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Abstract: In this paper, we study some properties of a special class of matrices having

orthonormal columns. These matrices appear in some applications, especially in wireless

communications. We study the column property and spectral decomposition. Using these

properties, we suggest a new method of generating such matrices. For N even, the new

method gives rise to a matrix which is more efficient. Numerical examples to compare two

methods are included.
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1. Introduction

In this paper, we study some properties of a special class of rectangular ma-
trices having orthonormal columns. These matrices appear in some applica-
tions, especially, in OFDM-wireless communications [2],[3],[7],[5]. In OFDM,
the signals must not have large jumps near the boundary of frequencies. Oth-
erwise, the spectrum spread would interfere with neighboring channels. This
kind of matrices can be used to design a technology to carry multiple signals
without interference between channels [6]. We will study some properties and
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and a spectral decomposition of them. Using these properties, we suggest a
new method of generating such matrices. We use techniques of singular value
decomposition(SVD) and nearest orthogonal matrix generation [1],[8],[9]. Nu-
merical examples to compare two methods are included. For N even, the new
method gives rise to a matrix which is more efficient.

2. Generation of a Matrix Having Orthonormal, Column Mean
Vanishing Property

We start a notion about the matrices.

Definition 2.1. We say a matrix A has a column mean vanishing (CMV)
property if the sum of each column is zero.

Let F and F−1 be the matrix representation of Fast Fourier Transform(FFT)
and inverse Fast Fourier Transform (IFFT): Given any n × 1 vector x, its FFT
and IFFT are given by

x̂ = Fx and x̌ = F−1x, (2.1)

where F = (fjk) and F−1 = (f ′jk) are
fjk = e−θjk, f ′jk = 1

n
eθjk, with θj = 2πij

n
, i = √−1. (2.2)

Let L = n≫m and N ≪ LM = N − 1. Using an initial N × (N − 1) matrix,
IFFT, zero padding, removing jumps, and truncation, FFT, we will generate a
new matrix having the desired properties. The following scheme is suggested
in [6].

Algorithm Orth-CMV

1. Given a N × (N − 1) initial matrix K with orthonormal columns.

2. Multiply by n ×N matrix P obtaining A = PK.

3. Perform IFFT to obtain F−1(PK).
4. Subtract the first row from all the rows, the result is Φ ○F−1(PK).
5. Perform FFT to get F ○Φ ○F−1(PK).
6. Multiply PT to obtain K̂ ∶= PT ○F ○Φ ○F−1(PK).
7. Normalize each column of K̂, call it by K̂0.
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Figure 1: Signal flow diagram for matrix generation. Θ is a jump remov-
ing operator in frequency domain, CN(⋅) and O(⋅) are normalization
and orthogonalization operator, resp.

8. Let G = UV H where UΣV H is the SVD of K̂0.

In the next, we list some matrix notations:

Matrices K Initial matrix to generate the matrix G

A Permuted and zero padded matrices of K

Ǎ IFFT performed matrix of A
A0 Internal jump removed matrix

Â FFT performed matrix of A

K̂ Jump removed matrix from K

K̂0 Normalized matrix after jump removing
G matrix with orthonormal columns

Operators P Permutation and zero padding matrix
F−1 IFFT matrix
Φ Jump removing matrix
F FFT matrix

PT Permuting and truncating matrix
Θ Jump removing matrix in frequency domain

Now we will explain more details of the algorithm: We first assume N =
2m + 1. Let the initial matrix K of size N × (N − 1) be given by

K = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 1
⋮ ⋰ 0 0

0 0 1 1 ⋯ 0 0
1 1 0 0 ⋯ 0 0
0 0 0 0 ⋯ 0 0
1 −1 0 0 ⋯ 0 0
0 0 1 −1 ⋯ 0 0

⋮ ⋱ 0 0
0 0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3)
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Step (2). Permute and Pad Zeros

Starting from K, we construct an L×M matrix as follows: Move the last m+1
rows of K to the first m + 1 rows of K. Next fill it with pad with L −M zero
rows (called zero padding). This process can be expressed as PK where

P =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
¯(m+1)×m

Im+1
0 0
⋮ ⋮
0 0

Im 0
¯m×(m+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.4)

Here Im, Im+1 are identity matrices of size m and m + 1.

Steps (3) and (4) : IFFT Followed by Subtraction of the First Row

Let us use the notation K = (kij) and K1 = (k1ij) ∶= PK. Let Ǩ1 = F−1(PK)
be the inverse FFT of PK. By definition of IFFT (2.1), the first row of Ǩ1 is

ǩ1 = [ǩ11, ǩ12,⋯, ǩ1M ] = 1

n
[n−1∑
i=0

k1i1,
n−1
∑
i=0

k1i2,⋯,
n−1
∑
i=0

k1iM] . (2.5)

The process of IFFT of permuting the rows and eliminating first row is
described by

Ǩ1
′ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ǩ11 ǩ12 ⋯ ǩ1M
ǩ21 ǩ22 ⋯ ǩ2M
⋮ ⋮ ⋯ ⋮

ǩn,1 ǩn,2 ⋯ ǩn,M

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ǩ11 ǩ12 ⋯ ǩ1M
ǩ11 ǩ12 ⋯ ǩ1M
⋮ ⋮ ⋯ ⋮

ǩ11 ǩ12 ⋯ ǩ1M

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≡ Ǩ1 − Ǩ∗1 . (2.6)

Here Ǩ∗1 is the matrix all of whose rows are the vector ǩ1. Let Φ be the operator
involved in the elimination of first row in step (4) of the algorithm. Then

Φ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ 0
−1 1 0 ⋯ 0
−1 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ 0
−1 0 0 ⋯ 0
−1 0 0 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.7)
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Step (5) and (6). FFT, Truncation and Band Limit

The step (5) is FFT and the process in step (6) corresponds to the permutation
and truncation.

Lemma 2.1. The result of step (5) is

F ○Φ ○F−1(PK) = PK −F(Ǩ∗1 ).
Hence after step (6) we obtain the matrix

K̂ ∶=K −PT ○F(Ǩ∗1 ). (2.8)

Proof. From (2.6) we see

F ○Φ ○F−1(PK) = F ○ F−1(PK) −F(Ǩ∗1 )= PK −F(Ǩ∗1 ),
and hence

PT ○F ○Φ ○F−1(PK) = PTPK −PT ○F(Ǩ∗1 )= K −PT ○F(Ǩ∗1 ) ∶= K̂.

Now we compute the matrix PT ○ F (Ǩ∗1 ). Since the FFT of the vector[1,⋯,1]T is [n,0,⋯,0]T , we see the FFT of Ǩ∗1

F(K∗1 ) = n
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ǩ11 ǩ12 ⋯ ǩ1M
0 0 0 0
⋮ ⋮ ⋮ ⋮
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.9)

Here the first row is

n [ǩ11,⋯, ǩ1M ] = [ n

∑
i=1

ki1,⋯,
n

∑
i=1

kiM] ≡ [x11, x12,⋯, x1M ] ≡ x. (2.10)

By multiplying by PT , we obtain N ×M matrix

PT ○F(Ǩ∗1 ) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮
−x11 −x12 ⋯ −x1M
⋮ ⋮ ⋯ ⋮
0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.11)
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Now as the result of step (6), we obtain

K̂ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 k12 ⋯ k1M
⋮ ⋮ ⋯ ⋮

km+1,1 − x11 km+1,2 − x12 ⋯ km+1,M − x1M
⋮ ⋮ ⋯ ⋮

kN1 kN2 ⋯ kNM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=K −PT ○F (Ǩ∗1 ). (2.12)

Lemma 2.2. The sum of all entries of each column of the matrix K̂ or
K̂0 is zero.

Proof. Clear from (2.10) and (2.12).

Nearest Orthogonal Matrix

The step (8) can be described by another way: Let

K̂0 = UΣV H (2.13)

be the singular value decomposition (SVD) of K̂0. Then the matrix G = UV H

is the same as the polar decomposition [4]:

Lemma 2.3.
UV H = K̂0 (K̂H

0 K̂0)−1/2 . (2.14)

It is also well-known that G is the nearest matrix to K̂0 having orthonormal
columns. (Corollary 2.3 of [4] and the remark following it.)

Theorem 2.1. The matrix G obtained in step (8) satisfies CMV property:

Proof. Let 1⃗ = [1,⋯,1]. Then by Lemma 2.2, we have

1⃗ ⋅ K̂0 = [0,0,⋯,0].
Hence by (2.14) we see

1⃗ ⋅G = 1⃗ ⋅ K̂0 (K̂H
0 K̂0)−1/2 = [0,0,⋯,0].

2.1. The Case N Even

Now we investigate the even case.
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Steps (1), (2)

The initial matrix is different from the odd case. Let N = 2m and let the initial
matrix K of size N × (N − 1) be given by

K(0)e = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1
⋮ ⋰ 0 0

0 1 1 ⋯ 0 0
1 0 0 ⋯ 0 0
−1 0 0 ⋯ 0 0
0 1 −1 ⋯ 0 0

⋮ ⋱ 0 0
0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.15)

This is obtained by removing the central row and first column from the odd case
(2.3). Using this matrix we will generate a matrix having the desired properties.

Starting from K
(0)
e , we proceed similarly to the odd case. The matrix P (resp.

PT ) involved in zero padding (resp. truncation) is the following

P =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
¯m×m

Im
0 0
⋮ ⋮
0 0

Im 0
¯m×m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, PT =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
¯m×m

0 ⋯ 0 Im

Im 0 ⋯ 0 0
¯m×m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.16)

Steps (3) through (8) are the Same

3. Some Spectral Analysis - Property of Even (Odd) Columns

Let ki and gi and denote the i-th column of the matrix K and G respectively.

Lemma 3.1. Then we have the following.

1. For odd N , the even columns of the matrix K are the same as those of K

2. For even N , the odd columns of the matrix K are the same as those of
K.
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For example, if N = 5, then

k2 = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= g2, k4 = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= g4.

Proof. We explain the case when N = 5, the general case is exactly the
same. We see from (2.12) that K̂ in step (6) has changed only in the third row.
In fact, [x11 x12 x13 x14] = 1√

2
[2 0 2 0]. Hence we have

K̂ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 k12 k13 k14
k21 k22 k23 k24

k31 − x11 k32 k33 − x13 k34
k41 k42 k43 k44
k51 k52 k53 k54

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.1)

Hence the even columns of K̂ or the normalized matrix K̂0 are equal to the
corresponding even columns of K.

Lemma 3.2. Then we have the following.

1. LetN be odd. The even columns of K̂0 are orthogonal to all other columns
of K̂0. As a consequence, for all even j, ej is an eigenvector of K̂H

0 K̂0

corresponding to eigenvalue 1.

2. Let N be even. The odd columns of K̂0 are orthogonal to all other
columns of K̂0. As a consequence, for all odd j, ej is an eigenvector of
K̂H

0 K̂0 corresponding to eigenvalue 1.

Proof. Assume N is odd. The proof of even case is exactly the same. Let
k̂0,i be the i-th column of K̂0. Then k̂0,i = ki for i even and k̂0,i = ki − x for i

odd. Since the m+1-st entry of even columns is zero, the subtraction of x from
the third row in (3.1) does not affect the orthogonality. Hence when j is even

k̂T
0,i ⋅ k̂0,j =

⎧⎪⎪⎨⎪⎪⎩
(ki − x)T ⋅ kj = δij if i is odd

kT
i ⋅ kj = δij if i is even

.

Hence the j -th column of K̂H
0 K̂0 satisfies

K̂H
0 K̂0ej = K̂H

0 k̂0,j =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

k̂T
0,1 ⋅ k̂0,j

k̂T
0,2 ⋅ k̂0,j

⋮
k̂T
0,N ⋅ k̂0,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ej. (3.2)
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This means that when j is even, the j-th columns of K̂0 are orthogonal to
all other columns of K̂0. Clearly (3.2) implies the second assertion of the
lemma.

Example 3.1. For N = 5 we see

K̂H
0 K̂0 = 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1 1 0
0 1 0 −1 0
1 0 −1 0 1
1 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1
1 1 0 0

−1 0 −1 0
1 −1 0 0
0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 ∣0∣ 1 ∣0∣
0 ∣2∣ 0 ∣0∣
1 ∣0∣ 3 ∣0∣
0 ∣0∣ 0 ∣2∣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.3)

The zeros in the box keep the even columns of K̂0 orthogonal to other columns.
In view of (3.2), K̂H

0 K̂0 has two eigenvectors ej , j = 2,4 corresponding to the
eigenvalue 1.

Theorem 3.2. We have the following result.

1. For N odd, G has eigenvector ej for all j even with the corresponding
eigenvalue 1. The even columns of G = K̂0(K̂H

0 K̂0)−1/2 are the same as
those of K.

2. For N even, G has eigenvector ej for all j odd with the corresponding
eigenvalue 1. The odd columns of G = K̂0(K̂H

0 K̂0)−1/2 are the same as
those of K.

Proof. Since K̂0 = UΣV H from (2.13), we have the spectral decomposition
of K̂H

0 K̂0:
K̂H

0 K̂0 = V ΣHΣV H ∶= V ΛV H(V H = V −1), (3.4)

where by (3.2) Λ and V have the following form:

Λ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 λ3 0
⋮ ⋮ ⋱ 0
0 0 0 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (N odd) Λ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ⋯ 0
0 λ1 0 ⋯ 0
0 0 1 0
⋮ ⋮ ⋱ 0
0 0 0 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N even). (3.5)

The eigenvector corresponding to the eigenvalue 1 is ej. Hence when N is odd,
V ej = ej for j even and so V −1ej = V −1V ej = ej. Hence for each even j,

K̂0(K̂H
0 K̂0)−1/2ej = K̂0V Λ−1/2V −1ej

= K̂0V Λ−1/2ej
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= K̂0V ej

= K̂0ej .

In view of (3.1), this is the same as j-th column of K (normalization does not
change even columns). While when N is even, the same conclusion holds for j
odd.

4. Numerical Example

In all of the computations, we used the Matlab.

Example 4.1. When N = 5 and M = 4, the initial matrix is

K = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1
1 1 0 0
0 0 0 0
1 −1 0 0
0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
With this we get

G =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1954 −0.0000 0.5117 0.7071
0.5117 0.7071 −0.1954 −0.0000
−0.6325 −0.0000 −0.6325 0.0000
0.5117 −0.7071 −0.1954 −0.0000
−0.1954 0.0000 0.5117 −0.7071

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 4.2. When N = 7,M = 6, we get

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1466 −0.0000 −0.1466 −0.0000 0.5605 0.7071
−0.1466 −0.0000 0.5605 0.7071 −0.1466 0.0000
0.5605 0.7071 −0.1466 0.0000 −0.1466 0.0000
−0.5345 0.0000 −0.5345 −0.0000 −0.5345 0.0000
0.5605 −0.7071 −0.1466 0.0000 −0.1466 0.0000
−0.1466 0.0000 0.5605 −0.7071 −0.1466 0.0000
−0.1466 0.0000 −0.1466 −0.0000 0.5605 0.7071

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the following initial matrix was used.
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K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1
0 0 1 1 0 0
1 1 0 0 0 0
0 0 0 0 0 0
1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Example 4.3 (N even). When N = 6,M = 5, we get

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1327 −0.1723 −0.0000 0.5348 0.7071
−0.1327 0.5348 0.7071 −0.1723 0.0000
0.8934 −0.1327 0.0000 −0.1327 −0.0000
−0.3626 −0.5924 0.0000 −0.5924 −0.0000
−0.1327 0.5348 −0.7071 −0.1723 0.0000
−0.1327 −0.1723 −0.0000 0.5348 −0.7071

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5. A Direct Generation of G

In this section we introduce a method of generating G without using FFT and
SVD. To do that, we first observe the following fact:

• If a matrix has a CMV property, then the Step (4) of the algorithm is not
necessary.

Hence the operator Φ in the Figure ?? becomes identity and we have

PTFΦF−1P = PTFILF
−1P = PTP = IN .

Here IL and IN are identity operators in R
L×L and R

N×N respectively. Hence
the whole process reduces to finding the nearest orthogonal matrix only. (step
(8)) Using this fact, we suggest a simple method to generate such a matrix.
The minimal requirements are

1. Every column of the matrix G is a unit vector.

2. All the columns of the matrix G are orthogonal to each other

3. The sum of each columns of the matrix G is zero.
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So we need at least three variables to design a matrix. In fact, three variables
are enough for N odd. For even N , it seems four variables are needed. We use
an example to explain. Let N = 5,M = 4. From Theorem 3.2, we know the
even columns of G are the same as those of K. We set

G =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c 0 b 1√
2

b 1√
2

c 0

a 0 a 0
b − 1√

2
c 0

c 0 b − 1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and impose the orthonormality and CMV condition:

a2 + 2(b2 + c2) = 1 (5.1)

a2 + 4bc = 0 (5.2)

a + 2b + 2c = 0. (5.3)

Solving (5.1)-(5.2) we get 2c2 + 2b2 − 4cb = 2(b − c)2 = 1 and together with (5.3)
we get

a = −0.6325, b = 0.5117, c = −0.1954.
These values gives the same G as Example 4.1. The solution is not unique and
we see another solution

a = −0.5345, b = 0.5345, c = −0.2673.
Example 5.1. For N = 7 we assume the matrix of the following form:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c 0.0 c 0.0 b 1√
2

c 0.0 b 1√
2

c 0.0

b 1√
2

c 0.0 c 0.0

a 0.0 a 0.0 a 0.0

b − 1√
2

c 0.0 c 0.0

c 0.0 b − 1√
2

c 0.0

c 0.0 c 0.0 b − 1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We impose orthonormality conditions and CMV condition as before, to have

a2 + 2(b2 + 2c2) = 1 (5.4)

a2 + 4bc + 2c2 = 0 (5.5)
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a + 2b + 4c = 0. (5.6)

Solving this algebraic system we get the following values

a = −0.5345, b = 0.5605, c = −0.1466.
The corresponding matrix is

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1466 −0.0000 −0.1466 −0.0000 0.5605
−0.1466 −0.0000 0.5605 0.7071 −0.1466
0.5605 0.7071 −0.1466 0.0000 −0.1466
−0.5345 0.0000 −0.5345 −0.0000 −0.5345
0.5605 −0.7071 −0.1466 0.0000 −0.1466
−0.1466 0.0000 0.5605 −0.7071 −0.1466
−0.1466 0.0000 −0.1466 −0.0000 0.5605

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which is the same as Example 4.2. Another solution is

a = 0.5345, b = 0.3823, c = −0.3248.
More generally, we can construct any size of K by assuming the even

columns are

[0,0,⋯,0,√2/2,0,−√2/2,0,0,⋯,0]T ,
[0,⋯,0,√2/2,0,0,0,−√2/2,0,⋯,0]T ,
⋯⋯⋯
[√2/2,0,0,⋯,0,0, 0,0,⋯,0,−√2/2]T

while the odd columns are of the form

[c, c,⋯, c, c, b, a, b, c, c,⋯, c, c]T ,
[c, c, c,⋯, b, c, a, c, b, c,⋯, c, c]T ,
[c, c,⋯, b, c, c, a, c, c, b,⋯, c, c]T ,
⋯⋯⋯
[b, c, c, c,⋯, c, c, a, c, c,⋯, c, b]T

Now impose the following conditions: for j = 2,3,⋯,
a2 + 2(b2 + (j − 1)c2) = 1 (5.7)

a2 + 4bc + 2(j − 2)c2 = 0 (5.8)

a + 2b + 2(j − 1)c = 0. (5.9)

By solving this simple algebraic system by Newton’s method with certain initial
values, we can find a desired matrix G of any size.
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Example 5.2. [9 × 9] Assume

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c 0 c 0 c 0 b 1√
2

c 0 c 0 b 1√
2

c 0

c 0 b 1√
2

c 0 c 0

b 1√
2

c 0 c 0 c 0

a 0 a 0 a 0 a 0

b − 1√
2

c 0 c 0 c 0

c 0 b − 1√
2

c 0 c 0

c 0 c 0 b − 1√
2

c 0

c 0 c 0 c 0 b − 1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We need to solve

a2 + 2(b2 + 3c2) = 1 (5.10)

4c2 + 4bc + a2 = 0 (5.11)

a + 2b + 6c = 0. (5.12)

For example, with initial guess [a, b, c] = [−0.6,−0.7,0.3], we obtain

a = −0.4714, b = −0.4714, c = 0.2357.
But with different initial [−0.6,40.7,0.3], we obtain

a = −0.4714, b = 0.5893, c = −0.1179.
Example 5.3. [11 × 11] Let

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c −0.0 c −0.0 c −0.0 c −0.0 b 1√
2

c −0.0 c −0.0 c −0.0 b 1√
2

c 0.0

c −0.0 c −0.0 b 1√
2

c −0.0 c 0.0

c −0.0 b 1√
2

c −0.0 c −0.0 c 0.0

b 1√
2

c 0.0 c 0.0 c −0.0 c 0.0

a 0.0 a 0.0 a 0.0 a 0.0 a 0.0
b − 1√

2
c 0.0 c 0.0 c −0.0 c 0.0

c 0.0 b − 1√
2

c 0.0 c 0.0 c 0.0

c 0.0 c 0.0 b − 1√
2

c 0.0 c 0.0

c −0.0 c −0.0 c −0.0 b − 1√
2

c 0.0

c −0.0 c −0.0 c −0.0 c −0.0 b − 1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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For this case, we need to solve

a2 + 2(b2 + 4c2) = 1 (5.13)

6c2 + 4bc + a2 = 0 (5.14)

a + 2b + 8c = 0. (5.15)

With initial value [−0.4264,0.6083,−0.0988], we get

a = −0.4264, b = 0.6083, c = −0.0988.
while with initial value [1.0,0.3,−1.6], we get

a = 0.4264, b = 0.5230, c = −0.1841.
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