} & c & -0.0 & c & -0.0 & c & 0.0 \\ b & \frac{1}{\sqrt{2}} & c & 0.0 & c & 0.0 & c & -0.0 & c & 0.0 \\ a & 0.0 & a & 0.0 & a & 0.0 & a & 0.0 & a & 0.0 \\ b & -\frac{1}{\sqrt{2}} & c & 0.0 & c & 0.0 & c & -0.0 & c & 0.0 \\ c & 0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 & c & 0.0 & c & 0.0 \\ c & 0.0 & c & 0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & c & 0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & c & 0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & c & 0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & c & 0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & c & 0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & c & 0.0 & b & -\frac{1}{\sqrt{2}} & c & 0.0 \\ c & -0.0 & c & -0.0 & c & -0.0 & c & 0 & 0 \\ c & -0.0 & c & -0.0 & c & -0.0 & c & 0 & 0 \\ c & -0.0 & c & -0.0 & c & -0.0 & c & 0 & 0 \\ c & -0.0 & -0.0 & c & -0.0 & c & -0.0 & c & 0 \\ c & -0.0 & -0.0 & -0.0 & c & -0.0 & 0 \\ c & -0.0 & -0.0 & -0.0 & -0 & 0 \\ c & -0.0 & -0.0 & -0.0 & -0 & 0 \\ c & -0.0 & -0.0 & -0 & -0 & 0 \\ c & -0.0 & -0 & -0 & -0 & 0 \\ c & -0.0 & -0 & -0 & -0 & -0 \\ c & -0.0 & -0 & -0 & -0 & -0 \\ c & -0 & -0 & -0 & -0 & -0 & -0 \\ c & -0 & -0 & -0 & -0 & -0 \\ c & -0 & -0$$

For this case, we need to solve

$$a^2 + 2(b^2 + 4c^2) = 1 \tag{5.13}$$

$$6c^2 + 4bc + a^2 = 0 \tag{5.14}$$

$$a + 2b + 8c = 0. \tag{5.15}$$

With initial value [-0.4264, 0.6083, -0.0988], we get

a = -0.4264, b = 0.6083, c = -0.0988.

while with initial value [1.0, 0.3, -1.6], we get

$$a = 0.4264, \ b = 0.5230, \ c = -0.1841.$$

References

- Banerjee, Sudipto, Roy, and Anindya, Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science, Chapman and Hall/CRC, 2014.
- [2] O. Edfors, M. Sandell, J. -J. van de Beek, and S. K. Wilson, OFDM channel estimation by singular value decomposition, IEEE Trans. Commun., vol. 46, pp. 931-939, July 1998.
- [3] Fleming Bjerge Frederiksen and Ramjee Prasad, An Overview of OFDM and Related Techniques Towards Development of Future Wireless Multimedia Communications, in Radio and Wireless Conference, RAWCON 2002, pp19-22, 2002.
- [4] Nicholas J. Higham, Computing the Polar Decomposition With Applications, SIAM J. SCI. STAT. COMPUT. vol. 7, no. 4, Oct. 1986
- [5] Myungsup Kim and Do Young Kwak, *Generalized OFDM*, Submitted to IEEE Communications Letters.
- [6] Myungsup Kim and Do Young Kwak, Generalized OFDM for the 5th Generation Mobile Communications, Submitted to VCT2017.
- [7] Raed Meslehz, Hany Elgalaz, and Harald Haas, An Overview of Indoor OFDM/DMT Optical Communication Systems Networks and Digital Signal Processing, in SNDSP, pp. 566-570, 2010.
- [8] R.-C. Li., New Perturbation bounds for the polar factor, SIAM J. Matrix Anal. Appl. Vol. 16, No. 1, pp. 327-332, January 1995.
- Ji-Guang Sun, A Note on Backward Perturbations for the Hermitian Eigenvalue Problem, pp. 385-393 of BIT 35 (1995).